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It is with great excitement and a sense of responsibility that I welcome our readers to the first issue of AI 
Medicine. As the Editor-in-Chief, I am privileged to steer this innovative journal towards excellence in the realm 
of artificial intelligence applications within medicine and healthcare. 

1. Current Trends in AI and Medicine

We stand at a transformative juncture where artificial intelligence is reshaping the very fabric of healthcare. 
AI Medicine is launched at a time when interdisciplinary approaches combining AI, machine learning, and 
healthcare are not just experimental but imperative for progress. 

The application of AI in medical fields such as radiology, pathology, and patient care management 
demonstrates the capacity of machine learning algorithms to aid and augment human expertise. The emergence of 
deep learning has revolutionized medical image analysis, providing unparalleled accuracy in diagnostics. Similarly, 
telehealth services are becoming increasingly sophisticated with AI-driven solutions for remote patient monitoring 
and diagnostics. 

The role of AI is expanding rapidly, delving into areas of wearable technology, where intelligent analysis of 
data from devices assists in real-time health monitoring and preemptive healthcare strategies. The confluence of 
AI with genomics is paving the way for personalized medicine, tailoring treatments to the genetic makeup of 
individuals. 

2. Scope of AI Medicine

AI Medicine commits to encapsulating this vast and evolving landscape of AI in healthcare. We aim to publish 
innovative research that not only advances the technology but also critically examines its implications in practice. 
Our focus spans a diverse spectrum, including but not limited to: 
• Medical Image Analysis: Leveraging AI for diagnostic accuracy and efficiency;
• Telehealth: Innovations in remote care facilitated by AI technologies;
• Wearable Medical Devices: AI integration in wearable health monitoring systems;
• Clinical Decision Support: AI systems to support clinical decision-making processes;
• Robotics in Medicine: From surgical assistance to rehabilitation robotics;
• Medical Data Analysis: Data mining, predictive modeling, and interpretation in medical datasets;
• Ethical Considerations: Addressing the ethical, legal, and social implications of AI in healthcare.

This broad scope ensures that AI Medicine remains an authoritative source for the latest research and a forum 
for the rigorous debate of AI’s role in health sciences. 

3. For Authors, Reviewers, and Editors

AI Medicine’s journey is one of collective effort and shared vision. The dedication of authors, diligence of 
reviewers, and guidance from our editorial board are the foundation of our journal’s integrity. 
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We advocate a nurturing editorial process that aims to bring out the best in every submission. Constructive 
feedback, transparency in the review process, and a commitment to scholarly excellence are our guiding principles. 

We stand for diversity in thought and inclusivity in participation, believing that groundbreaking ideas emerge 
from the confluence of varied perspectives. 

4. Outlook

As we chart the course for AI Medicine, I envision a journal that not only disseminates pioneering research
but also fosters a robust community of collaboration. Our commitment extends beyond publication to nurturing a 
dialogue that propels the field forward. 

We invite researchers to present their innovative work, challenge the status quo, and contribute to a future 
where AI and medicine converge to enhance human health and wellbeing. 

In closing, I extend my heartfelt thanks to everyone who has made AI Medicine a reality. Our shared voyage 
into the nexus of artificial intelligence and healthcare promises to be as inspiring as it is impactful. 
Conflicts of Interest: The author declares no conflict of interest. 
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Abstract: Alzheimer’s Disease (AD) is a neurodegenerative disorder, which is 
irreversible and incurable. Early diagnosis plays a significant role in controlling the 
progression of AD and improving the patient’s quality of life. Computer-aided 
diagnosis (CAD) methods have shown great potential to assist doctors in analyzing 
medical data, such as magnetic resonance images, positron emission tomography, 
and mini-mental state examination. Contributed by the advanced deep learning 
models, predictions of CAD methods for AD are becoming more and more accurate, 
which can provide a reference and verification for manual screening. In this paper, 
a short survey on the application of recent CAD methods in AD detection is 
presented. The advantages and drawbacks of these methods are discussed in detail, 
especially the methods based on convolutional neural networks, and the future 
research directions are summarized subsequently. With this survey, we hope to 
promote the development of CAD for early detection of AD.  

Keywords: Alzheimer’s disease; computer-aided diagnosis; magnetic resonance 
image; positron emission tomography; convolutional neural network 

1. Introduction

Alzheimer’s Disease (AD) is a progressive disorder of the neural system in humans, which accounts for about
80% of all dementia [1]. The main symptoms of AD are gradual memory decline, regression of cognitive function, 
language disorders, and changes in emotional personality [2]. The severity of these symptoms gradually intensifies 
as the disease progresses, and patients in the late stages of AD may even completely lose their self-care ability, 
fail to recognize family members, and ultimately die. 

Currently, the exact cause of AD has not been elucidated, but studies suggest that various factors may be 
associated with the disease, such as genetic factors, abnormal protein deposition, and neurotransmitter imbalances. 
According to the progression of AD, it can be divided into three stages: mild, moderate, and severe, with a time-
span of up to 10 years or more. Although current treatments cannot completely cure AD, early diagnosis is of great 
significance for delaying the progression of the disease and improving the quality of life of patients [3,4]. 

The diagnosis of AD primarily relies on neuropsychological assessments, blood tests, spinal fluid tests, and 
imaging examinations. Among these, Magnetic Resonance Imaging (MRI) is the most commonly used method for 
brain imaging in clinical settings. MRI images can be used to observe structural changes in the patient’s brain and 
detect changes in brain volume in AD patients, such as atrophy of the hippocampus and temporal lobe cortex, 
ventricular enlargement, and white matter microlesions. However, manually analyzing high-dimensional brain 
MRI images is not only time-consuming but also requires specialized knowledge and extensive experience [5,6]. 
Moreover, manual analysis is highly subjective, and different doctors may provide different diagnostic results for 
the same set of images, leading to inconsistencies in the results. 
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Computer-aided diagnosis (CAD) is a method that uses computer algorithms and technology to assist doctors 
in disease diagnosis. With the development of artificial intelligence and particularly significant progress in 
computer vision and deep learning over the past decade, CAD applications in the medical field have become 
increasingly widespread and play an important role in the diagnosis of AD [7]. CAD leverages large amounts of 
case data and deep learning models to automatically analyze and judge the brain MRI images of suspected patients, 
for example, quantitatively analyzing the degree of atrophy in the hippocampus and brain volume on MRI [8]. 
This helps doctors make more accurate, reliable, and consistent diagnoses, reduces subjectivity, and improves the 
sensitivity and specificity of diagnosis. 

The remainder of this review is organized as follows. Information for famous public AD datasets is discussed 
in section 2. Section 3 presents a comprehensive review of existing CAD methods for AD detection, including 
models by transfer learning, models trained from scratch, unsupervised models, and other related models. In 
section 4, the conclusions are summarized, and future research directions are given. 

2. Public Datasets for AD

Public AD datasets are vital to train and validate deep models for early AD detection. In this section, three
well-known datasets are discussed, including Alzheimer’s Disease Neuroimaging Initiative, Open Access Series 
of Imaging Studies, and Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing. 
 Alzheimer’s Disease Neuroimaging Initiative (ADNI): This initiative offers a comprehensive dataset

comprising MRI and PET images, genetic data, and various biomarkers for AD. The dataset is designed to
help researchers develop and validate advanced diagnostic tools and methodologies. Access is granted upon
application approval through the ADNI website.

 Open Access Series of Imaging Studies (OASIS): Focused on both normal aging and clinical populations,
OASIS datasets include longitudinal MRI data across a broad age range. These datasets are freely available
to the scientific community and can be accessed online without extensive application procedures.

 Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL): This study provides data
on imaging, lifestyle, biomarkers, and the progression of AD, as well as healthy controls. Access to the data
requires registration and approval.

2. CAD Methods for AD Classification

Generally, CAD methods for AD classification are based on either supervised learning or unsupervised
learning. For supervised learning, the data samples are annotated and labeled, so the training is aimed at 
minimizing the error between the predictions of the deep model and the ground truth labels. On the other side, for 
unsupervised learning, ground truth labels are not available, so deep models are trained with proxy tasks, such as 
reconstruction, colorization, and contrastive learning. In this section, we will discuss these methods in detail. 

2.1. CAD Methods for AD Using Transfer Learning 

Transfer learning is the most popular approach for applying deep models in downstream tasks. With pre-
trained weights, deep models can converge faster on medical datasets. Raza, et al. [9] leveraged the AlexNet to 
detect AD from normal control (NC). They used the ADNI and OASIS for training and testing. The accuracies 
were 98.74% and 95.93% for ADNI and OASIS, respectively. Puente-Castro, et al. [10] used a pre-trained ResNet 
as the backbone for representation learning. The representations were combined with the age and sex information 
of the subjects. Finally, an SVM was trained for multi-class classification. The accuracies were 86.81% and 78.64% 
for OASIS and ADNI, respectively. Ashraf, et al. [11] employed 13 different CNN models for AD detection using 
transfer learning, including AlexNet, DenseNet, ResNet, VGG, and SqueezeNet. They found that DenseNet 
outperformed other models with an accuracy of 99.05% on the MRIs from ADNI. Cilia, et al. [3] leveraged the 
handwriting data of the subjects to classify AD. They employed four models for feature learning, including 
ResNet-50, VGG-19, InceptionV3, and InceptionResNetV2. Data augmentation techniques were used to generate 
synthetic handwriting images for training. The deep features were combined with handcrafted features to train four 
traditional classifiers, including SVM, random forest, multi-layer perceptron, and k nearest neighbors. The best 
accuracy was 81.03%. Helaly, et al. [8] used a pre-trained VGG-19 as the backbone for AD classification. The 
pre-trained VGG-19 was fine-tuned on the 2D brain MRIs and achieved an accuracy of 97%. Loddo, et al. [12] 
utilized three pre-trained CNNs for AD detection in brain MRIs, including ResNet-101, AlexNet, and 
InceptionResNetV2. The three pre-trained models were fine-tuned on the MRIs, and their predictions were 
obtained by averaging across the three models. Their method was experimented on three datasets: OASIS, ADNI, 
and the Kaggle dataset, yielding an accuracy of over 98% for binary classification and multi-class classification. 
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A summary of the abovementioned methods is given in Table 1. 

Table 1. CAD methods for AD classification using transfer learning. 

Author Model Dataset Result

Raza, et al. [9] AlexNet MRIs from ADNI and 
OASIS 

The accuracies were 
98.74% and 95.93% for 

ADNI and OASIS, 
respectively. 

Puente-Castro, et al. [10] ResNet and SVM MRIs from ADNI and 
OASIS 

The accuracies were 
86.81% and 78.64% for 

OASIS and ADNI, 
respectively. 

Ashraf, et al. [11] 
AlexNet, DenseNet, 
ResNet, VGG, and 

SqueezeNet 
MRIs from ADNI 

The best accuracy was 
99.05% by transferring 

DenseNet. 

Cilia, et al. [3] 

ResNet-50, VGG-19, 
InceptionV3, 

InceptionResNetV2, SVM, 
random forest, multi-layer 
perceptron, and k nearest 

neighbors 

Private handwriting images The best accuracy was 
81.03%. 

Helaly, et al. [8] VGG-19 MRIs from ADNI The model achieved an 
accuracy of 97%. 

Loddo, et al. [12] ResNet-101, AlexNet, and 
InceptionResNetV2 

MRIs from OASIS, ADNI, 
and the Kaggle dataset 

Their method yielded an 
accuracy of over 98% for 
binary classification and 
multi-class classification. 

Note: CAD: Computer-Aided Diagnosis; AD: Alzheimer’s Disease; MRI: Magnetic Resonance Imaging; ADNI: Alzheimer’s 
Disease Neuroimaging Initiative; OASIS: Open Access Series of Imaging Studies. 

2.2. CAD Methods for AD Trained from Scratch 

Medical images vary significantly from natural images, so pre-trained weights cannot always work because 
of this gap between the source domain and the target domain. In addition, if the structure of the backbone model 
is modified or a new deep model is constructed, there are no pre-trained weights available. Therefore, training 
from scratch is preferred, which allows high flexibility in architecture design and customization for AD 
classification. Islam and Zhang [13] developed a CNN based on Inception-V4 for AD classification. The 
configurations of the original Inception-V4 were modified to fit the resolution of the MRI slices. In experiments, 
the Open Access Series of Imaging Studies (OASIS) dataset was employed for evaluation. Their model achieved 
an accuracy of 73.75%, which was not satisfactory. Bi, et al. [14] employed a CNN and a recurrent neural network 
(RNN) for feature extraction from the brain network generated from MRIs. An extreme learning machine (ELM) 
was trained to identify AD from mild cognitive impairment (MCI). They leveraged the brain MRIs from the AD 
neuroimaging initiative (ADNI) for evaluation. Traditional handcrafted features with the SVM classifier were 
implemented for comparison. The area under the curve (AUC) was chosen as the performance metric, and the best 
value was 84.7% for the classification of AD, MCI, and normal control (NC). Feng, et al. [15] designed a 3D-
CNN to generate latent features from brain MRIs and PETs and developed a bi-directional long short-term memory 
(LSTM) structure for AD classification. Their model achieved an accuracy of 94.82% in recognizing AD versus 
NC. Hussain, et al. [16] suggested building a 12-layer CNN to classify AD in brain MRIs. In their experiments, 
pre-trained CNNs were leveraged using transfer learning for comparison, including MobilenetV2, VGG, 
InceptionV3, and Xception. Their 12-layer CNN outperformed the four models. Wang, et al. [4] used functional 
MRI time series data to detect AD. A CNN was trained to generate spatial representations, and an LSTM was 
implemented to get temporal information. Their model was evaluated on the ADNI dataset, and the accuracy was 
71.76% for the classification of AD, MCI, and NC. Kundaram and Pathak [17] designed a deep CNN using 3 
convolutional layers, 3 max-pooling layers, and 2 fully-connected layers. The network was trained on the brain 
MRIs and produced an accuracy of 87.72% for validation. Zhu, et al. [18] designed a Patch-Net to generate local 
representations from the brain MRIs. Then, an attention-based pooling block was developed for feature fusion. 
Fully-connected layers served for final predictions. The model was experimented on ADNI and AIBL datasets, 
and the best accuracy was 92.4% in distinguishing AD and NC. Alorf and Khan [19] developed two different 
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networks for AD classification using brain MRIs from the ADNI dataset. The first model was a stacked sparse 
autoencoder with softmax activation for classification. The second one was built upon a graph neural network, 
which exploits the connectivity of different brain regions. Their models were evaluated using the ADNI dataset, 
and the graph network outperformed with an accuracy of 84.03%. El-Sappagh, et al. [20] employed brain MRIs 
and time series data to detect AD and MCI and predict the conversion time. An LSTM and a feedforward neural 
network were combined and trained for classification and prediction. Results from the ADNI dataset revealed that 
their model produced an accuracy of 93.87%. Houria, et al. [21] used MRIs and diffusion tensor images (DTIs) to 
detect AD and MCI. They first developed a 2D-CNN structure to generate features from different images, and 
fused them. An SVM was trained as the classification model. The performance of the model was evaluated on the 
ADNI dataset, and satisfactory results were obtained. 

A summary of the abovementioned methods is given in Table 2. 

Table 2. CAD Methods for AD Classification Trained from Scratch. 

Author Model Dataset Result
Islam and Zhang 

[13] 
CNN based on Inception-

V4 MRIs from OASIS The best accuracy was 73.75%. 

Bi, et al. [14] CNN, RNN, and ELM MRIs from ADNI The AUC for the 3-type classification 
was 84.7%. 

Feng, et al. [15] 3D-CNN and LSTM MRIs and PETs from 
ADNI 

For AD and NC classification, the 
accuracy was 94.82%. 

Hussain, et al. [16] 12-layer CNN MRIs from OASIS Their model achieved an accuracy of 
97.75% for binary classification. 

Wang, et al. [4] CNN and LSTM MRIs from ADNI The accuracy was 71.76% for the 
classification of AD, MCI, and NC. 

Kundaram and 
Pathak [17] CNN MRIs from ADNI The model produced an accuracy of 

87.72% for validation. 

Zhu, et al. [18] CNN with an attention 
mechanism 

MRIs from ADNI and 
AIBL 

The best accuracy was 92.4% in 
distinguishing AD and NC. 

Alorf and Khan [19] Stacked sparse autoencoder
and graph neural network MRIs from ADNI The graph network achieved an 

accuracy of 84.03%. 
El-Sappagh, et al. 

[20] 
LSTM and feedforward 

neural network 
MRIs and time series 

data from ADNI 
Their model produced an accuracy of 

93.87%. 

Houria, et al. [21] 2D-CNN and SVM MRIs from ADNI The accuracy for CN and MCI 
classification was 97.00%. 

2.3. CAD Methods for AD Using Unsupervised Learning 

Unsupervised learning can learn patterns from data without label information, which is often used in medical 
applications because it is difficult to get labels without expertise. Ju, et al. [22] generated brain networks from the 
MRIs in the ADNI dataset and constructed an autoencoder for representation learning. The pre-training of the 
autoencoder was based on unsupervised learning, and the labels were used with a softmax output layer during fine-
tuning. The autoencoder yielded an accuracy of 86.47% on the correlation coefficient data. Bi, et al. [23] utilized 
a PCANet to generate representations from the brain MRIs and used the k-means algorithm for classification. In 
the PCANet, convolutional layers and PCA operations were constructed. Therefore, the entire model can be trained 
by unsupervised learning. The average accuracy was 92.5% on the MRIs from the ADNI dataset. Jin, et al. [24] 
used a variational autoencoder as the encoder of the generative adversarial network for data augmentation. The 
reconstructed brain MRI and the original one were used to generate the residual image, which was fed into a multi-
layer perceptron for AD classification. Cabreza, et al. [25] developed a generative adversarial network for detecting 
AD in brain MRIs. Their model was trained by unsupervised learning, and an anomaly score was proposed to 
classify the AD and NC samples. MRIs from OASIS were used for training and testing, and the accuracy of their 
method was 74.44%. Shi, et al. [26] proposed a generative adversarial network for segmentation of regions of 
interest for tau decomposition and AD classification in tau PET images. In the training of the model, multiple 
losses were used to achieve better generalization performance. The final AUC for binary classification was 92.9%. 
Zhang, et al. [27] developed a generative adversarial network with pyramid attention blocks to obtain more training 
PETs. The metabolic features in PETs were combined with MRIs for classifier training. For AD, MCI, and NC 
classification, the accuracy was 89.9%. 

A summary of the abovementioned methods is given in Table 3. 
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Table 3. CAD methods for AD using unsupervised learning. 

Author Model Dataset Result

Ju, et al. [22] Autoencoder MRIs from ADNI 
Based on the correlation 

coefficient data, the accuracy was 
86.47%. 

Bi, et al. [23] PCANet and k-means MRIs from ADNI The average accuracy was 92.5%. 

Jin, et al. [24] 
Variational autoencoder, 

generative adversarial network, 
and multi-layer perceptron 

MRIs from ADNI The accuracy was 94%. 

Cabreza, et al. [25] Generative adversarial network MRIs from OASIS The overall accuracy was only 
74.44%. 

Shi, et al. [26] Generative adversarial network 
with multiple losses Tau PETs from ADNI The final AUC for binary 

classification was 92.9%. 

Zhang, et al. [27] Generative adversarial network 
with pyramid attention blocks 

MRIs and PETs from 
ADNI 

For AD, MCI, and NC 
classification, the accuracy was 

89.9%. 

2.4. Other CAD Methods for AD 

There are some AD detection methods based on traditional machine learning algorithms and networks other 
than CNNs or recurrent neural networks. For instance, Almubark, et al. [28] employed principal component 
analysis (PCA) with machine learning classifiers to detect AD from neuropsychological and cognitive data, 
including SVM, random forest, gradient boosting, and AdaBoost models. Uysal and Ozturk [29] attempted to 
diagnose AD based on hippocampal atrophy conditions. They segmented the brain MRIs to obtain the volume 
information of the hippocampal, which was fused with age and gender information. The SVM, Logistic regression, 
Gaussian naïve Bayes classifier, decision tree, random forest, and k-nearest neighbors were trained for 
identification of AD. The highest accuracy was 98% for AD and NC classification. Alvi, et al. [2] employed a 
gated-recurrent unit, a variant of the recurrent neural network to detect MCI using electroencephalography data. 
The electroencephalography data were pre-processed and segmented before feature extraction. Subsequently, a 
gated-recurrent unit was trained to identify MCI and NC. The experiment results showed that their method 
achieved an accuracy of 96.91%. Ilias and Askounis [30] proposed that transformer-based language models can 
be employed to detect AD in transcript data. The results were obtained on the ADReSS challenge dataset, and the 
model achieved an accuracy of 86.25% for multi-class classification. Meanwhile, they also analyzed the transcript 
and found out the words related to AD. Khan and Zubair [31] tried to detect AD using cognitive and demographic 
data from the ADNI dataset. Six different traditional machine learning classifiers were trained and compared in 
their experiments, and the best accuracy was 93.90%.  

A summary of the abovementioned methods is given in Table 4. 

Table 4. Other CAD methods for AD. 

Author Model Dataset Result

Almubark, et al. [28] 
PCA with SVM, random 

forest, gradient boosting, and 
AdaBoost 

Neuropsychological and 
cognitive data 

The best accuracy was 
91.08%. 

Uysal and Ozturk [29] 

SVM, Logistic regression, 
Gaussian naïve Bayes 

classifier, decision tree, 
random forest, and k nearest 

neighbors 

MRIs from ADNI 
The highest accuracy was 

98% for AD and NC 
classification. 

Alvi, et al. [2] Gated-recurrent unit Private 
electroencephalography data 

The experiment results 
showed that their method 
achieved an accuracy of 

96.91%. 

Ilias and Askounis [30] Transformer ADReSS challenge dataset 
The model achieved an 
accuracy of 86.25% for 

multi-class classification. 

Khan and Zubair [31] 

SVM, extreme Gradient 
Boosting, Logistic regression, 

naïve Bayes classifier, decision 
tree, and random forest 

Cognitive and demographic 
data from ADNI dataset 

The best accuracy was 
93.90%. 
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3. Conclusion

This paper presents a comprehensive survey of CAD methods for AD detection. The review highlights the
critical role of early diagnosis in managing AD progression and improving patient quality of life. In recent years, 
CAD methods utilizing advanced deep learning models have shown promising results in analyzing medical data 
such as MRI, PET, and cognitive assessments to aid in accurate diagnosis. 

The CAD methods can be categorized into supervised learning, unsupervised learning, and other techniques. 
This study describes the application of pre-trained deep models like AlexNet, ResNet, and VGG in transfer learning, 
the development of custom CNN and RNN architectures for training from scratch. Unsupervised learning 
approaches, including autoencoders, generative adversarial networks, and PCA networks, are also explored for AD 
detection. Additionally, the use of traditional machine learning, transformer models, and other networks beyond 
CNNs in AD classification is discussed. The comparison of the three main methods is presented in Table 5. 

Table 5. Comparison of three main methods.

Method Advantages Limitations

Transfer Learning 

- Requires less training data
- Faster convergence
- Leverages pre-trained models to enhance feature
extraction

- Potential for overfitting on small datasets
- Dependent on the relevance of pre-
trained model

Training from Scratch- Customized to specific tasks
- Full control over architecture

- Requires large datasets
- Long training times

Unsupervised 
Learning 

- No need for labeled data
- Can discover unexpected patterns

- Less accurate than supervised methods
- Complex interpretation of results

Despite the advancements in CAD methods, several challenges remain, including the need for larger and 
more diverse datasets, the incorporation of multimodal data, and improvements in model generalization. Future 
research directions should emphasize the importance of continued research to develop more accurate and robust 
CAD systems, leveraging advanced deep learning techniques and integrating multimodal data, to assist doctors in 
the early detection and diagnosis of AD. The application of CAD methods in clinical practice is yet to be achieved 
currently. This is because the CAD systems need to be subjected to rigorous regulatory approval processes, which 
can be lengthy and costly, especially for tools that use machine learning. Issues such as patient data privacy, consent 
for using patient data in training models, and the potential for bias in algorithmic decisions must be carefully 
managed. Moreover, clinicians may be skeptical of CAD systems, especially if they do not understand how 
decisions are made by the algorithms. 
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Abstract: Lumbar spine diseases not only endanger patients' physical health but 
also bring about severe psychological impacts and generate substantial medical 
costs. Reliable lumbar spine image analysis is crucial for diagnosing and treating 
lumbar spine diseases. In recent years, deep learning has rapidly developed in 
computer vision and medical imaging, with an increasing number of researchers 
applying it to the field of lumbar spine imaging. This paper studies the current state 
of research in deep learning applications across various modalities of lumbar spine 
image analysis, including X-ray, CT, and MRI. We first review the public datasets 
available for various tasks involving lumbar spine images. Secondly, we study the 
different models used in various lumbar spine image modalities (X-ray, CT, and 
MRI) and their applications in different tasks (classification, detection, 
segmentation, and reconstruction). Finally, we discuss the challenges of using deep 
learning in lumbar spine image analysis and provide an outlook on research and 
development prospects.  

Keywords: deep learning; convolutional neural network; X-ray; computed 
tomography; magnetic resonance imaging 

1. Introduction

Lumbar spine disease is one of the leading causes of disability worldwide [1], which includes degenerative 
diseases, inflammatory conditions, trauma, and tumors [2]. Not only do lumbar spine diseases cause severe 
physical pain, such as varying degrees of leg pain, weakness, and back pain [3], but also inflict significant 
psychological and emotional impacts, such as anxiety, depression, and social isolation often experienced by those 
suffering from chronic pain [4]. Long-term pain may also lead to dependency on pain management strategies, such 
as the prolonged use of painkillers [5]. Furthermore, lumbar spine diseases are among the major causes of work 
absenteeism and workers' compensation claims, reducing labor participation and increasing medical and social 
security costs, thus imposing a significant economic burden on individuals and nations [6]. Therefore, it is 
important to effectively diagnose and treat lumbar spine disease. With the continuous development of medical 
imaging technologies, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), 
these imaging methods have become essential tools for diagnosis, treating, and prognosis prediction of lumbar 
spine diseases. Lumbar spine imaging provides valuable information about bones, joints, and surrounding soft 
tissues, helping doctors accurately diagnose spinal pathology [7]. Moreover, image-guided surgery, known for its 
precision and safety, is widely used in spinal surgical surgery [8]. Additionally, lumbar spine imaging also provides 
effective postoperative spinal assessments and care for healthcare providers [9]. Traditionally, lumbar spine 
images are visually observed and manually analyzed by radiologists based on their medical knowledge and 
experience. However, lumbar spine imaging still faces challenges such as limited contrast, insufficient spatial 
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resolution, and artifacts [10–12]. Hence, accurate evaluation requires extensive knowledge and experience, and 
training such experts takes a considerable amount of time. 

To address these problems, researchers have proposed various methods to guide and assist doctors in lumbar 
spine image analysis. The commonly used techniques include digital image processing and machine learning 
methods, which often require manually designed feature extraction methods, making them time-consuming but 
also require expert knowledge [13]. Deep learning has achieved significant breakthroughs in computer vision, 
image processing, and analysis in recent years. Deep learning models allow for end-to-end training directly from 
raw data to learn outputs, automatically extracting features from large datasets without manual design or selection [14]. 
Furthermore, deep learning models can use pre-training and fine-tuning techniques to perform transfer learning 
between different but related tasks, effectively addressing the problem of scarce annotated data [15]. Due to these 
advantages, deep learning has achieved excellent results in lumbar spine image analysis. 

Qu et al. [16] published a review on deep learning in spinal image analysis in 2022. They comprehensively 
introduced the application of deep learning in spinal image segmentation, detection and diagnosis. Lee et al. [17] 
published a review of deep learning for orthopedic diseases based on medical image analysis in 2022. They 
comprehensively introduced the application of deep learning in spinal image fractures, osteoarthritis, and joint-
specific soft tissue diseases. This paper distinguishes itself from other surveys by providing a comprehensive 
review of the application of deep learning in lumbar spine image analysis across multiple imaging modalities, 
including X-ray, CT, and MRI. Unlike previous reviews that often focus on a single modality or specific task, our 
paper systematically covers deep learning techniques across different modalities and tasks, such as classification, 
detection, segmentation, and reconstruction. We have reviewed standard deep learning models based on task types 
and compiled the datasets available from the referenced papers. Additionally, we have summarized deep learning 
applications across different tasks based on imaging modalities. We have also discussed the optimization 
techniques and challenges deep learning technology faces in lumbar spine image analysis. Table 1 describes the 
coverage of this lumber spine image research survey paper, including image modalities and deep learning tasks. 

Table 1. Lumber Spine Image Research Using Deep Learning. 

Image Modality Deep Learning Tasks 
X-ray Classification, detection, segmentation 

CT Classification, detection, segmentation, registration, reconstruction 
MRI Classification, detection, segmentation, reconstruction 

Note: CT: computed tomography; MRI: magnetic resonance imaging. 

The structure of this paper is organized as follows. Section 2 introduces deep learning methods and public 
datasets. Sections 3–5 discuss the specific applications of deep learning in various task types across different 
imaging modalities. Section 6 discusses key optimization methods and challenges affecting existing deep learning 
methods in the field of lumbar spine image analysis. Section 7 summarizes the advantages and future prospects of 
deep learning in the field of lumbar spine imaging. 

2. Deep Learning Methods and Data

2.1. Classification Models 

In 1998, LeCun et al. [18] introduced the LeNet-5 model, which was successfully applied to handwritten 
digit recognition (MNIST dataset), marked a breakthrough in the practical application of Convolutional Neural 
Network (CNN). CNNs can automatically learn features with spatial hierarchy from images by stacking 
convolutional layers, pooling layers, and fully connected layers. This feature learning method fr om local to global 
enables CNNs to excel in image classification tasks. In 2012, AlexNet [19] achieved overwhelming success in the 
ImageNet large scale visual recognition challenge (ILSVRC). AlexNet utilized ReLU activation functions, dropout 
regularization, and GPU acceleration, significantly improving classification accuracy. ResNet [20] addressed the 
difficulty of deep network training by introducing residual learning. It allows network layers to fit a residual 
mapping directly, rather than the mapping itself, enabling the network to improve performance by increasing depth 
without gradient vanishing or exploding issues. Following ResNet, the deep learning community has continuously 
explored classification models, including deeper and more complex network architectures (such as DenseNet [21], 
EfficientNet [22]), the introduction of attention mechanisms (such as the application of Transformer [23] in image 
classification applications), as well as model design optimized for specific tasks or efficiency. 
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2.2. Detection Models 

Detection models are mainly divided into two categories two-stage models and one-stage models. Two-stage 
models are characterized by first generating candidate regions, and then classifying these regions and regressing 
their bounding boxes. Region-based Convolutional Neural Network (RCNN) [24] initially extracts candidate 
regions through a selective search algorithm, then uses CNN to extract features and then classifies them through 
the SVM classifier. Fast RCNN [25] achieved the sharing of feature extraction by introducing the region of interest 
(RoI) pooling layer. It inputs the entire image into a CNN to generate a feature map, and then extracts features for 
each candidate region from this shared feature map for classification and regression. Faster RCNN [26] introduced 
the region proposal network (RPN) for automatically generating high-quality candidate regions, further improving 
detection speed and accuracy.  

One-stage models directly predict the category and location of objects on the image, omitting the generation 
step of candidate regions, and thus are usually generally faster. You only look once (YOLO) [27] treated the object 
detection task as a single regression problem, directly mapping from image pixels to bounding box coordinates 
and class probabilities. YOLOv2 [28] has made a number of improvements over YOLOv1, including the 
introduction of batch normalization, use of high-resolution classifiers for pre-training, and improved anchor 
mechanism. YOLOv3 [29] further improved the accuracy and speed of detection. It introduced multi-scale 
prediction and used a deep darknet as the feature extractor. Single Shot MultiBox Detector (SSD) [30] performed 
detection on feature maps of different scales, better-handling objects of various sizes.  

2.3. Segmentation Models 

Fully convolutional network (FCN) [31] was the first model to apply deep learning to semantic segmentation 
successfully. It transformed the fully connected layers in traditional convolutional neural networks into 
convolutional layers, enabling the network to accept input images of any size and output segmentation maps of 
corresponding dimensions. FCN is trained end-to-end, significantly improving the accuracy and efficiency of 
segmentation tasks. U-Net [32], by introducing skip connections, fuses feature maps from the encoder 
(downsampling) phase with those from the decoder (upsampling) phase, thereby preserving more contextual 
information. This design enables U-Net to perform exceptionally well on small sample datasets, especially in 
medical image segmentation. SegNet [33] uses pooling indices from the encoder phase for upsampling in the 
decoder phase, reducing the model's parameter count while improving segmentation accuracy. DeepLabv1 [34] 
introduced atrous convolution, which increases the receptive field size without adding parameters, enhancing 
segmentation precision. Building on v1, DeepLabv2 [35] introduced atrous spatial pyramid pooling (ASPP), 
further improving the model's ability to segment objects of different scales.  

2.4. Evaluation Metrics 

Evaluation metrics in deep learning are standards used to measure the performance of deep learning models, 
aiding in understanding how models perform on specific tasks. Different metrics are employed across various tasks 
and application scenarios to comprehensively represent a model's performance, enabling a more thorough 
comparison between models [36]. Typically, evaluation metrics can be defined using a confusion matrix, where 
true positive (TP) represents the number of samples correctly predicted as positive, false positive (FP) represents 
the number of samples incorrectly predicted as positive, true negative (TN) represents the number of samples 
correctly predicted as negative, and false negative (FN) represents the number of samples incorrectly predicted as 
negative. 

Accuracy represents the proportion of samples that are correctly predicted by the model out of the total 
samples. It is the most fundamental metric for assessing model performance in balanced class situations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅  𝑇𝑁

𝑇𝑃 ൅  𝑇𝑁 ൅  𝐹𝑃 ൅  𝐹𝑁

Precision represents the proportion of actual positives among all samples predicted as positive by the model. 
A high precision means fewer false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
𝑇𝑃

𝑇𝑃 ൅  𝐹𝑃

Recall represents the proportion of samples predicted as positive by the model among all actual positives. A 
high recall means fewer false negatives. Recall is also known as sensitivity. 
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𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑃

𝑇𝑃 ൅  𝐹𝑁

F1-Score is the harmonic mean of precision and recall, used when both precision and recall are considered. 
The F1 score provides a single metric that balances precision and recall, also known as DSC (Dice Similarity 
Coefficient). 

𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ  
2𝑇𝑃

2𝑇𝑃 ൅  𝐹𝑃 ൅  𝐹𝑁 

Average precision (AP) is mainly used to evaluate the performance of models in classification and object 
detection tasks. In object detection, it specifically measures the precision performance of a model at different recall 
levels. The Precision-Recall Curve is drawn by calculating the model's precision and recall at different threshold 
settings. A high AP value indicates the model can detect positive objects with high precision while maintaining a 
high recall rate. AP is calculated for each class, and the average of all class AP values, known as mean average 
precision (mAP), indicates overall model performance. 

Mean intersection over union (mIoU) is a common metric for evaluating model performance in image 
segmentation tasks. It calculates the average ratio of the intersection to the union of the predicted segmentation 
area and the actual segmentation area. Specifically, for a single class, IoU is calculated as follows. 

𝐼𝑜𝑈 ൌ   
𝑇𝑃

𝑇𝑃 ൅  𝐹𝑃 ൅  𝐹𝑁

After calculating IoU for all classes, mIoU is the average of these IoU values. This metric provides a way to 
quantify model accuracy in segmenting different classes. A higher mIoU value indicates better segmentation 
performance of the model. 

Table 2 summarizes the evaluation metrics for deep learning models. 

Table 2. Evaluation Metrics for Deep Learning Models. 

Metric Description Formula Application Tasks

Accuracy Proportion of correctly predicted samples 
among the total samples 

𝑇𝑃 ൅  𝑇𝑁
𝑇𝑃 ൅  𝑇𝑁 ൅  𝐹𝑃 ൅  𝐹𝑁

Classification, 
Detection 

Precision Proportion of true positives among all 
samples predicted as positive 

𝑇𝑃
𝑇𝑃 ൅  𝐹𝑃

Classification, 
Detection 

Recall (Sensitivity) Proportion of true positives among all actual 
positives 

𝑇𝑃
𝑇𝑃 ൅  𝐹𝑁

Classification, 
Detection 

F1-Score Harmonic mean of precision and recall 
2𝑇𝑃

2𝑇𝑃 ൅  𝐹𝑃 ൅  𝐹𝑁
Classification, 

Detection 

Average Precision (AP) Average precision values at different recall 
levels 

Calculated from the Precision-Recall 
Curve Detection 

Mean Average 
Precision (mAP) Mean of AP values across all classes Average of AP values for all classes Detection 

Intersection over Union 
(IoU) 

Ratio of the overlap between predicted and 
actual segmentation areas to their union 

𝑇𝑃
𝑇𝑃 ൅  𝐹𝑃 ൅  𝐹𝑁

Segmentation 

Dice Similarity 
Coefficient (DSC) 

Measure of overlap between the predicted 
and actual segments 

2 ∗  𝑇𝑃
2 ∗  𝑇𝑃 ൅  𝐹𝑃 ൅  𝐹𝑁

Segmentation 

Note: TP: true positive; TN: true negative; FP: false positive; FN: false negative. 

2.5. Data 

Data is crucial for deep learning models. Deep learning models rely on large data for training and validation. 
They learn features from the datasets through multi-level feature extraction to further enhance their generalizability 
and robustness, thereby enabling effective classification and prediction [37]. Conversely, when datasets are 
insufficient, models may only learn specific data features, leading to overfitting [38].  

In the medical field, it is difficult to collect high-quality datasets. First, medical data involves patients’ health 
information, which is subject to strict privacy protections and legal regulations, and current healthcare systems are 
yet to have the capability to provide the necessary protection for patient privacy [39]. Secondly, there are 
limitations in the cost and resources of collecting and processing medical data. Typically, experienced doctors are 
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needed to analyze and annotate the data, and annotating large datasets also incurs a significant time cost [40]. 
Additionally, collecting sufficient data for rare diseases is challenging due to the scarcity of cases [41]. 

To develop deep learning applications in the field of lumbar spine images, it is imperative to construct public 
datasets. Public datasets can, to some extent, compensate for the lack of data in private datasets, while improving 
the generalizability and robustness of models. Moreover, they provide a fair comparison of the performance of 
models trained on different datasets. Additionally, even images of the same type but different parts can assist 
model training through transfer learning. Al-kubaisi et al. [42] used MRI images of brain tumors to train a VGG 
model from scratch and used the transferred weights for training a classification task on lumbar MRI images. The 
results showed further improvement in model performance.  

Table 3 shows the public datasets collected in the papers we reviewed. The Lumbar Spine MRI Dataset [43] 
is the most used dataset among the papers reviewed, with Masood et al. [44] using it for MRI image vertebral 
segmentation tasks, Liawrungrueang et al. [45] for MRI image disc detection tasks, and Le Van et al. [46] for 
simulating X-ray data for image classification tasks. Spineweb [47] is an online collaborative platform that 
includes 16 spine image datasets for various modalities and tasks. Scoliosis Test Dataset [48] is MICCAI 2019 
Challenge dataset containing 98 X-ray images of the spine. VerSe2020 [49], VerSe2019 [50], xVertSeg Challenge [51] 
are CT spine image datasets from different challenges, containing 300, 160, and 25 images, respectively. BUU 
Spine Dataset [52] is a Burapha University dataset containing 400 labeled X-ray images of the spine. 

Table 3. Lumbar Datasets. 

Dataset Image Type Size Labeled Citation
Lumbar Spine MRI Dataset MRI 515 No [43] 

Scoliosis Test Dataset  X-ray 98 No [48] 
BUU Spine Dataset  X-ray 400 Yes [52]

VerSe2020  CT 300 Yes [49] 
VerSe2019  CT 160 Yes [50] 

xVertSeg Challenge  CT 25 Yes [51] 
Spineweb  X-ray/ CT/MRI - - [47] 

3. X-ray

3.1. Classification 

Classification tasks based on deep learning are widely used in lumbar X-ray images and are used mainly for 
classifying various diseases, including spondylolisthesis, stenosis, osteoporosis, etc. Khare et al. [53] employed 
the DenseNet-201 model to predict vertebral slippage in the lumbar spine. In the preprocessing stage, they used 
contrast stretching to eliminate incorrect boundaries and adaptive histogram equalization to reduce the impact of 
image noise. In comparative experiments with four other models (LumbarNet, VGG19, AlexNet, and GoogleNet), 
the DenseNet-201 model achieved the highest classification accuracy. Varçin et al. [54] predicted lumbar 
spondylolisthesis through a deep learning system. The model first detected the L4, L5 vertebrae, and S1 sacrum 
using the YOLOv3 model, followed by the classification of lumbar spondylolisthesis through a fine-tuned 
MobileNet model. 

Multiclass prediction tasks are also applicable to lumbar X-ray imaging. Sugiura et al. [55] used AlexNet to 
measure the tangential incident X-ray angles of the intervertebral disc space (IDS). They constructed a deep 
learning model using neural network console (NNC) and performed data augmentation and automatic model 
parameter selection through NNC. The study results demonstrated the effectiveness of deep learning in 
automatically classifying lumbar spine X-ray deflection angles, reducing patient burden, and improving imaging 
process efficiency. Nissinen et al. [56] analyzed and predicted pathological features in lumbar spine X-ray images 
using deep learning techniques, including scoliosis, instability, and fractures. They employed various visualization 
techniques to qualitatively evaluate the model’s performance, including generating image heatmaps with gradient-
weighted class activation mapping, indicating shapes and textures extracted by the network using the vanilla 
gradient method, rendering feature maps of individual input samples, and generating artificial input samples to 
visualize specific layers and kernels using activation maximization. Zhang et al. [57] proposed a DCNN model for 
osteopenia and osteoporosis screening. The model includes two channels for processing anteroposterior and lateral 
films and classifies patients from three sets of views: anteroposterior, lateral, and anteroposterior-lateral. Results 
indicate that the model can be effectively applied to identify osteopenia and osteoporosis in postmenopausal 
women. Table 4 summarizes the applications of deep learning models for classifying lumbar X-ray images. 
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Table 4. Deep Learning (DL) in Classification of Lumbar X-ray Images. 

Target Class Dataset Size DL Model Performance (%) Paper 
List Accuracy Recall

Spondylolisthesis, and normal 299 VGG16 98 100 [58] 
Anterior slippage, and normal 200 DenseNet-201 95.2 96.5 [53]

Stenosis, and normal 12442 VGG19 82.8 81.0 [59] 
Scoliosis, and normal 598 DenseNet 93.5 97 [46] 

Scoliosis, unreliability, and 
fracture 2949 CNN 

94.1 (Scoliosis); 
82.4 (Unreliability); 

58.9 (Fracture) 

70.5 (Scoliosis) 
78.3 (Unreliability); 

60.0 (Fracture) 
[56] 

Osteoporosis, and normal 162 CNN 100 100 [60] 
Spondylolisthesis, and normal 272 GoogleLeNet 93.7 91.6 [61] 
Osteoporosis, osteopenia, and 

normal 1616 DCNN >72.6 (Osteoporosis) 
>78.7 (Osteopenia) 

>68.4 (Osteoporosis) 
>81.8 (Osteopenia) [57] 

Five classes of deflection angle 500 AlexNet 83.0 83.0 [55] 
Anteroposterior view, and 

Lateral view 1000 CNN 99.4 - [62]

Spondylolisthesis, and normal 2707 MobileNet 99 98 [54] 

Note: VGG: visual geometry group; CNN: convolutional neural network; DCNN: deep convolutional neural network. 

3.2. Detection 

Detecting vertebrae in lumbar spine images allows for rapid and effective localization of the vertebrae, 
enabling further analysis of parameters or diseases. An et al. [63] designed a novel landmark detection network 
for detecting lumbar vertebrae. The network is divided into two parts: first, the centers of the lumbar vertebrae and 
sacrum are detected based on Pose-Net, followed by the detection of landmarks on the lumbar vertebrae and 
sacrum using M-Net. In the first part, they proposed a random spinal incision enhancement technique to improve 
detection robustness, and in the second part, they enhanced detection accuracy through CoordConv and partial 
affinity fields. Nguyen et al. [64] used a deep learning system to detect keypoints on vertebral angles to calculate 
specific angles between vertebrae. First, a VGG model was trained to predict keypoints. Since the model did not 
perform well in cases of severe slippage in extension and bending between adjacent vertebrae, a second CNN 
regression model was subsequently used to predict the left and right boundaries of the vertebrae and align them 
with the center predictions of the first model. Experimental results indicate that this method is effectively 
applicable for Meyerding classification. Zhou et al. [65] developed a deep learning-based model for detecting the 
L5 vertebra and S1 sacrum to measure lumbar-sacral anatomical parameters further. Based on the EfficientDet 
model structure, local keypoints localization was enhanced with skip connection modules, and heatmap regression 
was used instead of direct coordinate regression. 

In addition to vertebrae, automatic detection is also applicable to other lumbar spine structures. Sa et al. [66] 
automatically detected intervertebral discs based on Faster-RCNN. They conducted shallow and deep tuning of 
the model, specifically adjusting the last two and four layers, and evaluated the performance changes through 
smooth L1 Loss. Experimental results indicated that fine-tuning deeper layers of the model results in better 
detection performance. Table 5 summarizes the applications of deep learning models for detecting lumbar X-ray 
images. 

Table 5. Deep Learning in Detection of Lumbar X-ray Images. 

Target Class Dataset Size DL Model Performance (%) Paper List Accuracy AP 
Vertebrae 1524 Pose-net, M-Net 98.38 - [63]

Vertebrae 1000 SSD, MobileNet  95.6 (AP) 
93.5 (LA) - [62]

Vertebrae 100 CNN 99.7 - [67]
Vertebrae 1000 VGG, CNN - - [64]

Intervertebral discs 1082 Faster-RCNN - 90.5 [66]
L5 vertebra and S1 sacrum 1791 EfficientDet >90 - [65] 

L4, L5 vertebra and S1 sacrum 2707 YOLOv3 - - [54] 

Note: SSD: single shot multiBox detector. 

3.3. Segmentation 

Automatic segmentation of the lumbar vertebrae can further assist doctors in accurately measuring structural 
parameters, or further predicting disease states, thus improving their work efficiency. Kim et al. [68] combined 
deep learning techniques and level set methods to segment the lumbar vertebrae. First, the five lumbar vertebrae 
were located using Pose-net, followed by segmentation of the located vertebrae through M-net. The level set 
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method was used for fine-tuning the results segmented by M-net. Trinh et al. [69] designed the LumbarNet model 
for segmenting the lumbar vertebrae and sacrum. Based on the U-net structure, they added a feature fusion module 
(FFM) to the encoder module to enhance the encoder's efficiency. After obtaining the segmentation results, they 
calculated the P-grade of the vertebrae based on pedicle slope detection (PSD) and dynamic shift (DS) to determine 
the presence of lumbar spondylolisthesis. 

For more complex structural analysis requirements, Chen et al. [70] used the scSE U-net model to segment 
various anatomical features of the lumbar spine, such as the lumbar vertebrae, pelvis, spinous processes, and 
intervertebral foramina. This model implements spatial and channel squeeze & excitation (scSE) blocks in the U-
net structure, which recalibrate the feature maps along spatial and channel dimensions, respectively. The model 
includes two U-shaped networks, the first for segmenting anatomical features and the second for identifying them. 
Tran et al. [71] designed MBNet for lumbar spine segmentation and prediction of related parameters. This model 
includes two branches. The first branch performs semantic segmentation of the vertebrae using BiLuNet, which is 
based on an improved U-Net, and the second branch calculates relevant parameters based on the segmentation 
results to assist doctors in diagnosing low back pain. Table 6 summarizes the applications of deep learning models 
for the segmentation of lumbar X-ray images. 

Table 6. Deep Learning in Segmentation of Lumbar X-ray Images. 

Target Class Dataset Size DL Model Performance (%) Paper List mIoU DSC 

Multiple anatomical features of the lumbar spine 2782 U-net - 
91 (AP) 
87 (LA) 
80 (OP) 

[70] 

Vertebrae 797 Pose-net, M-Net - 91.6 [68]
Vertebrae 830 Comprehensive - - [72]

Vertebrae, sacrum, and femoral heads 750 U-net 85.0 - [71] 
Vertebrae, and sacrum 706 U-net 88 - [69] 
Vertebrae, and sacrum 780 U-Net - 82.1 [73] 

Vertebrae, sacrum, and femoral heads 1000 ResNet 88.5 - [74]
Vertebrae 2073 U-Net - >94 [75]

4. CT

Automatic classification for lumbar CT images is primarily used for gender classification and bone mineral 
density (BMD) prediction. Malatong et al. [76] applied a deep learning model to classify gender based on the upper 
and lower endplates of the L3 lumbar vertebra. They adjusted the last two layers of GoogLeNet, including 
modifying the parameters of the fully connected layer and replacing the new classification layer. Random rotations, 
reflections, and horizontal translations were employed during training to prevent model overfitting. Yasaka et al. [77] 
predicted lumbar spine BMD using deep learning techniques. They trained the model using the L2-L4 vertebrae 
of patients and tested it using the L1 vertebra. Finally, the BMD prediction results were used to assess whether 
patients had osteoporosis. 

Thoracic and lumbar spine injuries pose significant risks to human health. Automated vertebra detection can 
effectively locate the vertebrae and predict the damage and severity simultaneously. Doerr et al. [78] used the 
Faster R-CNN model to locate the lumbar spine, and simultaneously perform a five-category classification of 
thoracolumbar injury classification and severity score (TLICS) morphology types and binary classification of 
posterior ligamentous complex (PLC) integrity scores. They trained two models for the two respective localization 
and classification tasks. Research findings showed that deep learning methods effectively predict PLC and 
morphological components of TLICS. 

Accurate vertebrae segmentation from CT images is important for many tasks, including vertebral 
morphological analysis and disease prediction. Lu et al. [79] designed a deep learning-based 3D multi-scale spinal 
segmentation method. First, the lumbar spine was located and cropped using U-Net, followed by 3D vertebral 
segmentation using XUNet. XUNet incorporated inception blocks for feature extraction, aggregating features 
across different semantic scales and improving the network’s expressive ability. Malinda et al. [80] proposed a 
hybrid deep segmentation generative adversarial network for lumbar image segmentation. To increase data 
usability, they improved the training scheme on the CycleGAN model, combining paired and unpaired training 
data. 

Image-guided surgery is now widely applied in spinal surgery, and image registration allows surgeons to 
observe real-time changes during surgery better. Gao et al. [81] registered lumbar vertebrae using a deep learning 
model. They proposed an end-to-end framework named ACSGRegNet, which is mainly divided into two parts. 
The first is an affine registration network to calculate affine transformation parameters. The second is a deformable 
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registration network, which includes self-attention modules, cross-attention modules, and gated fusion modules to 
output the final dense deformation field. 

Image reconstruction for CT images can reduce noise and improve image quality, obtaining high-quality CT 
images with reduced radiation doses, and enabling conversions between CT images and other image types. Greffier 
et al. [82] used both deep learning and hybrid iterative reconstruction algorithms for image reconstruction. Through 
quantitative analysis of image quality and dose, it was verified that the deep learning reconstruction algorithm can 
optimize the CT dose plan. Morbée et al. [83] reconstructed CT images from MRI images based on deep learning 
methods and compared them with traditional CT images, demonstrating their equivalence. Yeoh et al. [84] applied 
a deep learning reconstruction algorithm to low-dose CT images. The experimental results from the quantitative 
and qualitative analysis showed that this method could achieve both image denoising and edge-sharpening effects. 
Table 7 summarizes the applications of deep learning models for lumbar CT images. 

Table 7. Deep Learning for Lumbar CT Images. 

Task Target Class Dataset Size DL Model Performance (%) Paper List 

Classification  
Female, and male 1100 GoogLeNet Accuracy = 92.5 [76] 
Female, and male 117 LeNet5 Accuracy = 86.4 [85] 

BMD 1665 CNN PCCs  > 84.0 (p  < 0.001) [77] 

Detection Vertebrae 111 Faster R-
CNN DSC = 92 (morphology), 88 (PLC) [78] 

Segmentation 

Vertebrae 522 CNN DSC > 90 [86] 
Bone, disc, and nerve 1681 U-net DSC = 94 (Bone), 92 (Disc), 92 (Nerve) [87] 

Vertebrae 656 U-net DSC > 88.8 [79] 
Vertebrae 8040 CycleGAN DSC = 94.2 [80] 
Vertebrae 15 FCN DSC = 95.77 [88] 

Registration Vertebrae 61 CNN DSC = 96.3 [81] 

Reconstruction 

Vertebrae 3 Integrated Noise magnitude < i4 [82] 
Vertebrae 30  Integrated Quantitative image noise analysis [89] 
Full image 30 Integrated Bland Altman analysis [83] 
Vertebrae 52 Integrated Quantitative image noise analysis [84] 

Note: FCN: fully convolutional network. 

5. MRI

5.1. Classification 

Spinal stenosis and disc herniation are among the causes of lower back pain (LBP) and are two of the most 
common lumbar disorders. This task is typically performed by radiologists or orthopedic doctors through imaging 
analysis. Al-kubaisi et al. [42] used a deep learning model to classify lumbar disc status as normal or abnormal. 
They analyzed the impact of transfer learning and model fine-tuning on image classification through comparative 
experiments, including training with ImageNet images and brain tumor MRI images, and incorporated Grad-CAM 
visualization technique to explain the model. Experimental results showed that transfer learning using datasets 
from the same field could improve model performance and mitigate the effects of dataset limitations. 

Grading specific diseases is also a typical application of deep learning in lumbar MRI images. Chen et al. [90] 
designed an auxiliary diagnostic system for lumbar disc herniation (LDH) based on the CDCGAN model, capable 
of outputting six indicators for quantitative analysis of MRI images. In the model, they combined Tanh and ReLU 
activation functions to enhance the model's classification efficiency. Cheung et al. [91] assessed lumbar disc 
degeneration using a deep learning model. They employed the integrated MRI-SegFlow and visual geometry 
group-medium (VGG-M) to predict Schneiderman scores, disc bulging, and Pfirrmann grading. Experimental 
results demonstrated that deep learning models could be effectively applied in lumbar disc degeneration (LDD) 
prediction tasks. Table 8 summarizes the applications of deep learning models for classifying lumbar MRI images. 

Table 8. Deep Learning in Classification of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper 
List Accuracy Recall

Normal, and abnormal 1448 VGG 87.91 > 90.91 [42] 
Six indexes of lumbar disc herniation - CDCGAN - - [90]

Four classes of Schneiderman score; disc 
bulging, and normal; Five classes of 

Pfirrmann grade 
2686 CNN 

90.2 
(Schneiderman) 

90.4 (Disc bulging) 
89.9 (Pfirrmann) 

96.0 
(Schneiderman) 

76.5 (Disc bulging) 
60.4 (Pfirrmann) 

[91] 

Five classes of Pfirrmann grade 2500 CNN 86 - [92] 
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Table 8. Cont. 

Target Class Dataset Size DL Model Performance (%) Paper 
List Accuracy Recall

Five classes of Pfirrmann grade; four classes 
of spondylolisthesis; four classes of central 

canal stenosis 
882 SpineNet - - [93] 

Three classes of foraminal stenosis 
severity 22796 ResNet >80 - [93]

5.2. Detection 

Vertebral detection tasks include center localization and candidate bounding box localization. Deep learning-
based vertebral image detection can provide doctors with effective localization of vertebral segments or disease 
areas. Zhou et al. [94] designed a deep learning method to detect and locate the L1-S1 lumbar vertebrae. The 
proposed method includes two phases of image detection: the first detects the S1 vertebra, and the second detects 
the L1-L5 vertebrae. The detection model is trained only on public datasets and does not require annotated MRI 
images as a training set. Compared to other deep learning methods, this model learns the similarities between 
vertebrae. Mushtaq et al. [95] combined the YOLOv5 and HED U-Net models to detect and diagnose the lumbar 
spine. First, YOLOv5 is used to detect the vertebrae, then L1, L5, and S1 are extracted from the detection results 
to calculate the lumbar lordosis angle (LLA) using L1 and S1, and the lumbosacral angle (LSA) using L5 and S1. 

To detect more vertebral structures, effective diagnosis of diseases should be pursued, including lumbar disc 
herniation and intervertebral disc degeneration. Tsai et al. [96] used deep learning to detect lumbar disc herniation. 
Due to a small training set size, they used data augmentation methods such as rotation, contrast, and brightness 
adjustments and employed multiple strategies to expand the volume and features of images. The model can detect 
abnormalities in the lumbar, sacral, and fifth lumbar vertebral regions. Yi et al. [97] used deep learning models to 
detect degenerative cervical diseases. They trained two modified 3D Resnet18 networks, one for sagittal view MR 
images and the other for axial view MR images. A multi-modal cross-attention module from Transformer was 
introduced in the models, and AdamW was used as the optimizer. Table 9 summarizes the applications of deep 
learning models for detecting lumbar MRI images. 

Table 9. Deep Learning in Detection of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper List Accuracy Precision mAP 
Vertebrae 903 CNN >99.3 >99.6 - [98]

Disc 1000 YOLOv5 95 - - [45]
Vertebrae, sacrum, disc 714 YOLOv3 81.1 87.2 - [96]

Vertebrae, disc 804 Resnet18 - >73.7 - [97]
Disc 80 Faster RCNN 96.25 - - [99]

Vertebrae 2739 CNN 98.6 98.9 - [94]
Vertebrae 575 YOLOv5 - - 95.2 [95]

5.3. Segmentation 

Automatic segmentation of MRI lumbar spine images can help doctors more accurately identify the different 
structures of the lumbar spine, while also helping doctors reduce diagnosis time and improve diagnosis efficiency. 
Li et al. [100] used deep learning methods to segment the spine in MRI images, including vertebrae, laminae, and 
the dural sac. They introduced a multi-scale attention mechanism based on the U-Net model, where the upsampling 
and downsampling convolutional layer structures were replaced with a convolutional layer and a dual-branch 
multi-scale attention module, enhancing the model's segmentation efficiency. Masood et al. [44] designed a deep 
learning model to segment vertebrae in images to further assess spinal spondylolisthesis and lumbar lordosis. They 
customized an algorithm (VBSeg) in the machine learning field for comparison with deep learning methods, and 
combined various models in the deep learning approach to configure the encoder-decoder setup for optimal results. 
Zheng et al. [101] used a deep learning model to segment specific structures according to the Pfirrmann grading, 
covering 5 types across 14 regions. The proposed BianqueNet architecture, built on DeepLabv3+, incorporated a 
swin Transformer with skip connection modules. Compared to traditional Transformer modules, this module uses 
a moving window mechanism, which is more efficient in network computation. 

For 3D segmentation of MRI images, Chen et al. [102] used a 3D-UNet model to segment the L4-5 spinal 
structures to reconstruct a 3D lumbar intervertebral foramen (LIVF) model. After obtaining the measurement 
results, further calculations were made on the morphological parameters of the LIVF, including the foramen area, 
height, and width. Experimental results showed that the model could be effectively applied to MRI spinal structure 
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tasks, and based on the segmentation results, it could generate complete and accurate 3D LIVF models. Table 10 
summarizes the applications of deep learning models for segmenting lumbar MRI images. 

Table 10. Deep Learning in Segmentation of Lumbar MRI Images. 

Target Class Dataset Size DL Model Performance (%) Paper List MIoU DSC 

Vertebrae, and discs 300 U-Net 94.7 (Vertebrae) 
92.6 (Discs) - [103]

Vertebral body, lamina, and dural sac 1080 CNN - 92.52 [100] 
Vertebrae, and sacrum 22796 U-Net - 93 [104] 

Vertebrae 514 ResNet, UNet 86 97 [44]
Discs 382 VGG 16 93.3 - [105]

Vertebrae, sacrum, presacral fat area, 
cerebrospinal fluid area and IVDs >1000 DeepLabv3+ 90.35 94.70 [101]

Vertebrae 1360 U-Net >74.4 >84.9 [106]
L4-5 spine structures 100 U-Net - 91.8 [102] 

L5/S1 bone structures, and discs 100 U-Net - >90.39 [107]

Note: MIoU: mean intersection over union; IVD: intervertebral disc; DSC: dice similarity coefficient. 

5.4. Reconstruction 

Deep learning techniques for MRI image reconstruction can accelerate imaging speed and enhance image 
quality. Chazen et al. [108] validated the effectiveness of image reconstruction from image evaluation and 
statistical analysis. In image evaluation, they graded overall image clarity on a 3-point scale, motion artifacts on a 
4-point scale, and used multi-planar reconstruction (MPR) to grade foraminal stenosis. Fujiwara et al. [109]
validated the effectiveness of rapid image reconstruction through statistical analysis, including Cohen’s kappa
statistic, and the interchangeability between the rapid reconstruction protocol and traditional protocols. Han et al. [110]
analyzed reconstructed images using deep learning quantitatively. They employed two convolutional neural
networks incorporating the 2D V-Net architecture; the first network segmented the intervertebral discs to calculate
disc height, while the second network segmented the vertebral bodies to calculate vertebral volume. To validate
their effectiveness, Zerunian et al. [111] performed noise analysis on reconstructed images. They measured signal
intensity to calculate signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and used a five-point Likert
scale to assess image quality for qualitative analysis. Gao et al. [112] trained a ResNet model to denoise MRI
images to remove Rician noise. They compared the model's denoising results with the weighted stable matching
(WSM) algorithm and denoising CNN (DnCNN) algorithm, verifying the model's reliability on MRI lumbar spine
images. Table 11 summarizes the applications of deep learning models for reconstructing lumbar MRI images.

Table 11. Deep Learning in Reconstruction of Lumbar MRI Images. 

DL Model/Software Patient Number Quantitative Analysis Indicators Paper List 
AIR Recon DL 35 Cohen’s kappa statistic [108] 

Advanced Intelligent Clear-IQ Engine 58 Cohen’s kappa statistic [109] 
AIR Recon DL 18 Disc heights and vertebral body volumes [110] 
AIR Recon DL 35 Conger's kappa statistic [113] 
AIR Recon DL 80 Quantitative image noise analysis [111]

ResNet 127 Quantitative image noise analysis [112] 

6. Discussions

From the papers reviewed, we can find that deep learning has been extensively used across various fields of 
lumbar spine image analysis, including the diversity of image modalities and the variety of processing methods, 
with some research results already reliably applied in clinical applications. Compared to traditional algorithms, 
deep learning stands out with its robust feature extraction capabilities, multi-level abstraction, and excellent 
flexibility and universality in image analysis tasks. A wide range of image preprocessing methods have significantly 
contributed, including data augmentation [54, 75, 96], and image quality enhancement [53]. Tsai et al. [96] employed 
image rotation and adjusted brightness and contrast to enhance MRI images, achieving an 86.2% accuracy in LHD 
detection with just 350 original images. Transfer learning offers another effective way to enhance performance by 
using pre-trained models on other datasets as a starting point and further fine-tuning them to align closely with 
specific task requirements, thus addressing tasks with fewer samples. In Al-kubaisi et al.’s research [42], the fine-
tuned VGG16 model's classification performance on an MRI dataset increased from 78.2% to 87.91%. 
Additionally, appropriate modifying network structures [70,100,101], improving activation functions [90,97], and 
post-processing of model results [68,75] can all effectively enhance the overall performance of tasks. 
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Different deep learning models exhibit various strengths and weaknesses across different imaging modalities 
and tasks. CNNs, such as LeNet, AlexNet, VGG, and ResNet, are widely used in classification, detection, and 
segmentation tasks for X-ray, CT, and MRI images due to their powerful feature extraction capabilities, although 
they require significant computational resources. R-CNNs and its variants excel in object detection tasks in CT 
and MRI images with high accuracy but at the cost of higher computational demands. Single-stage detectors like 
YOLO and SSD are favored for real-time applications in X-ray and CT images, offering faster detection speeds 
with slightly lower accuracy. FCN and U-Net are highly effective for segmentation tasks, particularly in MRI 
images, but depend heavily on high-quality annotated data. GANs are useful for data augmentation and image 
reconstruction, producing high-quality synthetic images, though their training can be unstable and complex to tune. 

Deep learning in lumbar spine image processing still faces shortcomings and challenges. First, compared to 
other body parts like the breast [114] and heart [115], lumbar spine images lack sufficient public datasets. Although 
data augmentation can somewhat mitigate this issu, there is still a gap between the training performance of models 
and their potential maximum performance. Therefore, establishing high-quality public datasets is necessary. 
Secondly, deep learning has poor generalization ability. Models trained solely on data from a single field often fail 
to generalize when applied to other fields [116], and lumbar spine images often show significant variation across 
different modalities or even within the same modality under different acquisition devices. With the continuous 
development of large-scale pre-trained models [117] in recent years, this issue might be addressed. Moreover, the 
substantial computational resources required for processing and analyzing lumbar images also hinder the 
widespread application of deep learning in practical settings. Although deep learning models have shown potential 
in diagnosing and predicting lumbar diseases, the ability to process large volumes of patient data in real-time, and 
the demand for computational resources by these models, remain practical challenges that need to be overcome. 
In some studies [54,62], the application of compact networks like MobileNet [118] has been able to mitigate the 
impact of these issues. 

With the advancement of data sharing and privacy protection technologies, public datasets of lumbar spine 
images are expected to become more abundant. This will help enhance the training effectiveness and 
generalizability of deep learning models. Additionally, developing techniques such as transfer learning and self-
supervised learning will further improve model performance in data-scarce situations. In clinical applications, deep 
learning is expected to further improve doctors' work efficiency and diagnostic accuracy by integrating with other 
technologies such as augmented reality (AR) and virtual reality (VR). For example, real-time image analysis based 
on deep learning can provide more precise guidance for surgical navigation, thereby increasing surgical success 
rates and reducing postoperative complications. Moreover, with the continuous improvement in the performance 
of computing devices, the inference speed and processing power of deep learning models will also be significantly 
enhanced. This will enable deep learning technologies to be more widely applied in real clinical settings, achieving 
real-time, accurate diagnosis and treatment of lumbar spine diseases. 

7. Conclusion

We have summarized the latest applications of deep learning in various modalities of lumbar spine imaging 
while also compiling a list of available public datasets and discussing common models used in different tasks. 
Deep learning has now become one of the mainstream directions in the field of lumbar spine image analysis. The 
rapid and accurate performance demonstrated by deep learning in image classification, detection, segmentation, 
and reconstruction can be reliably applied to the diagnosis, treatment, and prognosis of lumbar spine diseases, 
effectively enhancing doctors' work efficiency. Although some problems and challenges exist, with the future 
emphasis on privacy protection, the improvements in model interpretability and generalization abilities, as well as 
the continuous development of computing devices, deep learning is expected to become an important tool for 
managing spinal diseases. 
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Abstract: Accurately annotated ultrasonic images are vital components of a high-
quality medical report. Hospitals often have strict guidelines on the types of 
annotations that should appear on imaging results. However, manually inspecting 
these images can be a cumbersome task. While a neural network could potentially 
automate the process, training such a model typically requires a dataset of paired 
input and target images, which in turn involves significant human labor. This study 
introduces an automated approach for detecting annotations in images. This is 
achieved by treating the annotations as noise, creating a self-supervised pretext task 
and using a model trained under the Noise2Noise scheme to restore the image to a 
clean state. We tested a variety of model structures on the denoising task against 
different types of annotation, including body marker annotation, radial line 
annotation, etc. Our results demonstrate that most models trained under the 
Noise2Noise scheme outperformed their counterparts trained with noisy-clean data 
pairs. The costumed U-Net yielded the most optimal outcome on the body marker 
annotation dataset, with high scores on segmentation precision and reconstruction 
similarity. Our approach streamlines the laborious task of manually quality-
controlling ultrasound scans, with minimal human labor involved, making the 
quality control process efficient and scalable.  

Keywords: image restoration; Noise2Noise; segmentation; U-Net; ultrasonic 

1. Introduction

Annotations, typically comprised of various labels and marks, are commonly utilized to record critical 
information from an ultrasonic exam, including the precise location of potential lesions or suspicious findings, on 
archived results. Such annotations prove beneficial in aiding physicians in interpreting the exam results, 
particularly when surrounding structures do not provide any indication of the anatomic location of the image. 
Additionally, hospitals often mandate the inclusion of annotations, especially in cases involving inter-hospital 
patient transfers [1]. If the report lacks comprehensive annotations, patients are usually required to undergo an 
equivalent radiography exam at the facility of transfer. 

Commonly employed types of annotations include body marker annotation [2], radial line annotation, and 
vascular flow annotation. The presence of these annotations serves as evidence for the standardization of the 
diagnostic process. Annotations not only document the reasoning behind the diagnostic assessment but also 
facilitate comparison between pre- and post-treatment imaging findings to gain further insights into the patient’s 
condition. 

However, the utilization of annotations during ultrasound exams may vary depending on the proficiency of 
the sonographer performing the procedure. Ultrasound being a live examination makes it hard to implement 
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additional reviews, thereby relying solely on the expertise of the operator to determine the presence of annotations. 
Furthermore, the need for repetitive manual verification increases the likelihood of forgetting the task, particularly 
during busy schedules at hospitals. As such, it is possible for the absence of annotations to occur. 

Given the strict regulations and obvious beneficiation surrounding the need for annotations in medical 
imaging, sonographers need to manually validate that the stored data satisfies these requirements to ensure that 
diagnoses meet the standard continuously. However, this is a cognitively demanding undertaking as it entails the 
fulfillment of diverse annotation obligations tailored to specific image outcomes. In addition, dealing with archived 
files manually is a cumbersome task as most medical data management systems do not consider this necessary and 
have no relevant feature implemented. 

The utilization of neural networks for the automatic assessment of whether the stored data meets particular 
criteria is a logical approach. To address the current issue, several approaches can be adopted using different types 
of deep learning models. The first approach would involve treating the task as a semantic segmentation problem, 
where the goal is to classify each pixel in the image into one of several predefined categories. Alternatively, the 
task could be framed as an instance segmentation problem, where the aim is to identify and label individual objects 
within the scene. To accomplish these goals, attention-based models such as the Pyramid Attention Network [3] 
or the Reverse Attention Network [4] could be employed. Alternatively, generative models like variants of 
Generative Adversarial Networks (GANs) [5] are also viable. Regardless of the method, once segmentation is 
completed successfully, the results can be utilized to ascertain the presence or absence of an annotation. (To 
illustrate, the determination can be achieved by examining the number of white pixels that remain following the 
application of a filter designed to eliminate noise on the segmentation result.) 

This task could also be viewed as an object recognition challenge, and for this purpose, models such as Single 
Shot MultiBox Detector (SSD) [6] or You Only Look Once (YOLO) [7] could be utilized to obtain the four 
coordinates of the bonding box of a detected object, which will serve as demonstrative evidence of the necessary 
annotations. 

To train a model using deep learning, it is important to have a suitable training dataset that includes paired 
input and output data, regardless of the specific task being performed. However, building an appropriate training 
dataset is a challenging task due to the absence of high-quality data such as segmentation masks, object coordinates 
and clean targets. Acquiring such data requires a considerable amount of manual effort. 

Addressing the challenge of limited labeled data for annotation recognition, this study proposes a self-
supervised Noise2Noise approach. The Noise2Noise method stands as a novel training paradigm that departs from 
the conventional Noise2Clean approach. Unlike Noise2Clean, which necessitates paired noisy-clean image 
datasets, Noise2Noise leverages innovative mathematical principles to train a denoising model solely on noisy 
data. This eliminates the requirement for a large and often impractical collection of clean images. 

Building upon the Noise2Noise framework, we propose a novel self-supervised strategy, where common 
annotations are treated as noise and randomly superimposed, in a repetitive manner, onto a limited set of 
unannotated images. This process effectively generates a synthetic training dataset specifically tailored for the 
Noise2Noise framework. The trained model, equipped to remove noise (in this case, annotations), can then be 
employed for annotation recognition without requiring clean image counterparts. 

We trained multiple network structures such as FCN, U-Net++, MultiResUNet, etc., under both training 
paradigms to select an ideal one. We noted that the majority of Noise2Noise-based methods surpassed the 
corresponding Noise2Clean (supervised learning) methods in which the former even received a Sørensen-Dice 
coefficient (Dice) increase of up to 300%, an Intersection over Union (IoU) increase of up to 384%, and a Peak 
Signal to Noise Ratio Human Visual System Modified (PSNR HVS M) increase of up to 38% in some cases. 
Among them, our costumed U-Net achieved the best results, both quantitative and qualitatively. 

The remainder of the paper is organized as follows: Section 2 discusses related works. Section 3 outlines our 
methodology, data sources, dataset-building pipeline, and model structures used in this work. In Section 4, 
quantitative metric scores and qualitative image results are provided to support our claim regarding the optimal 
model structure, loss function, and observations on Noise2Noise’s effect. Finally, Section 5 concludes the paper. 

2. Related Work

2.1. Self-Supervised Learning 

Self-supervised learning is a way of training deep-learning models without human guidance or explicit 
instructions. Unlike supervised learning which uses labeled examples, self-supervised models learn from unlabeled 
data by identifying patterns and relationships on their own. It uses the structure of images (e.g., edges, shapes) to 
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teach the deep-learning model how to identify important parts of an image automatically, rather than having to be 
explicitly told what to look for. This is particularly helpful considering the abundance of unlabeled data that exists 
today and the amount of work required to create a properly constructed dataset. To create a robust, large model, 
self-supervised learning is an essential tool. 

The general process of self-supervised learning involves first creating a pretext task for the model to solve. 
By completing this task, the model can gain an understanding of the structural information embedded within the 
data. This understanding can then be transferred to downstream tasks using different forms of transfer learning. 

Examples of pretext tasks include rotating an image for the model to predict the degree of rotation, 
reconstructing images from an altered view, or reconstructing images from a corrupted version of the original data. 

In this work, we developed a pretext task where we asked the model to generate another noisy image from 
the noisy input while keeping the same original clean image beneath it. Specifically, we manually extracted several 
common annotations from stored data and randomly superimposed them on a small set of unannotated images to 
create a large dataset. The idea behind this approach was to train the model to recognize the crucial features of the 
original so that it could distinguish between noise and clean images. 

2.2. Noise2Noise Training Scheme 

Noise2Noise is originally proposed in [8] as a novel statistical reasoning for the task of image denoising. It 
is shown that, under certain key constraints, it is possible to train a denoising model using only corrupted images. The 
constraints are: the distribution of the added noise must have a mean of zero and no correlation with the desired clean 
image, and the correlation between the noise in the input image and the target image should be close to zero [9]. 

By utilizing deep learning, a denoising task can be transformed into a regression problem, where a neural 
network is used to learn the mapping between corrupted samples 𝑥ො௜  and clean samples yi by minimizing the 
empirical risk [8]. 

In [8], inspecting the form of a typical training process shows that training a neural network is a generalization 
of a point estimating problem. We can see that it is essentially solving the point estimating problem for each 
separate input. This means that by finding the optimal parameters, the trained neural network will output the 
expectation or median of all possible mapping for input x. This property often leads to unwanted fuzziness in many 
deep-learning applications. However, in a denoising scenario, when the noise satisfies the above constraints and 
exists in both the model input and training target, the task of empirical risk minimization, given infinite data, 

argmin
ఏ

෍  
௜

𝐿ሺ𝑓ఏሺ𝑥ො௜ሻ,𝑦ො௜ሻ (1) 

is equivalent to the original regression problem 

argmin
ఏ

෍  
௜

𝐿ሺ𝑓ఏሺ𝑥ො௜ሻ,𝑦௜ሻ (2) 

where fθ(x) is the model parameterized by θ, L is the loss function, 𝑥ො௜ ,𝑦ො௜ are samples drawn from a noisy 
distribution and 𝑦௜  representing clean samples. 

The idea of using self-supervised learning in conjunction with Noise2Noise training scheme aligns well with 
our goal of obtaining a clean image. With a clean image, we can easily produce a segmentation map for various 
kinds of annotations, facilitating the models to recognize and categorize them accurately. 

3. Methodology

Building on the aforementioned theories, we address the challenge of limited data for segmentation by 
treating the desired object (annotations, in this paper) as noise. After we create a Noise2Noise dataset, we train a 
denoising model to remove this object. The resulting denoised image, when subtracted from the original input, 
provides a segmentation mask. This mask allows us to determine the presence of the target object with a simple 
score based on the number of white pixels. 

To be more specific, initially, our data includes collections of data that may or may not have specific 
annotations. We manually examined and filtered the data to create a clean dataset for each annotation. Next, we 
studied the individual components of different annotations and identified a general pattern for each one. Using this 
pattern, we generated large datasets containing noisy data and trained a denoising model using the Noise2Noise 
approach, and designed a pretext task with this dataset. Finally, we trained various model structures using both the 
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Noise2Noise and conventional Noise2Clean techniques to obtain denoising models for performance comparison 
(based on the denoised result and segmentation mask). 

3.1. Dataset 

To manually synthesize a self-supervised Noise2Noise dataset, which our training requires, it is essential to 
know the scheme of the different annotations and to construct a dataset according to it. 

Our original data consists mainly of ultrasonic images provided by the General Hospital of Northern Theater 
Command. These images were captured using external video capture cards and are in 8-bit sRGB format. 

According to the type of noise, we divided these data into six categories: 
• Images with body marker annotation
• Images without body marker annotation
• Images with radial line annotation
• Images without radial line annotation
• Images with vascular flow annotation
• Images without vascular flow annotation
Images with certain annotations are considered noisy images in the context of the noise removal task, and

corresponding images without these annotations are considered clean. Some typical images with various 
annotations are provided in Figure 1. 

To safeguard the confidentiality of the patient, any personal data displayed in the margin of the image is 
blurred using pixelization. This same technique is also used to obscure any similar information present in other 
images. 

In essence, a body marker annotation is a marker selected from a fixed set of icons that indicates different 
regions of the human body and its current orientation. It is typically located at the edge of the ultrasonic image 
area and is labeled by the sonographer. On some ultrasound machines, the body marker annotation has a fixed 
position. 

(a) (b) 

(c) 

Figure 1. Images with various annotations: (a) body marker annotation; (b) radical line annotation; (c) vascular flow annotation. 



Zhang et al. AI Med. 2024, 1(1), 4 

https://doi.org/10.53941/aim.2024.100004 31 of 82 

However, from a statistical and training perspective, each real instance can be viewed as an image sample 
from a conditional distribution where the condition is the body marker annotation’s location. By randomly placing 
body marker annotation at any position within the image, we draw samples from a distribution without the 
aforementioned condition. By learning to denoise samples from the unconditioned distribution, the model can 
effectively denoise samples from conditional distribution as well. 

While we introduced randomness to annotation shapes, we did not completely randomize their placement. 
After analyzing existing data, we observed that body marker annotations rarely appear in the image center. So, we 
limited the program to placing annotations only within a 20% border around the image edges. 

Other commonly used annotations that we introduced later comply with the same reasoning. 
The radial line annotation indicates pairs of connected cross markers. They are usually placed at the edge of 

the lesion area, with its placement determined by the size of the lesion. One to three pairs of cross markers may be 
present in an image, corresponding to the three axes of 3D space, but typically there are only two pairs. 

The vascular flow annotation is not an additional labeling feature meant to simplify identification. Rather, it 
serves as a bounding box that identifies the specific area of the image being examined by the ultrasound flowmeter. 
However, to keep things simple, we will continue to call it a form of annotation. The presence of this annotation 
indicates that the relevant examination has been conducted. 

To synthesize a Noise2Noise training dataset for the above annotations, we first manually extracted the 
necessary annotation icons from existing annotated data, and then we randomly overlay different annotations on 
the clean images we have. To improve the model’s ability to handle variations (generalization), we also introduced 
randomness into the shape of annotations. For instance, the lines connecting markers in vascular flow annotations 
have a random, constantly changing appearance. This approach accounts for the different annotation styles used 
by various ultrasound machines. The randomness of the noise overlay allows for the creation of a relatively large 
dataset. 

By constructing training datasets in the above-mentioned process, each noisy image has three corresponding 
images for different tasks. 

• A clean image which the noisy image originated from.
• A different noisy image is created from the same clean image, using a different (in terms of position,

form, etc.) noise sampled from the same distribution. 
• A binary image recorded the position and form of the noise appended to the clean image.

An instance of the training dataset is presented in Figure 2. Using these images, the same dataset can be used
for Noise2Noise training, conventional Noise2Clean training, and normal segmentation training. 

Our approach to creating this training dataset can minimize the amount of human labor required. Even with 
a limited amount of clean data, we can generate a large noisy dataset for training. The flow chart of the above 
process is also shown in Figure 2.  

Figure 2. Flow chart of training dataset building. 

3.2. Network Structures 

In this research, we trained several structures to find the optimal solution and compare the two different 
training schemes: Noise2Noise and traditional Noise2Clean. 

We adopted most of the structures from the traditional image segmentation model. The models we adopted 
include FCN, DeepLabv3, LinkNet, MANet, U-Net Plus Plus, MultiResUNet and a costumed U-Net. 

FCN is one of the models utilizing convolutional networks in semantic segmentation. Long et al. [10,11] use 
fully-convolutional layers instead of fully-connected layers so that this model is compatible with non-fixed sized 
input and ouputs. 
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DeepLabv3 is a subsequent model of the DeepLab model family, developed by Chen et al. [12]. The main 
feature of this model is the use of dilated convolution, also known as “atrous” convolution. This method is 
advocated to combat the issue of feature resolution reduction in deep convolutional networks (due to pooling 
operations and strides in convolution operations) and the difficulties in multi-scale segmentation. 

LinkNet is proposed by Chaurasia and Culurciello [13] to address the problem of the long processing time of 
most segmentation models. By using a skip connection to pass spatial information directly to the corresponding 
decoder, LinkNet manages to preserve low-level information without additional parameters and re-learning 
operations. 

MANet, or Multi-scale Attention Net, is developed to improve accuracy in semantic segmentation of remote 
sensing images. By using a novel attention mechanism, treating attention as a kernel function, Li et al. [14,15] 
reduce the complexity of the dot product attention mechanism to O(N). 

U-Net is a well-known encoder-decoder segmentation model. It is originally proposed by Ronneberger et al. [16,17] 
for segmenting biological microscopy images. 

U-Net++ is a variant of U-Net proposed by Zhou et al. [18]. In their work, they proposed a novel skip
connection block in which a dense convolution block is used to process the input from the encoder feature map so 
that the semantic level of the input is closer to the corresponding decoder feature map. 

MultiResUNet is another modern variant of U-Net proposed by Ibtehaz and Rahman [19] as a potential 
successor. They used an Inception-like layer to replace the consecutive convolution layers after each pooling and 
transpose-convolution layers, to percept objects at different scales. They adopted a chain of convolution layers 
with residual connections instead of plain skip connection to process the feature map inputs before concatenating 
them to decoder feature maps. 

In our work, since the vanilla U-Net does not match the spatial resolution of our dataset, we used a costumed 
U-Net similar to [8] in all of our tests. Our architecture utilizes convolutional layers with strategically chosen stride 
and padding values to maintain consistent spatial dimensions between the network’s input and output. Within the
costumed U-Net implementation employed in this work, the encoder stage leverages 3x3 convolutional kernels
with a stride of 2 and padding of 1. This configuration progressively increases the feature map dimensionality
(from 3 to 38, 96, and finally 144) while downsampling the spatial resolution. The corresponding decoder stage
mirrors these convolutional layers to achieve dimensionality reduction (from 144 to 96, 38, and finally 3). To
achieve upsampling within the decoder, transposed convolutional layers are employed with parameters identical
to their corresponding counterparts in the encoder. ReLU activation is utilized as the non-linearity after each
convolutional or transposed convolutional layer, except for the final output layer which employs LeakyReLU
activation. This specific configuration ensures that the processed data retains its original spatial dimensions
throughout the costumed U-Net architecture. The detailed structure is presented in Table 1.

Table 1. Detailed structure of our costumed U-Net. 

Layer Name N_out 
(Channels) Function 

Input 3 -
Conv2d 48 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 48 ReLU activation

Conv2d 48 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 48 ReLU activation

MaxPool2d 48 Max Pooling (2 × 2 kernel, Stride 2 × 2, Padding 0 × 0) 
Conv2d 48 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 48 ReLU activation

MaxPool2d 48 Max Pooling (2 × 2 kernel, Stride 2 × 2, Padding 0 × 0) 
Conv2d 48 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 48 ReLU activation

ConvTranspose2d 48 Transposed Convolution (3 × 3 kernel, Stride 2 × 2, Padding 1 × 1, Output Padding 1 × 1) 
Concat 96 Concatenate Feature Maps 
Conv2d 96 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 96 ReLU activation

Conv2d 96 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 96 ReLU activation

ConvTranspose2d 96 Transposed Convolution (3 × 3 kernel, Stride 2 × 2, Padding 1 × 1, Output Padding 1 × 1) 
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Concat 144 Concatenate Feature Maps 
Conv2d 96 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 96 ReLU activation

Conv2d 96 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 96 ReLU activation

ConvTranspose2d 96 Transposed Convolution (3 × 3 kernel, Stride 2 × 2, Padding 1 × 1, Output Padding 1 × 1) 
Concat 99 Concatenate Feature Maps 
Conv2d 64 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 64 ReLU activation

Conv2d 32 Convolution (3 × 3 kernel, Stride 1 × 1, Padding 1 × 1) 
ReLU 32 ReLU activation

ConvTranspose2d 3 Transposed Convolution (3 × 3 kernel, Stride 2 × 2, Padding 1 × 1, Output Padding 1 × 1) 
LeakyReLU 3 LeakyReLU activation

4. Results

In this section, we provide performance evaluations and comparative studies. 

4.1. Evaluation 

We evaluate the model’s performance based on segmentation precision and reconstruction similarity. 

4.1.1. Segmentation Precision 

In terms of noise reduction precision, for a typical segmentation model, we can use the output to compare it 
with a binary image known as the truth mask to compute a score based on the number of pixels that get classified 
into the right categories. For a restoration model like ours, we subtract the model output from the model input to 
compute the binary segmentation result. We compare the results with the segmentation truth mask to compute the 
Dice, IoU, and Pixel Accuracy (PA). 

4.1.2. Reconstruction Similarity 

For assessing reconstruction similarity, we use two metrics: Structural Similarity Index Measure (SSIM) and 
PSNR_HVS_M. SSIM is a commonly used measure of image similarity. The PSNR metric known as 
PSNR_HVS_M [20] is considered to be a more accurate representation of image quality, which takes into 
consideration the Contrast Sensitivity Function (CSF) and the between-coefficient contrast masking of Discrete 
Cosine Transform (DCT) basis functions. 

4.2. Training 

The neural networks discussed in the previous section were trained using PyTorch 1.10.1. RMSprop [21], a 
variant of stochastic gradient descent that divides gradients by an average of their recent magnitude, was used as 
the optimizer with a learning rate of 0.00001, momentum of 0.9, weight decay of 1e−8, and default values [22] for 
other parameters. 

Three datasets were created in the aforementioned process to train various denoising models. For body marker 
annotation, a dataset of 83,900 pairs of noisy images generated from 4,975 clean images was used. For radial line 
annotation, 80,000 pairs of noisy images were generated from 3,936 clean images. For vascular flow annotation, 
80,000 pairs of noisy images were generated from 250 clean images. 

4.3. Optimal Model Structure 

To find the most effective combination of network structure and training scheme for the given task, we trained 
different network structures under the Noise2Noise and Noise2Clean schemes using the body mark annotation 
dataset. Though utilizing only one type of annotation, this experiment’s results could demonstrate the likely most 
suitable structure for other annotations as well. L1 loss is used to train these models. The results were compared 
using segmentation precision and reconstruction similarity, and are presented in Tables 2 and 3. 

We observed that Noise2Noise training scheme improves segmentation precision and reconstruction 
similarity in most cases. The results presented in Tables 2 and 3 indicate that the models trained using the 
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Noise2Noise scheme generally achieved higher Dice scores, IoU scores, PA scores, and PSNR_HVS_M scores. 
Specifically, for the costumed U-Net, we observed an increase in the Dice and IoU of 0.151 and 0.155, respectively, 
and an increase of 11.625 for the PSNR_HVS_M when using linearly normalized input.  

According to our hypothesis, the Noise2Noise training process improves the model’s ability to understand 
the features of annotations through solving an “impossible” task of relocating the annotation. This task is 
essentially a self-supervised pretext training task that helps the model gain a better understanding of the annotations 
and the spatial structure of the ultrasonic images, thus gaining higher performance. To highlight the advantage of 
our approach, let’s consider the limitations of traditional Noise2Clean denoising. In Noise2Clean, the neural 
network learns convolutional kernels to remove noise. These kernels may develop a complex mask that essentially 
averages pixels within an applied area. This approach circumvents the need for the model to learn the specific 
relationship between the target noise and the underlying clean image. The acquisition of structural features by the 
model is not guaranteed. During training, the model may converge on an optimal solution that captures these 
features, leading to successful performance. However, the possibility exists that the model converges at a local 
optimum, neglecting this information even with abundant training data. Conversely, our Noise2Noise approach 
with overlaid annotations trains the model to essentially move the annotation (treated as noise) within the image. 
This process necessitates learning the structural information of both the annotation and the underlying clean 
background. It’s well-established that core self-supervised learning tasks, such as rotation prediction, jigsaw puzzle 
solving, and missing patch prediction, all hinge on the model’s ability to grasp structural information. Our 
proposed task shares this very property. We posit that this fundamental difference in training objectives is a key 
factor contributing to the performance improvement observed in our method. 

We also noted that the costumed U-Net structure performed the best out of all the structures tested. It achieved 
the highest Dice, IoU, SSIM, and PSNR_HVS_M scores under both training schemes. The costumed U-Net trained 
using the Noise2Noise scheme achieved the highest segmentation precision and reconstruction similarity of all 
models, with a Dice of 0.712, an IoU of 0.596, an SSIM of 0.967, and a PSNR_HVS_M of 41.628.  

Our findings suggest that a model’s capacity to retain graphical details is a critical performance factor. As 
shown in Tables 2 and 3, a significant performance gap exists between models employing skip connections 
(facilitating detail preservation) and those lacking such structures. Interestingly, our results indicate that a concise 
skip connection pathway is preferable for this task. Models with intricate skip connection architectures (such as 
U-Net++ and MultiResUNet) exhibited lower performance compared to U-Net’s straightforward skip connections.
This might be attributed to the desired outcome: preserving most of the input information in the output, only
removing annotation in an area of interest. Therefore, simpler skip connection pathways are preferred. Complex
architectures introduce additional weights and parameters, potentially hindering the model’s ability to faithfully
transmit the input information.

Given the above results, we chose the costumed U-Net as the optimal model for later experiments. 

Table 2. Segmentation Precision on Body Marker Annotation (Average + Var) N2C stands for Noise2Clean, N2N stands for 
Noise2Noise SMN indicates the model is trained with data normalized according to standard deviation and mean Models 
without SMN are trained with linearly normalized data. 

Method Training Mode Dice IoU PA
FCN_101 N2C SMN 0.07 ± 0.003 0.039 ± 0.001 0.97 ± 7.2 × e−5 
FCN_101 N2N SMN 0.07 ± 0.003 0.04 ± 0.001 0.97 ± 8 × e−5 

DeepLab V3 N2C 0.073 ± 0.003 0.039 ± 0.001 0.969 ± 0.005 
DeepLab V3 N2N 0.074 ± 0.003 0.04 ± 0.001 0.969 ± 0.005 

LinkNet N2C 0.447 ± 0.105 0.346 ± 0.007 0.976 ± 0.008 
LinkNet N2N 0.343 ± 0.139 0.280 ± 0.106 0.938 ± 0.008 
MANet N2C 0.531 ± 0.113 0.430 ± 0.091 0.943 ± 0.015 
MANet N2N 0.543 ± 0.128 0.451 ± 0.105 0.917 ± 0.024 

U-Net++ N2C 0.551 ± 0.08 0.437 ± 0.07 0.983 ± 0.007 
U-Net++ N2N 0.613 ± 0.114 0.516 ± 0.09 0.943 ± 0.016 

MultiResUNet N2C SMN 0.416 ± 0.05 0.594 ± 0.04 0.998 ± 2.75 × e−6 
MultiResUNet N2N SMN 0.661 ± 0.06 0.539 ± 0.06 0.99 ± 5 × e⁻4 

Costumed U-Net N2C SMN 0.408 ± 0.05 0.286 ± 0.04 0.998 ± 2.54 × e−6 
Costumed U-Net N2N SMN 0.676 ± 0.05 0.552 ± 0.05 0.999 ± 5 × e−7 
Costumed U-Net N2C 0.561 ± 0.077 0.441 ± 0.072 0.990 ± 0.005 
Costumed U-Net N2N 0.712 ± 0.053 0.596 ± 0.058 0.993 ± 0.007 
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Table 3. Reconstruction Similarity on Body Marker Annotation (Average + Var). 

Model Training Mode SSIM PSNR_HVS_M
FCN_101 N2C 0.459 ± 0.001 10.264 ± 1.751 
FCN_101 N2N 0.453 ± 0.016 10.181 ± 2.430 

DeepLab V3 N2C 0.680 ± 0.004 15.919 ± 2.578 
DeepLab V3 N2N 0.678 ± 0.005 15.827 ± 3.282 

LinkNet N2C 0.933 ± 0.000 25.691 ± 6.425 
LinkNet N2N 0.945 ± 0.000 26.307 ± 8.466 
MANet N2C 0.923 ± 0.002 21.920 ± 7.015 
MANet N2N 0.923 ± 0.002 23.027 ± 3.903 

U-Net++ N2C 0.923 ± 0.000 21.245 ± 1.846 
U-Net++ N2N 0.927 ± 0.000 24.366 ± 7.121 

MultiResUNet N2C SMN 0.856 ± 0.002 23.712 ± 3.936 
MultiResUNet N2N SMN 0.792 ± 0.004 21.256 ± 6.160 

Costumed U-Net N2C SMN 0.833 ± 0.003 11.828 ± 20.299 
Costumed U-Net N2N SMN 0.791 ± 0.004 20.746 ± 10.223 
Costumed U-Net N2C 0.961 ± 0.000 29.976 ± 30.140 
Costumed U-Net N2N 0.967 ± 0.000 41.628 ± 41.775 

4.4. Optimal Loss Function 

To find the optimal loss function, we evaluate the convergence speed of different loss functions. The loss 
functions we tested include L1 loss, Huber loss, Smooth L1 loss, MSE loss and several combinations of 
aforementioned loss functions. The result is shown in Figure 3. 

To better visualize the differences in convergence speed between the losses, we present them in separated 
subplots. As shown in Figure 3a, the L1 loss and its variants (Huber loss and Smooth L1 loss) are displayed on one 
subplot, while the MSE loss-related losses are presented on another subplot in Figure 3b. 

We observed that implementing MSE loss results in faster convergence, allowing the model to reach 
convergence in under 100 steps, as shown in Figure 3b. Meanwhile, as depicted in Figure 3a, the loss functions 
based on L1 loss achieve a much slower convergence after approximately 500 to 600 steps. Although Huber loss 
and Smooth L1 loss seem to have a quicker rate of convergence, closer examination in Figure 3a reveals that they 
both take around 500 steps to converge, which is similar to the standard L1 loss. 

We also noted from Figure 3b that using a combination of MSE loss and different L1 based losses doesn’t 
significantly affect the rate of convergence, likely because the difference in scale between the MSE loss and L1 
loss and its variants causes MSE loss to remain the primary determinant of convergence speed. 

(a) (b) 

Figure 3. Loss functions convergence comparison: (a) Loss of L1 and its variants. (b) Loss of MSE loss and other combined 
losses. 

Our study also conducted an evaluation of the costumed U-Net trained using various loss functions. Our 
findings in Tables 4 and 5 revealed that there was minimal difference between the performances of these models, 
with the largest discrepancies in Dice, IoU, PA, SSIM and PSNR_HVS_M amounting to 0.023, 0.019, 0.003, 
0.011 and 4.031, respectively. These outcomes suggest that the selection of alternative loss functions has little 
influence on the overall performance of the model. As such, we decided not to employ the MSE loss function in 
subsequent experiments and instead continued to utilize the L1 loss. 
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Table 4. Segmentation Precision on Body Marker Annotation for the Costumed U-Net Trained with Different Loss Functions 
(Average + Var). 

Loss Function Dice IoU PA 
L 1 0.712 ± 0.053 0.596 ± 0.058 0.993 ± 0.007 

Huber 0.708 ± 0.05 0.592 ± 0.005 0.993 ± 0.005 
Smooth L1 0.717 ± 0.05 0.599 ± 0.055 0.993 ± 0.005 

L2 0.716 ± 0.053 0.599 ± 0.056 0.993 ± 0.005 
L1 + L2 0.712 ± 0.053 0.596 ± 0.057 0.993 ± 0.005 

Huber + L2 0.713 ± 0.052 0.596 ± 0.057 0.993 ± 0.005 
Smooth L1 + L2 0.692 ± 0.068 0.580 ± 0.066 0.990 ± 0.005 

All Loss Sum 0.715 ± 0.052 0.598 ± 0.057 0.993 ± 0.005 

Table 5. Reconstruction Similarity on Body Marker Annotation for the Costumed U-Net Trained with Different Loss Functions 
(Average + Var). 

Loss Function SSIM PSNR_HVS_M 
L 1 0.967 ± 0.000 41.628 ± 41.775 

Huber 0.968 ± 0.000 38.110 ± 91.416 
Smooth L1 0.967 ± 0.000 41.737 ± 38.719 

L2 0.966 ± 0.000 40.982 ± 37.608 
L1 + L2 0.966 ± 0.000 38.689 ± 46.355 

Huber + L2 0.977 ± 0.000 42.141 ± 53.215 
Smooth L1 + L2 0.968 ± 0.000 39.186 ± 47.249 

All Loss Sum 0.968 ± 0.000 40.443 ± 57.084 

4.5. Noise2Noise with Other Annotations 

The improvement observed in the costumed U-Net trained using the Noise2Noise scheme is also apparent in 
other annotation datasets, as shown in Tables 6–9. In the provided tables, the costumed U-Net has been trained 
using other two annotation datasets along with two different training schemes. The outcomes show a substantial 
enhancement in comparison to the Noise2Clean models, as there is approximately a half-unit gain observed in 
both Dice and IoU metrics, an increase of around 0.01 in SSIM, and a rise of 5 units in PSNR_HVS_M for both 
types of annotations. 

The performance improvement observed in the Noise2Noise model further strengthens our hypothesis. This 
is because both radial line annotations (cross markers) and vascular flow annotations (boxes) share similarities 
with other highly prevalent elements in ultrasonic imaging results. Models trained with the traditional Noise2Clean 
approach struggle to develop kernels that can differentiate these desired annotations from other image information. 
Conversely, the Noise2Noise model circumvents this limitation. 

Table 6. Segmentation Precision on Radial Line Annotation (Average + Var). 

Method Training Mode Dice IoU 
Costumed U-Net N2C 0.226 ± 0.013 0.132 ± 0.006 
Costumed U-Net N2N 0.747 ± 0.004 0.639 ± 0.059 

Table 7. Reconstruction Similarity on Radial Line Annotation (Average + Var). 

Method Training Mode SSIM PSNR_HVS_M 
Costumed U-Net N2C 0.932 ± 0.000 21.660 ± 5.391 
Costumed U-Net N2N 0.942 ± 0.000 26.376 ± 0.681 

Table 8. Segmentation Precision on Vascular Flow Annotation (Average + Var). 

Method Training Mode Dice IoU PA 
Costumed U-Net N2C 0.243 ± 0.028 0.149 ± 0.013 0.989 ± 1.115 
Costumed U-Net N2N 0.728 ± 0.031 0.599 ± 0.039 0.998 ± 1.423 × e−5 
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Table 9. Reconstruction Similarity on Vascular Flow Annotation (Average + Var). 

Method Training Mode SSIM PSNR_HVS_M
Costumed U-Net N2C 0.938 ± 0.000 21.584 ± 5.384 
Costumed U-Net N2N 0.948 ± 4.853 × e−5 26.717 ± 0.511 

4.6. Qualitative Results 

In this section, we present denoised images from models trained under different schemes to further support 
our claim. 

As can be seen in Figures 4–6, the output from the Noise2Clean model contains obvious artifacts, whereas 
models trained using the Noise2Noise scheme do not suffer from this problem. 

It is also worth noting that in the output images from Noise2Clean models, information in the edge area is 
compromised. In contrast, the Noise2Noise models preserve this information well. The evidence implies that 
models trained with the Noise2Noise scheme possess superior capabilities in identifying and distinguishing noise. 

(a) (b) 

(c) 

Figure 4. Body marker annotation: (a) input image; (b) output from N2C model; (c) output from N2N model. 
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(a) (b) 

(c) 

Figure 5. Radial line annotation: (a) input image; (b) output from N2C model; (c) output from N2N model. 

(a) (b) 

(c) 

Figure 6. Vascular flow annotation: (a) input image; (b) output from N2C model; (c) output from N2N model. 
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5. Discussion and Conclusions

This study proposed a self-supervised data generation and training approach to build large and diverse 
datasets starting from a small dataset with only a few clean images. We find that the costumed U-Net trained with 
the Noise2Noise scheme outperformed other models in terms of segmentation precision and reconstruction 
similarity in the annotation removal task. The benefits of Noise2Noise training were observed across most model 
structures tested, and the models trained using this scheme produced fewer artifacts. 

Our study has some limitations: Firstly, we used separate parameter sets for the segmentation task of different 
annotations. However, with the recent advancement of deep learning theories, it is now possible to use a single 
parameter set for the segmentation of all annotations presented in the image. Additionally, there is potential for 
further research in the area of language-guided segmentation models, which would provide a more precise and 
flexible interface for medical professionals. We find building a model that incorporates these innovations 
intriguing. 

We also noted that our model was trained in a self-supervised manner, meaning it has potentially gained a 
strong understanding of the structural features of ultrasonic images. This understanding is beneficial for 
downstream models such as the object detection model. Different ways of fine-tuning, like Low-Rank Adaptation 
(LoRA), adapter layers, etc. should be explored to find the optimal method to effectively transfer this 
understanding. We plan to address these issues in future studies. 
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Abstract: Breast cancer is one of the most common tumors among women in the
world, and its early screening is crucial to improve the survival rate of patients.
Breast ultrasound, with the characteristics of non radiation, real-time imaging and
easy operation, has become a common method for breast cancer detection. However,
this method has some problems, such as low imaging quality and strong subjectivity
of diagnosis results, which affect the accurate diagnosis of breast cancer. With
the ongoing advancement of deep learning technology, intelligent breast cancer
detection systems have effectively overcome these challenges, enhancing diagnostic
accuracy and efficiency. This study uses nine popular deep learning object de-
tection networks (including two-stage, one-stage, anchor-based, and anchor-free
networks) for the detection of breast lesions and compares the results of these
methods. The experiments show that the anchor-based Single Shot MultiBox De-
tector (SSD) network excels in overall performance, while the anchor-free Fully
Convolutional One-stage Object Detector (FCOS) exhibits the best generalization
ability. Moreover, the results also indicate that, in the context of breast lesion
detection, anchor-based networks generally outperform anchor-free networks.

Keywords: deep learning; breast ultrasound image; breast cancer; breast lesion
detection; object detection

1. Introduction

According to the global cancer statistics report of 2018, 11.6% of cancer patients worldwide are diagnosed
with breast cancer, making it the second most prevalent cancer globally [1]. Each year, approximately 2.89 million
women are diagnosed with breast cancer, accounting for 24.2% of all female cancer cases [1]. Clinical studies show
that the survival rate of breast cancer is closely related to the early detection and staging of the disease; the earlier it
is detected, the higher the possibility of survival [2]. Therefore, early screening for breast cancer is crucial.

In clinic, the detection of breast cancer typically relies on three types of medical imaging technologies,
Mammography, Digital Breast Tomosynthesis (DBT) and medical ultrasound imaging. Each of these technologies
has its own advantages and unique limitations in breast cancer detection. While Mammography can reach a detection
sensitivity of up to 85% in general female populations, its sensitivity decreases to 47.8–64.4% in women with dense
breast tissue [3]. This is due to the lower distinction between breast tissue and tumors in dense breast, leading to
potential missed-detection. Moreover, Mammography carries radiation risks and is relatively costly. DBT also
faces similar issues of high costs and radiation exposure. In contrast, breast ultrasound imaging is a comparatively
lower-cost, non-ionizing radiation method that provides real-time imaging. It performs well in detecting hidden
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breast cancers in dense breast tissues [4], thus becoming an important tool in breast cancer detection. However,
the diagnostic results of breast ultrasound largely depends on the doctor’s skill and experience level. Variations
in training backgrounds and clinical experiences can lead to different diagnostic results for the same ultrasound
images [5]. Additionally, ultrasound images often suffer from issues like noise interference, strong artifacts, and
low contrast between tissue structures [6].

To address the above issues, many researchers have conducted research on the automated diagnosis of breast
ultrasound images. Breast cancer automatic diagnosis typically includes two steps: lesion detection and lesion
classification. In earlier studies, researchers generally used traditional digital image processing methods for lesion
recognition and classification. For instance, Drucker et al. [7] identified breast lesion areas using radial gradient
index filtering in a study on breast cancer classification, and then input the identified areas into a Bayesian classifier
for benign-malignant lesion classification. In another study, Liu et al. [8] on lesion area identification, they initially
conducted a preliminary analysis of breast ultrasound images using texture features, followed by refining the
coarse identification results with active contour method, achieving precise segmentation of breast lesions to assist
subsequent lesion classification. With the advancement of artificial intelligence algorithms, machine learning
algorithms have been increasingly applied in the automated diagnosis of breast cancer. For example, Shan et al. [9]
first determined the approximate location of breast lesions using traditional image processing methods in a lesion
segmentation study, then extracted frequency and spatial domain features of the lesion area, and fed these features
into a shallow artificial neural network for feature analysis, obtaining precise segmentation results of breast lesions.
However, shallow artificial neural networks based on traditional machine learning algorithms still have limited
feature extraction capabilities and cannot meet the requirements for high-precision breast lesion detection and
classification.

With the development of computer hardware and advancements in deep learning algorithms, coupled with
the powerful feature extraction and analysis capabilities of deep neural networks, deep learning has achieved
remarkable successes in various fields. Consequently, researchers have shifted from using traditional machine
learning algorithms to deep learning algorithms for automated breast cancer diagnosis. As mentioned earlier,
automated breast cancer diagnosis mainly includes lesion detection and classification, which aligns well with the
task of object detection in deep learning. Therefore, many researchers have applied deep learning object detection
methods to the automated detection of breast cancer. Yap et al. [10] used Faster R-CNN [11] for the identification
of breast lesions in ultrasound images and achieved good breast cancer detection performance through transfer
learning and multi-feature image fusion methods. In a study on breast lesion detection, Wang et al. [12] used
segmentation-based image enhancement techniques to enhance the contrast of breast ultrasound images, then input
them into a Fully Convolutional One-stage Object Detector (FCOS) [13], achieving a mean average precision (mAP)
of 90.2%. Cao et al. [14] compared the performance of five anchor-based object detection methods in detecting
lesions in breast ultrasound images, with the Single Shot MultiBox Detector (SSD) [15] network achieving the best
accuracy and Recall. Mo et al. [16] improved the preset anchor size of You Only Look Once (YOLO) V3 [17] using
clustering methods and applied it to breast ultrasound lesion detection, achieving an mAP of 89.34%. Yu et al. [18]
presented GFNet, a novel framework for breast mass detection, which integrates patch extraction, feature extraction,
and mass detection modules. GFNet demonstrates high robustness and adaptability across different imaging devices.

As previously mentioned, researchers have used various categories of object detection networks for the
automated detection of breast cancer, including Two-Stage (Faster R-CNN), One-Stage (YOLO V3), Anchor-based
(SSD), and Anchor-free (FCOS) networks. However, in past work, there has been a scarcity of comparative studies
on the performance of these different categories of object detection networks in detecting breast lesions. In this
paper, we select nine popular object detection algorithms, encompassing Two-Stage, One-Stage, Anchor-based, and
Anchor-free categories, and conduct a comprehensive comparison of their performance in breast lesion detection.
The nine object detection networks are Faster R-CNN (Two-Stage, Anchor-based), SSD (One-Stage, Anchor-based),
YOLO V3 (One-Stage, Anchor-based), RetinaNet [19] (One-Stage, Anchor-based), YOLOF [20] (One-Stage,
Anchor-based), CornerNet [21] (One-Stage, Anchor-free), FCOS, TTFNet [22] (One-Stage, Anchor-free), and
YOLOX [23] (One-Stage, Anchor-free).

2. Materials and Methods

In this section, we will introduce the datasets and object detection networks used in this study.

2.1. Datasets

This study uses data from two public datasets, BUS dataset [24] and BUSI dataset [25], with the images
from these datasets as shown in Figure 1. As shown Figure 1, we can observe that compared to BUS dataset, the
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ultrasound images in BUSI dataset have lower grayscale values and also contain more noise.
The BUS dataset from the UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain), where

images were collected using the Siemens ACUSON Sequoia C512 17L5 HD linear array sensor (8.5 MHz). BUS
dataset contains 163 breast ultrasound images with varying original size, averaging 760 × 570, and each image
includes one or more lesion areas. Of these 163 lesion images, 53 are malignant and 110 are benign. The malignant
breast images include 40 cases of invasive ductal carcinoma, 4 cases of ductal carcinoma in situ, 2 cases of invasive
lobular carcinoma, and 7 cases of other unspecified malignancies. In terms of benign breast images, there are
65 cases of unspecified cysts, 39 fibroadenomas, and 6 other types of benign lesions. All images were manually
segmented and classified by radiologists, marking the lesion areas. Both the original breast images and the annotated
images are saved in png format, and an xlsx file provides lesion type information for each image.

Figure 1. BUS and BUSI dataset images. (a,b) from BUS dataset, (c,d) from BUSI dataset.

BUSI dataset is from Baheya Hospital for Early Detection & Treatment of Women’s Cancer, Cairo, Egypt,
collected using the LOGIQ E9 and LOGIQ E9 Agile ultrasound systems. The breast ultrasound images were
gathered from 600 female subjects aged between 25 and 75 years. Initially, this dataset contained a total of 1100
images. Each image’s lesion area was manually segmented using Matlab software and classified as normal, benign,
or malignant. However, after radiologists at Baheya Hospital removed duplicate and incorrectly annotated images, a
total of 780 images remained, comprising 437 benign images, 210 malignant images, and 133 normal breast images
(without lesions). Notably, the original size of BUSI images was 1280 × 1024, but due to the presence of large
amounts of irrelevant areas in the original images, they were cropped to a size of 500 × 500 and saved in png
format.

Both BUS dataset and BUSI dataset contain accurate labels for breast lesion edge segmentation and benign-
malignant classification. However, these labels are not suitable for the labeling requirements of object detection task.
Therefore, we reprocess the labels of both BUS dataset and BUSI dataset to make them appropriate for breast lesion
detection task, as shown in Figure 2. We traverse the points of the breast lesion contours in Figure 2b to locate the
top, bottom, left, and right endpoints and then determine the top-left and bottom-right points of the lesion area and
to obtain height and width of the lesion, as depicted in Figure 2c.

Figure 2. The process of creating labels for breast lesion detection. (a) Original ultrasound images; (b) ground truth
in binary mask, yellow points represent the top-left and bottom-right corners of the ground truth; (c) represents a
bounding box made according to the yellow points.
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2.2. Deep Learning Neural Networks

Since the development of R-CNN [26], various highly accurate object detection networks based on deep
learning have emerged. Generally, object detection networks can be categorized by the number of stages into
two-stage and one-stage methods, or by the use of preset anchors into anchor-based and anchor-free methods. In this
study, we select nine currently popular object detection networks and compare their performance in breast lesion
detection tasks. The chosen networks include two-stage, one-stage, anchor-based, and anchor-free object detection
methods, with specific descriptions of these networks provided in Table 1.

Table 1. Description of object detection networks.

Model Number of Stage Anchor Setting Network Description

Faster R-CNN Two-Stage Anchor-based

Faster R-CNN introduced a Region Proposal Network to
achieve real-time detection. Efficiency is improved
through the sharing of convolutional features,
and preset anchors are used to regress the position
of the object, significantly enhancing detection
speed and accuracy.

RetinaNet One-Stage Anchor-based
RetinaNet addresses the issue of class imbalance in
object detection by introducing Focal Loss, which
focuses on samples that are difficult to classify.

SSD One-Stage Anchor-based
SSD detects objects of various sizes effectively by
predicting categories and bounding boxes on feature
maps at multiple scales.

YOLO V3 One-Stage Anchor-based

YOLO V3 can classify and locate in a single forward
pass. It introduces multi-scale detection, using
feature maps at three different scales to improve
the detection of small objects.

YOLOF One-Stage Anchor-based

YOLOF simplifies the network structure by reducing
the number of feature pyramid layers, maintaining
high detection performance. This design lowers
computational costs while increasing speed.

CornerNet One-Stage Anchor-free
CornerNet uses a corner detection method, locating
objects by detecting their top-left and bottom-right
corners.

FCOS One-Stage Anchor-free

FCOS predicts the size and center point of the object’s
bounding box directly on the feature map, offering a
straightforward method to handle objects of various
shapes and sizes.

TTFNet One-Stage Anchor-free
TTFNet uses a dense detection head and an efficient
feature fusion strategy. It maintains high detection
accuracy while significantly enhancing detection speed.

YOLOX One-Stage Anchor-free
YOLOX introduces an anchor-free design and decoupled
head, and optimizes the label assignment strategy.

During the experimentation, we substitute the backbone of some networks to further compare the performance
of different networks in breast lesion detection. We select ResNet [27], VGG [28], and DarkNet [29] as the
backbones for most of the networks.

3. Results

In this section, we will introduce the performance metrics used in our experiments, the details of the ex-
periments, and the performance results of each network. We chose the output results of the SSD network for
demonstration, as shown in Figure 3. The network draws bounding boxes in different colors based on the predicted
nature of the lesion, red for lesions predicted to be malignant and green for those predicted to be benign. The
confidence level of the prediction is displayed above the bounding box.
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Figure 3. Breast lesion detection results of SSD network. (a,c,e,g) are prediction results. (b,d,f,h) are ground truth.

3.1. Performance Metrics

In this study, we use commonly used metrics in object detection, Average Precision (AP), Average Recall
(AR), and Frames Per Second (FPS) as the performance metrics for our study.

AP represents the area under the Precision-Recall (PR) curve in object detection and is calculated based on
the following values. First, it is necessary to compute the Intersection over Union (IoU) threshold (T) between
the predicted and actual bounding boxes, as well as the confidence scores for the classification prediction of the
bounding boxes. We have,

IoU =
Area of Overlap
Area of Union

(1)

Then we have,
True Positives (TP): The prediction BBox with IoU > T and meeting the category Confidence threshold.
False Positives (FP): The prediction BBox with IoU < T and meeting the category Confidence threshold.
False Negatives (FP): The prediction BBox with IoU = 0.
Based on the TP, FP, and FN, we have,

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Based on different confidence thresholds for each category, we can plot the Precision-Recall (PR) curve,
thereby determining the AP value. By adjusting various IoU thresholds, we can calculate AP50 (T > 0.5) and AP75
(T > 0.75). AR10 refers to the average recall rate when the IoU threshold is set to T > 0.1.

3.2. Experiment Implementation

In this study, we implement all comparative networks using PaddleDetection [30]. Each network trains for
300 epochs, evaluating performance on the validation set after each epoch. The model parameters that with the best
performance on the validation set during these 300 epochs are retained as the final parameters. During the training
process, the first five epochs use model warm-up, and for the remainder of training, a cosine learning rate decay
strategy [31] reduces the learning rate to one percent of the initial rate. We apply random rotation as a preprocessing
method. The image size is 320 × 320.

We conduct model training on both the combined BUS+BUSI mixed-dataset and the single BUSI dataset.
Both data groups are divided into training, validation, and test sets in an 8:1:1 ratio. All breast ultrasound images
are resized to 320 × 320 with the learning rate set to 0.01 and the batch size set to 8, and during the training process,
we use image augmentation methods such as random rotation, random flipping, and Mosaic [32].
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3.3. Results of BUS+BUSI Mixed-Dataset

First, we evaluate the performance of object detection networks using BUS+BUSI mixed-dataset, with results
shown in Table 2. From Table 2, we observe that within the anchor-based networks, YOLOV3-res34 performs best
in terms of AP, reaching 0.637, and also leads in AP75 and AR10, indicating its advantages in accuracy. In terms
of processing speed, SSD-vgg16 and SSD-res34, with nearly 30 FPS, outperform other networks. Additionally,
SSD achieves the best result in AP50, indicating its excellent overall capabilities. Among the anchor-free networks,
YOLOX-m leads with an AP of 0.563 and shows good performance in AP50, AP75, and AR10, exhibiting a
balanced performance advantage. FCOS achieves slightly lower performance than YOLOX-m. On the other hand,
although TTFNet reaches the highest FPS (38.37), it significantly behind in terms of accuracy.

Table 2. Performance comparison of different object detection networks on mixed-dataset.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.573 0.882 0.672 0.677 14.01
RetinaNet-res50 0.564 0.869 0.619 0.655 14.87
SSD-res34 0.582 0.863 0.596 0.631 29.65
SSD-vgg16 0.608 0.931 0.666 0.691 29.85
YOLOF-res50 0.533 0.897 0.519 0.617 22.7
YOLOV3-darknet53 0.632 0.925 0.678 0.683 19.5
YOLOV3-res34 0.637 0.899 0.77 0.686 26.88

Anchor-free networks

CornerNet-res50 0.518 0.791 0.612 0.627 11.03
FCOS-res50 0.541 0.821 0.62 0.629 17.18
TTFNet 0.368 0.624 0.443 0.476 38.37
YOLOX-m 0.563 0.887 0.651 0.69 26.53

Note: Bold font indicates the best performance results.

Figure 4 presents the performance results and AP-FPS plot of each network. In Figure 4b, the closer a
network’s performance is to the top-right corner, the stronger its overall performance. Overall, the two anchor-based
object detection networks, YOLOV3 and SSD, show excellent performance, while the anchor-free networks are
slightly behind the anchor-based networks in terms of performance.

Figure 4. Networks performance results and AP-FPS plot on BUS+BUSI mixed-dataset. (a) is the performance
results of different networks, (b) is the FPS and AP scatter plot of the networks.

3.4. Results of BUSI Dataset

Next, we compare the performance of the nine networks on BUSI dataset, with results shown in Table 3.
Among the anchor-based networks, RetinaNet performs the best on BUSI dataset, achieving the highest AP and AR,
as well as the second-highest AP75, but it shows some disadvantages in network speed. YOLOV3 and SSD, which
perform well on BUS+BUSI mixed-dataset, still show excellent performance on BUSI dataset, achieving balanced
results in both accuracy and network speed. For anchor-free networks, FCOS achieves an AP of 0.841, close to the
best-performing anchor-based model RetinaNet-res50, and it achieves the best results among anchor-free networks
in AP50, AP75, and AR. However, YOLOX-m, which performs relatively well on the BUS+BUSI mixed-dataset,
has a significant decrease in performance on BUSI dataset.
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Table 3. Performance comparison of different object detection networks on BUSI.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.584 0.88 0.703 0.725 13.62
RetinaNet-res50 0.849 0.962 0.927 0.885 17.42
SSD-res34 0.813 0.939 0.924 0.845 31.4
SSD-vgg16 0.791 0.965 0.947 0.845 29.52
YOLOF-res50 0.823 0.962 0.877 0.856 23.3
YOLOV3-darknet53 0.769 0.979 0.919 0.81 19.55
YOLOV3-res34 0.791 0.966 0.95 0.825 25.52

Anchor-free networks

CornerNet-res50 0.535 0.823 0.694 0.702 11.42
FCOS-res50 0.841 0.928 0.888 0.881 18.4
TTFNet 0.394 0.658 0.485 0.526 38.11
YOLOX-m 0.578 0.853 0.695 0.714 26.14

Note: Bold font indicates the best performance results.

Figure 5 presents the performance results and AP-FPS plot of each network on the BUSI dataset. Overall,
YOLOV3 and SSD still demonstrate the most ovweall performance, similar to the results with BUS+BUSI mixed-
dataset. Although RetinaNet and FCOS show impressive performance in AP, their lower FPS affects their overall
performance.

Figure 5. Networks performance results and AP-FPS plot on BUSI dataset. (a) is the performance results of different
networks, (b) is the FPS and AP scatter plot of the networks.

3.5. Results of Generalization Performance

In medical image analysis, the generalization ability of a model is particularly important, as it directly relates
to the model’s practicality and reliability. A model with good generalization ability can adapt to a diverse range
of cases, reducing the risk of misdiagnosis and missed diagnosis, thereby enhancing the accuracy and reliability
of diagnoses. It ensures that the model accurately identifies and classifies data that differ in lesion shape, size
or appearance from the training data. Strong generalization also means that the model can adapt to images from
different devices and protocols, enhancing its application value in real clinical environments. Therefore, in this
study, we compare the generalization performance of the nine networks. We train the models using BUSI dataset
and validate them on BUS dataset, with validation results shown in Table 4.

From Table 4, we observe that FCOS achieves excellent performance in generalization, achieving the best
results in AP, AP50, and AR, and the second-best in AP50, demonstrating its strong generalization ability. RetinaNet,
which performs well on the BUSI dataset, also achieves good results, with the second-best AP. As shown in Figure 6b,
SSD approaches the top right corner, indicating excellent overall performance, achieving a balance between speed
and accuracy.
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Table 4. Performance comparison of different object detection networks training on BUSI and testing on BUS.

Model AP AP50 AP75 AR10 FPS

Anchor-based networks

Faster R-CNN-res50 0.603 0.925 0.676 0.625 7.14
RetinaNet-res50 0.835 1 0.911 0.849 10.45
SSD-res34 0.83 0.96 0.889 0.863 14.72
SSD-vgg16 0.771 1 0.94 0.817 13.63
YOLOF-res50 0.804 0.943 0.804 0.844 11.79
YOLOV3-darknet53 0.762 1 0.952 0.787 10.45
YOLOV3-res34 0.773 0.995 0.924 0.8 12.82

Anchor-free networks

CornerNet-res50 0.514 0.883 0.574 0.587 6.35
FCOS-res50 0.871 1 0.946 0.894 11.15
TTFNet 0.349 0.615 0.418 0.427 20.24
YOLOX-m 0.573 0.888 0.611 0.619 12.25

Note: Bold font indicates the best performance results.

Figure 6. Networks performance results and AP-FPS plot of generalization experiments. (a) is the performance
results of different networks, (b) is the FPS and AP scatter plot of the networks.

4. Conclusions

This study comprehensively compares the performance of nine object detection networks in breast lesion
detection, encompassing four types: two-stage, one-stage, anchor-based, and anchor-free. This range covers all
current types of object detection networks, ensuring a comprehensive and representative evaluation. We validate
model performance on two datasets and compare their generalization abilities. The results demonstrate the strengths
and limitations of different types of networks in breast lesion detection tasks. In terms of performance on a
single dataset, anchor-based networks generally outperform anchor-free networks. Notably, the SSD model, while
maintaining a high AP, also exhibits rapid detection speed, proving its practicality and effectiveness in breast cancer
detection. This also indicates that anchor-based methods have strong detection capabilities for common lesion
types in breast ultrasound images. The superior performance of anchor-based networks can be attributed to their
predefined anchor boxes, which provide better assistance in detecting objects of varying sizes and aspect ratios.
These anchor boxes serve as priors, helping the network focus on regions of interest, thereby enabling more accurate
localization and classification of lesions.

However, in the comparison of generalization performance, the anchor-free network FCOS shows superior
performance. This finding highlights the advantage of anchor-free networks in handling lesions with varying shapes
and sizes. Since the FCOS network does not rely on preset anchors, it can adapt more flexibly to targets of different
sizes, thereby performing better on new or unknown datasets. This is particularly important for breast cancer
detection, as lesion shapes and sizes can vary among patients.

Early detection of breast cancer is crucial for improving patient survival rates, and developing accurate and
rapid breast cancer auxiliary diagnostic systems is essential. In summary, this research provides valuable insights
for the early detection and diagnosis of breast cancer, offering important guidance for the development of efficient
and accurate breast cancer auxiliary diagnostic systems in the future.
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Abstract: The secondary structure of noncoding RNAs (ncRNA) is significantly
related to their functions, emphasizing the importance and value of identifying ncRNA
secondary structure. Computational prediction methods have been widely used in this
field. However, the performance of existing computational methods has plateaued in
recent years despite various advancements. Fortunately, the emergence of machine
learning, particularly deep learning, has brought new hope to this field. In this
review, we present a comprehensive overview of machine learning-based methods for
predicting RNA secondary structures, with a particular emphasis on deep learning
approaches. Additionally, we discuss the current challenges and prospects in RNA
secondary structure prediction..

Keywords: RNA secondary structure prediction; machine learning; deep learning

1. Introduction

Ribonucleic acid (RNA) is an essential substance in most living organisms and plays a nonnegligible role in
regulating proteins and biological processes [1]. The RNA molecule comprises a specific sequence of nucleotides
arranged in a 5’ to 3’ direction. Nucleotides include four kinds of bases which are adenine (A), cytosine (C), guanine
(G), or uracil (U), and pair up through hydrogen bonds to form the secondary structure [2]. Typically, each base
pairs up with only one other base, the most common examples are, the Watson-Crick base pairs (A-U and G-C)
and the wobble base pair (G-U). These base pairings often result in a nested structure, where multiple stacked base
pairs form a helix, and unpaired base pairs form loops (Figure 1a). It’s worth noting that there are three types of
special base pairings [2] commonly found in native RNA secondary structures: noncanonical base pairs (Figure 1b),
base triples (Figure 1c), and pseudoknots (Figure 1d). Noncanonical base pairs refer to base pairing other than
the Watson-Crick and the wobble base pairs, constituting around 40% of all base pairs in structured RNAs [3].
Base triples also widely exist in RNA structures, which involve three bases interacting jointly to stabilize various
RNA tertiary interactions [4, 5]. Pseudoknots [6] occur when bases from different loops pair up and then create a
non-nested structure between two separated bases. Though pseudoknots only represent a few base pairs in known
secondary structures, they play an important role in RNA function [7].

RNA has long been believed to serve only as a messenger between DNA and proteins until the discovery of
non-coding RNAs (ncRNAs). It is found that less than 2% of the human genome belongs to protein-coding regions
and the rest is transcribed into ncRNAs [8]. NcRNAs are RNAs that do not encode proteins and play functions
depending on their structures [9, 10]. Their function includes catalysis, translation, RNA modification, RNA stability,
protein synthesis, expression regulation, and protein degradation [11–16]. Moreover, they are important in various
human diseases such as cancer, diabetes, and atherosclerosis [13, 17]. Therefore, recognizing ncRNA structure
and its involvement in both normal biological processes and pathological conditions has opened new avenues
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for researches and potential therapeutic interventions.
Generally, ncRNA molecules form higher-order structures. Unlike proteins, which fold globally driven by

hydrophobic forces, RNA folding follows a hierarchical process [18]. RNA in the linear primary structure is
folded to form a secondary structure rapidly, resulting in a significant energy loss [19, 20]. Then the secondary
structure further forms the tertiary structure at a much slower speed. Though increasing amounts of abundant ncRNA
sequences are public [21], most ncRNA structures remain unknown. This structural information deficiency makes
it challenging to infer their functions, thus, gaining valid information on ncRNA structures holds great research
value. High stability and variety of secondary structures within cells contribute to the crucial role it plays in ncRNA
function [22, 23]. Therefore, even without knowing the higher-order structures, the secondary structure alone is
often sufficient for inferring function and practical applications [23].

Figure 1. The yellow, green, blue, and orange circles represent A, U, G, and C, respectively. Yellow lines represent
hydrogen bonds, and blue lines represent covalent bonds. (a) Common base pair. (b) Noncanonical base pair. (c)
Base triple. (d) Typical pseudoknot.

Since the 1970s, a spring of prediction methods has been developed, and computational methods have become
the dominant approach for RNA secondary structure prediction. However, the development of both the accuracy
and processing speed have stagnated in recent years. Machine learning (ML)-based approaches emerge to address
these limitations. Initially, ML-based prediction methods were overlooked due to their simple models and limited
accuracy resulting from data scarcity. However, with the rise of RNA datasets and advancements in deep learning
(DL), ML methods now surpass traditional approaches in accuracy and applicability, which paves the way for the
development of next-generation RNA structure prediction tools [24].

This paper focuses on reviewing methods for predicting RNA secondary structures based on ML and offers a
detailed discussion of their pros and cons. Though other previous reviews have covered RNA secondary structure
prediction [24–27], there is a lack of reviews focusing especially on DL techniques. This review aims to assist
researchers in understanding the current status of RNA secondary structure prediction based on ML and DL while
gaining insight into the existing challenges and prospects in this area.

2. Traditional Prediction Methods

RNA secondary structure prediction has been advancing over the past two decades with a variety of methods.
Traditional prediction methods include wet-lab experimental experiments and computational predicting methods by
algorithm (Figure 2). For wet-lab experiments, Nuclear Magnetic Resonance (NMR) [28] and X-ray crystallography
[29] are the two most accurate methods, but they are time-consuming, costly, and limited in applicability. Chemical
probing [30, 31] or enzymatic [32, 33] with next-generation sequencing [34, 35] are mainly suitable for in vitro
studies but not for in vivo conformation. Only a small fraction of known ncRNAs have been experimentally
determined up to now [36], thus, computational methods are accessible alternatives for predicting RNA secondary
structures. Comparative sequence analysis [37, 38] is considered the most accurate computational method, which
relies on the conservation of RNA secondary structures across evolution compared to primary sequences and
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identifies base pairs that covary to maintain Watson-Crick and wobble base pairs [39]. Several algorithms have been
designed to improve the performance [40–45] and process pseudoknots [46–48]. However, comparative sequence
analysis requires a large set of homologous sequences as a basis [49]. When homologous sequences are lacking,
another method, namely the score-based method, has been widely used in this field. These methods assume that
the native RNA structure has a minimum or maximum total score, transforming the prediction problem into an
optimization problem. The scoring schemes for these methods [50–53] typically involve multiple parameters and
are based on free energy calculations using the nearest neighbor model. Several methods have been developed to
predict structures with pseudoknots [54–59]. However, accurately predicting special base pairs in RNA structures
remains a challenging task. In addition, the folding mechanism hypotheses they rely on may not always hold, and
the computational cost is extremely high for longer RNA sequences.

Figure 2. Categories of RNA secondary prediction methods.

3. ML-Based Methods

We classify ML-based RNA secondary structure prediction methods into three categories (Figure 2), namely
ML-based score scheme, ML-based preprocessing and postprocessing, and ML-based prediction process, partly
referencing the method from our previous paper [24]. These categories are defined based on the subprocess ML
applied, and their advantages and limitations are summarized in Table 1. All these methods are trained using
supervised learning [60]. These models are trained to learn functions that map input features (such as free energy
parameters, encoded RNA sequences, sequence patterns, and evolutionary information) to outputs (including
continuous values such as free energy or classification labels such as paired or unpaired bases) by adjusting their
parameters using known data. The supervised training process enables ML-based methods to learn patterns from the
available data, empowering them to make predictions on unseen data. When a new input is provided, the model can
assign a corresponding label or predict a corresponding value based on the learned mapping function [60].

Table 1. Advantages and Limitations of Three Categories of ML-based RNA Secondary Structure Prediction Methods.

Categories Advantages Limitations

ML-based score
scheme

Provide available parameters for the
traditional prediction algorithms to im-
prove the prediction accuracy.

Limited prediction accuracy, particu-
larly for noncanonical base pairs, base
triples, and pseudoknots.

ML-based
preprocessing and

postprocessing

Simplify the prediction process and
compatible with traditional prediction
algorithms.

The prediction accuracy relies heav-
ily on the intermediate RNA secondary
structure prediction model.

ML-based prediction
process

Greatly improve the speed and accuracy
of prediction, and can predict noncanon-
ical base pairs, base triples, and pseudo-
knots.

Poor interpretation, high computing
costs in model training, and not guaran-
teed generalization ability on new types
of RNA.

https://doi.org/10.53941/aim.2024.100006 53 of 82

https://doi.org/10.53941/aim.2024.100006


Zhao et al. AI Med. 2024, 1(1), 6

3.1. ML-Based Score Scheme

ML-based score scheme aims to train models capable of generating new score schemes, replacing the traditional
score scheme (Figure 3). While ML-based methods enhance accuracy through parameter estimation in score schemes,
structural prediction remains an optimization problem, where the estimated scores scheme is used for evaluating
the potential conformations. ML-based score schemes can be categorized into three types (Figure 2) based on
the meaning of scores: the free energy parameter-refining approach, the weighted approach, and the probabilistic
approach. The models based on these approaches are detailed in the Supplementary Table S1.

Figure 3. Framework of ML-based score scheme methods. RNA sequences are input into the ML model, and the
scoring scheme evaluates the scores of potential conformations and picks out the optical results to output the RNA
secondary structures.

3.1.1. ML-Based Free Energy Parameter Refining

Since the publication of the free energy theory, the free energy-focused approach has been widely adopted in
score schemes, particularly in assigning free energy values to elements of RNA structures. Among these, Turner’s
NN model [53] is widely accepted due to its accuracy in approximating free energy. However, determining the
multiple thermodynamic parameters in the NN model requires many optimal melting experiments, which are
labor-intensive and time-consuming [61, 62]. Then ML techniques have been employed to refine parameters in the
energy model, which utilize models to score and provide more abundant features based on known RNA secondary
structure data or thermodynamic data. Xia et al. [50] used known thermodynamic data to train a linear regression
model for inferring thermodynamic parameters. However, certain structural element parameters are predetermined
prior to the computation of other parameters, thereby constraining the potential options for the entire parameter set.
To address this limitation, Andronescu et al. [63] put forward a constraint generation approach that employs various
constraints to ensure that the energy of reference structures is the lowest among other alternative structures. The
team trained this model on a mass of thermodynamic and structural data to infer free energy parameters, achieving a
7% higher F-measure than standard Turner parameters. Further, the research team proposed a Boltzmann-likelihood
model and loss-augmented max-margin constraint generation model using a larger set of data to impose constraints
on parameters [64]. In addition, it is worth noting that the parameters derived from the above approaches are
thermodynamic, so they can be directly applied in algorithms embedded within the same energy model, examples
are, RNA folding kinetics simulation [65] and miRNA target prediction [66].

3.1.2. ML-Based Weighted Methods

ML-based free energy parameter refining approaches successfully improve the accuracy of prediction, however,
those methods can only be alternatives for wet lab experiments aimed at obtaining energy parameters. Thus,
weighting methods were proposed, of which the scoring scheme is independent of the free energy assumption,
treating the parameters of the RNA structure as weights rather than free energy changes. Zakov et al. [67]
utilized a discriminative structured-prediction learning framework along with an online learning algorithm and
significantly expanded the number of weights to around 70,000. The authors achieved this by investigating a
wider range of structural elements with more extensive sequential contexts and employing thousands of training
datasets. Then ContextFold as a substantial accuracy enhancement model is introduced based on these resulting
weights [67]. Akiyama et al. [68] improved a structured support vector machine (SSVM) by the thermodynamic
approach to obtain a large set of weights for detailed structural elements. To mitigate overfitting, they applied
L1 regularization. Subsequently, they developed MXfold by merging the ML-based weights with experimentally
determined thermodynamic parameters, yielding better performance than models solely based on thermodynamic
parameters or ML-based weights. Sato et al. improved the model as MXfold2 [69], which uses CNN to calculate the

https://doi.org/10.53941/aim.2024.100006 54 of 82

https://doi.org/10.53941/aim.2024.100006


Zhao et al. AI Med. 2024, 1(1), 6

folding scores of RNA sequences, and applies dynamic programming (DP) and the max-margin framework to predict
the structure. The max-margin framework includes structural hinge loss function, thermodynamic regularization,
and L1 regularization, ensuring that the folding scores are closely aligned with the free energy calculated using
the thermodynamic parameters. MXfold2 displayed robust predictions in both sequence-wise and family-wise
cross-validation. These studies indicate that weighted approaches based on ML can break through the limitations
of the thermodynamic parameter approach. They separate structure prediction from energy estimation, making it
advantageous for both tasks. In this case, weighted approaches can achieve more satisfying results. However, a
drawback is that the learned weights lack explainability due to the inherent black-box nature of ML algorithms.
Therefore, the obtained scores cannot be directly used for computations such as the partition function, centroid
structures, or base pair binding probabilities, among others.

3.1.3. ML-Based Probabilistic Methods

As ML technologies improve, stochastic context-free grammars (SCFGs) appear as a significant method for
probabilistic approaches for RNA structure prediction [70–74]. SCFGs extend traditional context-free grammars
(CFGs) by assigning probabilities to production rules, allowing them to generate structures with different proba-
bilities. It provides a framework for generating diverse possible structures and estimating their probabilities. In
an SCFG model, each production rule in the grammar is associated with a probability parameter that assigns a
probability to each derived sequence. It typically estimates probability parameters by learning RNA sequence
datasets with known secondary structures, eliminating the requirement for external laboratory experiments [73].
The application of SCFGs for tRNA secondary structure prediction was first introduced by Sakakibara et al. [70].
They used an expectation-maximization (EM) method to learn the probability parameters. Knudsen and Hein [72]
further enhanced the SCFG model by incorporating evolutionary information, leading to the development of the
robust and practical tool Pfold [72].

Sato et al. [75] proposed a nonparametric Bayesian extension of SCFGs using the hierarchical Dirichlet
process (HDP). Traditional SCFGs are required to define a fixed number of generation rules and parameters
in advance, whereas non-parametric Bayesian extension allows SCFGs to adaptively learn the complexity and
structure of the model. Thus, it is flexible to different data and identifies an optimal RNA grammar from the
training dataset expressively and adaptably. To leverage the abundance of RNA sequences with unknown structures,
Yonemoto et al. [76] proposed a semi-supervised learning algorithm to improve prediction accuracy. This algorithm
determines probability parameters in a probabilistic model that combines SCFG and a conditional random field,
enabling the incorporation of both labeled and unlabeled data. Even though, the probabilistic approach, such as
SCFG, cannot fully take the place of Minimum Free Energy (MFE) methods, since the accuracy of the best SCFG
models still falls short of the top-performing free energy-based models. Additionally, SCFGs have limitations in
describing certain RNA structures, such as those containing special base pairs that deviate from the conventional
Watson-Crick base pairing. These constraints highlight the importance of considering both probabilistic and free
energy-based approaches to achieve more accurate and comprehensive RNA structure predictions.

Do et al. [77] proposed a new method CONTRAfold without physics-based models. Novelly, CONTRAfold
applies the conditional log-linear model (CLLM) to determine probability parameters that effectively differentiate
correct RNA structures from incorrect ones. CLLM is a flexible probabilistic ML model that allows easy parameter
estimation and incorporation of any chosen features into the model, providing a framework for capturing complex
relationships between input features and target variables. Compared to previously available probabilistic models,
CONTRAfold reaches the highest accuracy in single-sequence RNA structure prediction. However, CLLM is
computationally slower than SCFGs, limiting its application to large-scale training datasets. Since CLLM imposes
fewer structural constraints on the output sequence, when encountering sequences with specific base pairs, it
potentially leads to the possibility of generating false RNA structures. In addition, the estimated parameters lack
explicit biological interpretation due to its black-box feature.

3.2. ML-Based Preprocessing and Postprocessing

ML can be applied in preprocessing to simplify the prediction process (Figure 4). Hor et al. [78] introduced
a tool based on support vector machine (SVM) that aims to choose the most effective prediction method. They
believe that different RNA sequences possess distinct features so that specific prediction methods perform better
for one RNA sequence. By utilizing SVM, the tool can identify the prediction method that is likely to yield
the best results for a given RNA sequence. Similarly, based on the assumption that folding rules differ from
RNA sequences, Zhu et al. [79] put forth an SCFG model to identify the most probable folding rules for an
RNA sequence ahead of the prediction process. By doing so, the accuracy of the prediction can be improved.
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Additionally, processing long RNA sequences can be costly, time-consuming, and complicated. To solve this
problem, Zhao and colleagues [80] designed a DL-based model RNA-par using transfer learning. RNA-par splits
RNA sequence into several independent fragments (i-fragments) to improve prediction performance. RNA-par
consists of a 4-layer 1D-CNN block for extracting sequence features, a Bi-LSTM block capturing information from
both sequences, and a 2-layer ResNet block acting as prediction head to generate the outputs i-fragments. Since
i-fragments are shorter sequences, RNA-par makes it convenient for the following prediction process.

Figure 4. Framework of preprocessing and postprocessing. To simplify the prediction process in the ML-based
prediction model, the preprocessing model processes RNA sequences into other forms of data, and the postprocessing
model transcript outputs into RNA secondary structures.

ML is also used in postprocessing to reach a better result. Since various methods yield multiple structures
for an RNA sequence, postprocessing models can be utilized to determine the most probable structures among the
outcomes (Figure 4). Haynes et al. [81] combined ML with graph theory to represent RNA graphical structures
using trees, where edges represent helices and vertices represent bulges or loops. Using graphical invariants as input
features, a multilayer perceptron (MLP) model is trained to identify whether the result is an RNA structure. This
approach enables the ML model to distinguish between structures that are likely to represent RNA structures and
those that are not. Additionally, an assumption from Koessler et al. [82] indicates that a larger one is formed when
two smaller RNA secondary structures bond together. They extract a feature vector from the merged trees and apply
it to an MLP model to predict the probability of an RNA-like structure. By leveraging this MLP model, they were
able to estimate the likelihood of a given structure resembling an RNA-like structure. Details of above models are
summarized in Supplementary Table S2.

3.3. ML-Based Predicting Process

ML techniques can be utilized as end-to-end prediction approaches or integrated with other algorithms as
filters or optimizers. The models based on both approaches are detailed in the Supplementary Table S3.

3.3.1. End-To-End Approaches

End-to-end approaches usually directly predict the secondary structure from the RNA sequence without inter-
mediate steps or external information (Figure 5). They aim to capture the inherent structure-sequence relationship
in training sample, and learn the mapping between the sequence and its secondary structure in a single integrated
model.

Figure 5. Framework of end-to-end approaches. End-to-end approaches directly predict secondary structures from
RNA sequences without intermediate steps or external information.

Built upon Nussinov and Jacobson’s hypothesis [46], ML techniques were first introduced to RNA secondary
structure prediction by Takefuji et al. [83]. They used a system of interactional neurons to obtain a near-maximum
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independent set (MIS) from an adjacent graph representing base pairs. To improve this work, Qasim et al. [84]
built a new MLP model with h neurons in the hidden layer to obtain MIS, and its activation function is based on
Kolgomorov’s theorem (h representing the number of possible base pairs in an RNA sequence). In other aspects,
Liu et al. [85] considered the energy contribution of base pairs and employed a Hopfield neural network (HNN) to
get the MIS. Apolloni et al. [86] enhanced computational speed and applied mean-field approximation in both the
instant resolution and learning phases, slightly enlarging the input RNA length for this approach. Unfortunately,
HNN was limited by its susceptibility to local minima, so Steeg and Evan [87] utilized mean field theory (MFT)
networks coupled with an objective function and biological constraints to identify the optimal structure. In this
method, MFT receives four types of RNA bases that are encoded in a one-hot fashion and outputs a CT-like table.

However, since ML-based models are limited to processing tRNAs only due to the lack of data, DL techniques
are thriving to break through the challenges. Singh et al. [80] proposed SPOT-RNA, the first end-to-end DL model
for RNA secondary structure prediction. SPOT-RNA turns sequences into CT tables and employs ultra-deep hybrid
networks consisting of ResNets and Bi-BLSTMs. ResNets obtain the contextual information while Bi-BLSTMs
capture dependencies between distant nucleotides in the RNA sequence. SPOT-RNA has an outstanding performance
on benchmark datasets compared to score-based methods and SCFG-based methods. The same team later introduced
the SPOT-RNA2 model [88], which incorporated evolution-derived sequence profiles and mutational coupling,
outperforming the model SPOT-RNA. Furtherly, Fu and colleagues [89] introduced a special model UFold which
converts the sequence into an image of all possible base pairs, and processes through U-net and a 1D-convolution to
generate contact scores between bases. Unlike other models, it innovatively abandons raw sequences but adopts
a 3D vector analogous to an image as input, making the model fully convolutional to achieve higher efficiency
and ability to process pseudoknots. Another DL model, E2Efold, put forward by Chen et al. [90], consists of a
transformer-based deep model and a multilayer network based on an unrolled algorithm. E2Efold takes the RNA
sequence as input, employs the deep model to encode the sequence information, and then the multilayer network to
filter the output. One of the advantages of E2Efold is its ability to process longer RNA sequences, including those
large molecules with complex structures. It is also able to capture non-local interactions in the sequence and take
these relationships into account when generating secondary structures. However, E2Efold suffers from a severe
overfitting, and generalized on unseen RNAs.

Besides primary sequences, DL models can be combined with other information. Calonaci et al. [91] trained
an ensemble model that combines co-evolutionary data (DCA), SHAPE data, and RNA sequence data. It has an
MLP subnetwork based on DCA data and a CNN subnetwork based on SHAPE data for predicting penalties, then
its folding module generates structures using penalties and RNA sequences.

3.3.2. Hybrid Approaches

Hybrid approaches that combine ML models with other methods have been explored for predicting RNA
secondary structure prediction. One of these approaches combined ML models with filters to predict a possible
structure and another is to hybrid ML models with optimization methods. The framework is shown in Figure 6.

Figure 6. Framework of hybrid approaches. One of the hybrid approaches combines ML models with filters to
predict a possible structure, the other combines ML models with optimization methods.

ML Filter Combined Methods

For these methods, they typically include an ML model and a filter in the process to achieve the output.
Bindewald and Shapiro [42] integrated the ML model with a filter to reach the consensus structure of a set of aligned
RNAs. The model gets the possibility score for each pair of alignment columns by employing a hierarchical network
of k-nearest neighbor models. Filters with rules of native RNA structures constrain the result of the ML model to
get outputs. Wu et al. [92] and Lu et al. [93] regarded predicting structure as a sequence-labeling problem, and
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they predicted the state of bases by Bi-LSTM and applying a rule-based filter to cope with controversial pairings.
Another innovative model DpacoRNA [94] used Bi-LSTM as a structured filter and employed a parallel ant colony
optimization method to hunt for the maximum probable structures. A recent study [95] constructed an composite
network that integrates Bi-LSTM [96], Transformer [97], and U-Net [98] to calculate pairwise scores between bases.
Utilizing four established rules, the network constructs a filter to discern potential RNA structures.

ML Optimization Combined Methods

In these approaches, the ML model finds the relationship between each base or each pair of bases, and the
optimization method picks out the optimal structure. CNNFold model, published by Booy et.al [99], consists of
multiple residual blocks and a readout layer post-processing to predict a score matrix for all possible pairings. They
also developed an algorithm called Argmax post-processing converting the score matrix into the best secondary
structure. It is worth noting that CNNFold and its variants can predict structures with pseudoknots well. Similar to
CNNFold, Liu’s group [100] proposed a model combined with DL and DP, that predicts the status distribution of
each base by the CNN model and finds the most probable structure using the DP algorithm. To improve the result,
they replaced the CNN with the Bi-LSTM model integrated with another optimization algorithm [101]. Willmott
et al. [102] adopted the SHAPE-directed method (SDM) to predict optimal structure rather than developing a
new optimization model, meanwhile, they trained a Bi-LSTM model that generates SHAPE-like data of an RNA
sequence as the inputs for SDM. Recently, Chen and Chan [103] proposed a DL-based model, REDFold, which
utilizes the UFold [89] architecture. Its encoder accepts a 2D contact matrix as input, while the decoder yields a
score map. They employ constrained optimization instead of DP to identify the optimal structure, thereby enabling
their model to predict non-nested folding patterns.

4. Databases

In ML-based RNA structure prediction research, access to comprehensive and reliable structural data is
essential for model training and performance evaluation. Generally, the quantity and quality of training data directly
influence the learning ability and prediction accuracy of an ML-based model. A rich set of training samples helps
models capture a more comprehensive range of RNA structural features and enhances its robustness when faced
with unseen data. In addition, the representativeness of the database is vital. A sample containing various types of
RNA secondary structures enables the model to better understand the complexity of RNA structures.

Several databases have been developed to provide researchers with extensive resources for studying RNA
sequences and structures. Among these, some databases offer a broad spectrum of RNA data (Such as Comprehensive
Databases), including diverse species and structural conformations, while others focus on specific aspects or types
of RNA (Such as Specialized Databases).

4.1. Comprehensive Databases

Comprehensive databases are large, general-purpose collections of RNA structures that include a wide variety
of RNA species and structural conformations. These databases often contain a large number of experimentally
obtained RNA structures or computational predictions, making them useful for ML-based RNA structure prediction.
RNA STRAND [104] is a database that provides a diverse collection of RNA sequences, containing 4,666 RNA
samples. It is designed to offer structural and sequence information for RNA research. RCSB Protein Data Bank
(PDB) [105] is an authoritative database for biomolecular structures, providing 4,962 RNA structures. It primarily
includes tertiary structures obtained through experimental methods, such as X-ray crystallography and nuclear
magnetic resonance, which offer a solid foundation for analyzing the conformation of RNA. bpRNA-1m [106] is
a large-scale database, offering 102,348 RNA structures, which are mainly constructed using a novel annotation
tool called bpRNA. While the accuracy of secondary structures provided by bpRNA-1m is relatively lower, its vast
data volume makes it valuable for ML-based RNA secondary structure prediction models. RNAcentral [107] is the
largest RNA secondary structure database, containing secondary structures obtained by computational methods
R2DT [108].

4.2. Specialized Databases

The tRNAdb 2009 database [109] is one of the earliest specialized databases, which focuses on the structures
and functions of tRNA. It provides detailed tRNA sequences and their corresponding structural information. The
rRNA database [110] is dedicated to structural data of ribosomal RNA (rRNA). The tmRDB database [111] focuses
on post-transcriptionally modified RNA (tmRNA), which plays an important role in bacteria, participating in protein
synthesis and quality control. In addition, there are also some specialized structure databases. These databases
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typically focus on one specific type of RNA structure, such as loop [112], pseudoknot [113], or non-canonical
base pair [114]. In addition, based on these specialized databases, benchmark datasets such as ArchiveII [115]
and RNAStralign [116] have been established. They contain various types of RNA sequences with high sequence
diversity, making them especially suitable for training and evaluating the performance of RNA structure prediction
models.

4.3. Other Important Databases

In addition, there are other important databases such as Rfam [117] and NNDB [53]. Rfam is a widely
used RNA family database, which provides classification information including consensus secondary structures
and a covariance model for each RNA family. NNDB provides crucial thermodynamic parameters for modeling
the stability of RNA secondary structures, especially when calculating RNA folding energies. NNDB provides
foundational data for machine learning models, helping improve the accuracy of RNA secondary structure prediction.

5. Discussions

As it is known to all, the abundance of transcripts is widely recognized as a valuable indicator for identifying
transcripts of interest in different conditions, while understanding RNA structure is crucial for unraveling their
functional mechanisms. A highly accurate RNA structure prediction method also has implications for various
downstream investigations, including but not limited to, simulations of folding dynamics [118], the detection of
ncRNAs [64, 119, 120], applications in oligonucleotide [121, 122] or drug design [123–127], and assessment of
hybridization stability [128]. Even more, RNA secondary structure prediction also serves as a valuable tool in
studying viruses, an example is, the SARS-CoV-2 virus [129, 130].

5.1. Pros of ML-Based Methods

ML-based methods offer several advantages over comparative sequence analysis and traditional score-based
methods. Firstly, rather than rely on intricate biological mechanisms, ML-based methods tend to leverage information
from diverse data types, bypassing performance limitations imposed by specific mechanism hypotheses. ML-based
methods are also easy to integrate with known biological mechanisms, providing a flexible framework for analysis.
Having approaches to the mass of available datasets, models knowing less knowledge of biological mechanisms
usually outperform those models dependent on biological mechanisms. This infers the guess that current biological
mechanisms of RNA folding might be faulty. Secondly, ML-based methods, particularly end-to-end DL models,
eliminate the need to consider base matching rules. In traditional score-based methods, they utilize complex
algorithms to meet base matching rules, which causes high time complexity, leaving difficulties for them to improve.
In contrast, end-to-end DL models [80] can be trained to predict all base pairs in RNA structures without these rules,
despite whether these base pairs are associated with secondary or tertiary interactions. Thirdly, ML-based methods
offer considerable flexibility compared to traditional methods. The input data for ML models are various, no matter
whether they are one-dimensional or multidimensional, homogeneous or heterogeneous, features extracted from the
data or encoded bases, matrixes, or diagrams. Similarly, the outputs of ML models can also vary, including CT
tables, nucleotide states, labeled sequences, or free energy values. ML models can be constructed using a diverse
array of techniques, ranging from simple Hopfield networks to complex ensemble DNNs. Additionally, similarly to
tasks in Natural Language Processing, RNA secondary structure prediction can also benefit as a downstream task
by utilizing representations obtained from pre-trained foundation models [131–133] as inputs, thereby enhancing
the accuracy of the predictive model’s structure predictions. Lastly, end-to-end prediction methods exhibit fast
runtime once ML models are trained. Outperformed the DP algorithm, the time complexity of ML models remains
independent of the input scale, providing potential capacities for processing long RNA sequences. In summary,
ML-based methods offer advantages such as flexibility, independence from base matching rules, and fast runtime,
making them a promising approach for RNA structure prediction.

5.2. Remaining Challenges and Prospects

Though RNA secondary structure prediction methods using ML techniques are considered state-of-the-art in
terms of prediction performance across various measures, there are still some issues needed to be addressed. To
begin with, there is a need to further enhance the accuracy of predictions. Surveys [69, 88] show that there is a long
way to go in improving the accuracy of RNA secondary structure prediction methods. On one hand, since RNA
structures unpredictably vary in different cellular environments [134], multiple structure options instead of the most
possible one should be considered when analyzing input sequences to gain predictions is worthy of consideration.
On the other hand, combining an ML-based method with an optimization approach shows promise in enhancing
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prediction performance. ML-based methods can leverage their ability to learn complex patterns from data and make
accurate predictions while optimization methods can refine and optimize the predicted structures to align with known
structural constraints and principles. This combination offers a synergistic approach that combines the strengths of
both paradigms, showing its potential for future development. ML-based prediction of RNA secondary structures
relies on capturing the interactions between distant nucleotides, however, when dealing with long RNA sequences,
getting these long-range interactions within RNA sequences can be a challenge. Meanwhile, training a large-scale
inputs ML model demands impractical computational resources. To face this sequence length limitation, striking
a balance between computational efficiency and capturing long-range interactions is considerable. Innovative
approaches such as hierarchical modeling, integration of experimental data, and leveraging parallel and distributed
computing resources are expected solutions to develop. Furthermore, numerous traditional approaches disregard
special base pairs to minimize the occurrence of false positives and reduce computational complexity [57, 135].
Though certain methods can process structures with non-canonical base pairs [136] or pseudoknots [48] none
of them can accurately predict both simultaneously, even ML-based methods suffer limited accuracy. Therefore,
finding solutions for predicting special base pairs is an inevitable future trend. Overfitting is another critical concern
for ML-based RNA secondary structure prediction models, particularly for DL models [74]. Overfitted models tend
to perform well on RNAs that are structurally similar to training data but poor on structure-dissimilar ones. Instead
of truly learning the folding mechanism, these models often end up memorizing the secondary structure patterns
present in the training data. Although DL-based methods employ various techniques to mitigate overfitting, such as
regularization [91], constraint addition [90], dataset enlargement [80], or integration of Turner’s nearest neighbor
free energy parameters, concerns regarding overfitting persist.

6. Conclusion

Understanding RNA structure is crucial for comprehending biological processes, and the prediction of RNA
secondary structure remains a prominent topic in the fields of computation and biology. Though ML techniques
have significantly enhanced the accuracy, applicability, and computational speed of the prediction process, more
sophisticated ML models and DL technologies are needed to facilitate the development of a new generation of RNA
secondary structure prediction tools with improved accuracy and computational efficiency.
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26. Fallmann, J.; Will, S.; Engelhardt, J.; Grüning, B.; Backofen, R.; Stadler, P.F. Recent advances in RNA folding.
J. Biotechnol. 2017, 261, 97–104.

27. Seetin, M.G.; Mathews, D.H. RNA structure prediction: An overview of methods. Methods Mol. Biol. 2012,
905, 99–122.
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45. Tahi, F.; Gouy, M.; Régnier, M. Automatic RNA secondary structure prediction with a comparative approach.
Comput. Chem. 2002, 26, 521–530.

46. Nussinov, R.; Jacobson, A.B. Fast algorithm for predicting the secondary structure of single-stranded RNA.
Proc. Natl. Acad. Sci. USA 1980, 77, 6309–6313.

47. Engelen, S.; Tahi, F. Tfold: Efficient in silico prediction of non-coding RNA secondary structures. Nucleic
Acids Res. 2010, 38, 2453–2466.

48. Bellaousov, S.; Mathews, D.H. ProbKnot: Fast prediction of RNA secondary structure including pseudoknots.
RNA 2010, 16, 1870–1880.

49. Burge, S.W.; Daub, J.; Eberhardt, R.; Tate, J.; Barquist, L.; Nawrocki, E.P.; Eddy, S.R.; Gardner, P.P.; Bateman,
A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013, 41, D226–D232.

50. Xia, T.; SantaLucia, J.; Burkard, M.E.; Kierzek, R.; Schroeder, S.J.; Jiao, X.; Cox, C.; Turner, D.H. Thermody-
namic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick
base pairs. Biochemistry 1998, 37, 14719–14735.

51. Mathews, D.H.; Sabina, J.; Zuker, M.; Turner, D.H. Expanded sequence dependence of thermodynamic
parameters improves prediction of RNA secondary structure. J. Mol. Biol. 1999, 288, 911–940.

52. Andronescu, M.; Condon, A.; Turner, D.H.; Mathews, D.H. The determination of RNA folding nearest
neighbor parameters. Methods Mol. Biol. 2014, 1097, 45–70.

53. Turner, D.H.; Mathews, D.H. NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure. Nucleic Acids Res. 2010, 38, D280–D282.

54. Bon, M.; Micheletti, C.; Orland, H. McGenus: A Monte Carlo algorithm to predict RNA secondary structures
with pseudoknots. Nucleic Acids Res. 2013, 41, 1895–1900.

55. Reeder, J.; Giegerich, R. Design, implementation and evaluation of a practical pseudoknot folding algorithm
based on thermodynamics. BMC Bioinform. 2004, 5, 104.

56. Dirks, R.M.; Pierce, N.A. A partition function algorithm for nucleic acid secondary structure including
pseudoknots. J. Comput. Chem. 2003, 24, 1664–1677.

57. Rivas, E.; Eddy, S.R. A dynamic programming algorithm for RNA structure prediction including pseudoknots.
J. Mol. Biol. 1999, 285, 2053–2068.

58. Sato, K.; Kato, Y. Prediction of RNA secondary structure including pseudoknots for long sequences. Brief.
Bioinform. 2021, 23, bbab395.

59. Poolsap, U.; Kato, Y.; Akutsu, T. Prediction of RNA secondary structure with pseudoknots using integer

https://doi.org/10.53941/aim.2024.100006 62 of 82

https://doi.org/10.53941/aim.2024.100006


Zhao et al. AI Med. 2024, 1(1), 6

programming. BMC Bioinformatics 2009, 10, 1–11.
60. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349,

255–260.
61. Lorenz, R.; Bernhart, S.H.; Siederdissen, C.H.Z.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA

Package 2.0. Algorithms Mol. Biol. 2011, 6, 26.
62. Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: web servers for RNA secondary

structure prediction and analysis. Nucleic Acids Res. 2013, 41, W471–W474.
63. Andronescu, M.; Condon, A.; Hoos, H.H.; Mathews, D.H.; Murphy, K.P. Efficient parameter estimation for

RNA secondary structure prediction. Bioinformatics 2007, 23, i19–i28.
64. Washietl, S.; Will, S.; Hendrix, D.A.; Goff, L.A.; Rinn, J.L.; Berger, B.; Kellis, M. Computational analysis of

noncoding RNAs. Wiley Interdiscip. Rev. RNA 2012, 3, 759–778.
65. Tang, X.; Thomas, S.; Tapia, L.; Giedroc, D.P.; Amato, N.M. Simulating RNA folding kinetics on approximated

energy landscapes. J. Mol. Biol. 2008, 381, 1055–1067.
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Abstract: Low-dose computed tomography (LDCT) denoising is an important 
topic in CT image research. Compared with normal-dose CT images, LDCT can 
reduce the radiation dose of X-rays, decreasing the radiation burden on the human 
body, which is beneficial to human health. However, quantum noise caused by low-
dose rays will reduce the quality of CT images, thereby decreasing the accuracy of 
clinical diagnosis. In recent years, deep learning-based denoising methods have 
shown promising advantages in this field. Researchers have proposed some 
optimized models for low-dose CT image denoising. These methods have enhanced 
the application of low-dose CT image denoising from different aspects. From the 
perspective of experimental research, this paper investigates and evaluates some top 
deep learning models proposed in the field of low-dose image denoising in recent 
years, with the aim of determining the best models and training strategies for this 
task. We conducted experiments on seven deep learning models (REDCNN, 
EDCNN, QAE, OCTNet, UNet, WGAN, CTformer) on the AAPM dataset and the 
Piglet dataset. Our research shows that UNet has the best denoising effect among 
the models, obtaining PSNR = 33.06 (AAPM dataset) and PSNR = 31.21 (Piglet 
dataset), and good generalization capacity is also observed. However, UNet has a 
large number of parameters, and the time it takes to process an image is about 8 ms, 
while EDCNN takes about 4.8 ms to process an image, and its average PSNR is 
ranked second after UNet. EDCNN strikes a balance between denoising 
performance and processing efficiency, making it ideal for low-dose CT image 
denoising tasks.  

Keywords: deep learning; low dose CT; image denoising; convolutional neural 
network 

1. Introduction

Computed tomography imaging system, as a non-invasive imaging device, has been widely applied in 
medical diagnosis and treatment [1]. However, excessive CT scans may cause some cancers and diseases, towing 
to the effect of the radiation dose [2,3]. Therefore, in clinical diagnosis, it is advocated to adhere to the ALARA 
(As Low As Reasonably Achievable) principle [4], that is, to minimize the damage of X-rays to the human body 
on the premise of ensuring that the quality of CT images meets the diagnostic needs. However, during low-dose 
imaging, the radiation dose will affect the density distribution of X-ray photons, which will increase quantum 
noise, causing noise and stripe artifacts in the reconstructed image, and further, will lead to disconnected edges, 
smooth the target subtle structures and lack of X-ray photons resulting in low-contrast visual effects, impairing the 
quality of CT images and affecting the accuracy of clinical diagnosis. Since Naidich et al. [5] first proposed the 
concept of low-dose CT (LDCT) denoising in 1990, the issue of effectively suppressing noise and artifacts in 



Zhao et al. AI Med. 2024, 1(1), 7 

https://doi.org/10.53941/aim.2024.100007 68 of 82 

LDCT images has attracted much attention. Researchers have continuously optimized the design scheme from 
different perspectives and have achieved some outstanding results [6–12]. 

Early in the field of LDCT image denoising research, some studies focused on applying denoising techniques 
directly to the raw sinogram data [13,14]. The sinogram denoising algorithm [15,16] relies on the projection data 
and uses the characteristic that noise obeys the Poisson distribution in the projection data to eliminate the noise in 
the projection data [17]. The iterative reconstruction algorithms operate on raw data and reconstructed CT image 
[18,19]. These methods transfer the raw data between the image domain and the projection domain multiple times 
and each time update and modify the results to obtain clear CT images. In practice, raw data from commercial 
scanners are difficult to obtain. Therefore, many studies directly denoise the reconstructed CT images [20,21]. 
These methods do not require raw data and can be easily integrated into the workflow. These methods are usually 
based on techniques such as filtering [22,23], wavelet transform [24], dictionary learning [25], etc, to improve 
image quality and reduce the impact of noise. Sparse representation and non-local means have been applied to 
remove noise from LDCT images [8,26]. The state-of-the-art Block Matching 3D (BM3D) [27] is also employed 
in multiple studies to perform this task with successful results [28]. 

In recent years, deep learning methods have achieved advanced performance in LDCT image denoising [29–32]. 
Deep residual networks and convolutional Neural networks (CNN) [33] are early applications of LDCT denoising. 
Chen et al. [34] first proposed an LDCT denoising method based on deep neural network, this method can convert 
LDCT images into normal-dose CT images. Compared with traditional denoising methods, the model improved 
the denoising effect and computation time. Zhang et al. [35] combined dense blocks and deconvolution structures 
to build a lightweight network that can reuse image features to improve image quality. In addition to supervised 
learning methods, unsupervised learning [36,37] and semi-supervised learning models [38,39] have also achieved 
significant accomplishments. Generative adversarial network (GAN) are also used to improve the quality of LDCT 
images [40,41]. Xin et al. [42] added a sharpness detection network to the GAN network to guide the training 
process. The processed images have minimal resolution loss and achieve advanced performance. Yang et al. [43] 
proposed a CT image denoising method based on the GAN with Wasserstein distance and perceptual loss, the 
network reduces noise while maintaining the key information of the image. Autoencoders [44–47] achieve image 
denoising by learning to encode input data into a low-dimensional representation and decoding it back to the 
original data space. Self-supervised learning [48] and unsupervised learning use the characteristics of the data 
itself for training and do not require a large amount of labeled data. The semi-supervised learning method combines 
labeled data and unlabeled data [49], it can better utilize the information of the data and improve the generalization 
ability of the model and the effect of image denoising. Recent years, the emergence of Transformer [50] has also 
achieved remarkable results in the field of medical image processing. Luthra et al. [51] proposed a Transformer 
model based on edge enhancement to build the encoder and decoder. The network uses the self-attention 
mechanism to learn the relationship between pixels and other pixels in image blocks containing non-overlapping 
windows. By integrating the features of all positions to generate image details, and introducing a trainable Sobel 
operator to enhance the edges of the image, it provides higher performance on the AAPM dataset. In addition, a 
large number of combinations of deep learning and traditional denoising algorithms have also been proposed and 
achieved excellent results [52,53]. 

Although there are so many deep learning methods for LDCT image denoising [54–56], previous studies 
have major differences in dataset, training strategy, and performance indicators, making it impossible to evaluate 
the results of the models in a relatively fair manner. This paper addresses the issue through investigation and fair 
comparation of seven deep learning models. We conduct experiments on all models based on two datasets (AAPM 
and Piglet, Figure 1 shows some examples from the two datasets.) and implement seven deep learning models 
(REDCNN [34], EDCNN [57], QAE [58], OCTNet [59], UNet [59], WGAN [43], CTformer [60]). We 
systematically evaluate them from several aspects to find the best model and training strategy for the LDCT image 
denoising task. In summary, the work and contributions of this paper are as follows: (1) We evaluate the 
performance of seven deep learning models under the same metrics (PSNR, SSIM, and RMSE). (2) We conduct 
cross-experiments on the models based on different datasets to examine the generalization ability of the models. 
(3) The experiments evaluate the denoising performance of the models on CT images at various dose levels. (4)
To measure the efficiency of the models, we calculate and compare the training cost and processing speed of the
models.

The rest of this paper is organized as follows. Section II details the dataset and performance metrics. Section 
III presents the experimental results and data analysis, including the experimental setup and evaluation methods. 
In Section IV, we analyze and discuss the experimental results. Section V concludes the paper and presents future 
work. 
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Figure 1. The dataset we used. The first row is the LDCT image and NDCT image of the AAPM dataset, and the 
second row is the LDCT image and NDCT image of the Piglet dataset. 

2. Method

Standard datasets are crucial for model training. The datasets in this article use the Piglet dataset and the 
AAPM dataset. The LDCT image of the Piglet dataset is obtained by reducing the tube current, and the LDCT 
image of the AAPM dataset is obtained by adding Poisson noise to the original image. 

2.1. Dataset 

2.1.1. Piglet Dataset 

The real dataset uses the Piglet dataset [42]. The LDCT image of this dataset is obtained by using a GE 
scanner (Discovery CT750 HD), setting the source potential and slice thickness to 100 kVp and 0.625 mm, and 
adjusting the tube current (or voltage), obtained by X-ray scanning with different intensities. Among them, the 
radiation dose when the tube current is 300 mA is the normal dose, and the tube current is reduced to 50%, 25%, 
10% and 5%, respectively to obtain 4 different dose LDCT images. With different X-ray radiation doses, 
reconstructed CT images are subject to varying degrees of noise and artifacts. In the experiment,720 CT images 
are selected from the dataset as the training dataset, and 180 images are used as the test dataset. The images of the 
Piglet dataset during training are one-dimensional. We extracted 48,000 pairs of image patches from the 720 CT 
images as input and Label, size is 64 × 64. Notably, 11,520 pairs of image patches were extracted from another 
180 CT images for testing. The Table 1 below provides details of the dataset. The Piglet dataset is available from 
the original author’s GitHub repository: https://github. com/xinario/SAGAN (accessed on 2 August 2024) [42]. 

Table 1. Dose used for the Piglet dataset. In all 5 series, tube potential was 100 KV with 0.625 mm slice thickness. 
Tube current decreased to 50, 25, 10 and 5% of full-dose tube current (300 mAs) to obtain images with different 
doses. CTDI is the CT dose index and DLP is the dose-length product. 

Dose Level FULL 50% 25% 10% 5% 
Tube current (mAs) 300 150 75 30 15 

CTDIvol (mGy) 30.83 15.41 7.71 3.08 1.54
DLP (mGy-cm) 943.24 471.62 235.81 94.32 47.1

Effective dose (mSv) 14.14 7.07 3.54 1.41 0.71 
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2.1.2. AAPM Dataset 

The simulation dataset is from “the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge” [61]. 
The dataset contains 2378 slices from 10 anonymous patients, with a slice thickness of 1.0 mm, including LDCT 
images and NDCT images. The dataset is contrast-enhanced abdominal CT patient scans, each acquired during the 
portal venous phase using a Siemens SOMATOM Flash scanner. Among them, LDCT images are obtained by 
simulating noise pollution under 1/4 standard dose. In the experiment, 8 patients were selected as training data for 
the model, and the other 2 patients were selected as test data. Our approach is similar to other studies [1,62]. Table 
2 lists the imaging conditions for each patient’s original scans and the respective tube current intensities. It is worth 
noting that the noise in LDCT may no longer strictly follow the Poisson distribution, but the Poisson distribution 
is a good approximation when describing the statistical properties of X-rays, especially when the noise is relatively 
low. The benefit of using the Poisson noise model is that it simplifies the image reconstruction algorithm and 
interpretability, and it has been proven in many practical applications [63]. 

Table 2. Imaging conditions for the AAPM dataset. This table lists the imaging parameters for the AAPM dataset, 
including patient ID, number of slices, field of view (FOV) size, kilovolt peak (KVP), exposure time, and X-ray 
tube current (mA). 

Patient ID Numbers of Slices Size of FOV KVP Exposure Time (ms) X-ray Tube Current (mA) 
L067 224 370 100 500 234.1
L096 330 430 120 500 327.6
L109 128 400 100 500 322.3
L143 234 440 120 500 416.9
L192 240 380 100 500 431.6
L286 210 380 120 500 328.9
L291 343 380 120 500 322.7
L310 214 380 120 500 300.0
L333 244 400 100 500 348.7
L506 211 380 100 500 277.7

2.2. Data Preprocessing 

The data preprocessing part of this study aims to optimize the training process to better adapt to the input 
data requirements of the neural network model. For the original CT image size of 512 × 512, we took the following 
steps to process the data. 

First, we introduce a key parameter patch-size, which defines the size of dividing small image patches. By 
dividing the image into smaller chunks, we are able to increase computational efficiency and allow the network to 
better learn local features. The actual size of the input image is 512 × 512, the size of the image block input to the 
network in the experiment is 64 × 64. Next, we preprocessed the image. First, we scaled the images to facilitate 
batch operations. We then convert the image data type to floating point to meet the input requirements of the neural 
network model. Regarding data shape conversion, we determine whether the patch-size parameter is defined based 
on conditions. If the patch-size parameter is set to a non-zero value, we perform 

a shape transformation operation on the image. By reshaping the image into patch-size patches, we can input 
each patch into the neural network as an independent sample. Through these data preprocessing steps, we 
effectively change the form of the original CT images to better suit the needs of the neural network model. This 
preprocessing can improve the effectiveness of network training and enable the network to better learn the local 
features of the image. Our data preprocessing process is key to improving model performance and training 
effectiveness. 

2.3. Performance Metrics 

Medical images contain more subtle structures and fewer channels than natural images, and appropriate 
evaluation metrics are crucial to evaluating LDCT images. We choose peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM) and root mean square error (RMSE) as image quality evaluation metrics. In addition to these 
objective metrics, radiologist evaluations are also critical to the success of the denoising task. We will include 
actual radiologist evaluations in subsequent studies to support the validity of diagnosis based on denoised images. 
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2.3.1. PSNR 

PSNR is an objective measure of the error between image pixels and is typically used for error-sensitive 
images. It is defined according to the mean square error (MSE), which is defined as 

21 11 [ ( , ) ( , )]
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m n
MSE Y i j X i j
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where MSE represents the mean square error between the real image Y and the input noise image X, ( , )X i j  and 
( , )Y i j  respectively correspond to the pixel values at the coordinates. m and n represent the height and width of 

the image, respectively. The smaller the MSE, the closer the two images are and the smaller the distortion. 
Correspondingly, PSNR is expressed as 
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where n is the number of bits per pixel, which is generally 8. The larger the PSNR value, the smaller the distortion 
and the better the image effect [64]. 

2.3.2. SSIM 

SSIM (structural similarity index) stands for structural similarity. It is an index used to measure the similarity 
of two images. It is better in line with human visual perception. The SSIM formula is based on three parameters 
between image X and Y : Luminance, Contrast, and Structure. The formula is as follows: 
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where U x  and U y  are the means of x  and y  respectively, x  and y  are the variances of x  and

y  respectively, and xy  is the covariance of x  and y , 1c , 2c  and 3c  are constants that make the result 

non-zero. The definition of SSIM can be obtained from the above three parameters: 

( , ) [ ( , ) * ( , ) * ( , ) ]SSIM x y L x y C x y S x y  (6) 

The structural similarity index defines structural information from the perspective of image composition, 
which reflects the structural information, brightness and contrast of the object. In the calculation of structural 
similarity, the mean is used as the estimate of brightness, the standard deviation is used as the estimate of contrast, 
and the covariance is used to measure the degree of structural similarity. 

2.3.3. RMSE 

Root mean square error (RMSE) is a common image quality evaluation metric, used to measure the degree of 
difference between the output image and the original image. It is defined by calculating the square root of the mean 
square error (MSE), 

RMSE MSE (7) 

Mean squared error (MSE) calculates the squared difference between the pixels in two images and then 
averages all differences. RMSE is the square root of MSE. The smaller the value, the smaller the difference between 
the output image and the original image, indicating the better the processing effect. 
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2.4. Deep Learning Models 

With the development of deep learning, medical image processing has attempted to use neural networks as a 
problem-solving tool. Deep learning has important roles including lesion detection and segmentation, disease 
prevention and diagnosis, etc. In these applications, clear medical images are crucial to solving problems. Deep 
learning methods have also shown good results on low-level tasks such as medical image denoising. In this paper, 
we evaluate seven deep learning models (REDCNN [34], EDCNN [57], QAE [58], OCTNet [59], UNet [59], 
WGAN [43], CTformer [60]), REDCNN, EDCNN, OCTNet, and UNet are CNN-based denoising methods, QAE 
s an autoencoder-based denoising method, WGAN is a GAN-based denoising method, and CTformer is a 
Transformer-based denoising method. Table 3 summarizes some features and parameters of the deep learning 
model we used. 

Table 3. An overview of deep learning models. The table summarizes the deep learning models used in our study, 
detailing the reference numbers, the number of trainable parameters, and key features or remarks for each model. 

Model Ref Trainable Parameters Remarks 

REDCNN [34] 1848865 (a) Combine the autoencoder, deconvolution and
shortcut connections into the ResNet.

EDCNN [57] 80961

(a) Design an edge enhancement module based on
trainable Sobel convolution.

(b) Construct a dense connection to fuse edge features.
(c) Introduce the compound loss which integrates the

MSE loss and multi-scale perceptual loss.

QAE [58] 49818
(a) Propose quadratic neurons by replacing the inner

product.
(b) Encoder-decoder structure.

OCTNet [59] 371073
(a) Adopt multi-scale method to represent the CT

denoising problem.
(b) Octave convolution proposed in CT image denoising.

UNet [59] 7819201 (a) Multiple residual connections are used for CT
denoising.

WGAN [43] 34071842
(a) Introduce a new CT image denoising method based

on GAN with Wasserstein distance.
(b) Use perceptual loss suppresses image noise.

CTFORMER [60] 1448265 

(a) Propose a convolution-free Token2Token dilated
vision Transformer. 

(b) An overlapped inference mechanism effectively
eliminate the boundary artifacts.

3. Experiment and Evaluation

This section shows the configuration of the experiments, presents the experimental results and brief analysis, 
and evaluates the LDCT image denoising performance of the deep learning models. 

3.1. Experiment Design 

We conducted four experiments aimed at performing denoising analysis on different deep learning models 
and evaluating their generalization capabilities as well as model complexity and inference speed. 

In the first experiment, we performed denoising analysis using the AAPM dataset. We calculated the 
performance indicators of the region of interest and the enlarged image and evaluated their performance on the 
LDCT image denoising task. In the second experiment, to verify the generalization ability of the models on 
different datasets, we conducted a cross-experiment on the two datasets. The experiment allows comprehensive 
evaluation of the performance of the models on different datasets and verify their abilities to adapt to unseen data. 
In the third experiments, we conducted experiments based on the Piglet dataset. The experiment tested the 
generalization ability of the deep learning model to CT images with different noise levels. In the fourth experiment, 
we evaluated the complexity and inference speed of different models. The experiment analyzed indicators such as 
the number of parameters, computing resource requirements, and inference time of the models to find models with 
lower computational costs and efficient speed in practical applications. Through these four experiments, we can 
comprehensively evaluate the performance, generalization ability and computational efficiency of different deep 
learning models in LDCT image denoising, and explore the LDCT denoising method most suitable for this task. 
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3.2. Experiment Setup 

We use the PyTorch 1.10 deep learning framework to implement all deep learning models, and the 
compilation environment for experimental is Python 3.8. We use NVIDIA RTX3090 24G GPU and Intel i9-
10900X CPU to complete all model training and testing. During the optimization process, we use the Adam 
optimizer with default configuration and use 512 × 512 pixel size LDCT images as input. We set the learning rate 
to 0.00001, the batch size to 8, and conducted 200 rounds of iterative training to make the model converge. In our 
study, all models were trained from scratch, rather than being fine-tuned based on pre-trained models from other 
datasets. After training, we save the model with the best performance and evaluate it on the validation dataset. 
These settings were kept the same for all models. 

3.3. Experiment Result and Analysis 

3.3.1. Performance Result of Deep Learning Models 

To quantitatively analyze the denoising performance of the deep learning model, we use peak signal-to-noise 
ratio (PSNR), structural similarity (SSIM) and root-mean square error (RMSE) as objective metrics. Table 4 shows 
the denoising results of the deep learning model on the AAPM dataset, the test data comes from an abdominal 
image of patient L506. In this experiment, the size of the input image and output image of the AAPM dataset are 
both 512 × 512. During training, the image is divided into small image blocks. We extracted 123072 pairs of image 
blocks from 1923 CT images as training Input and label, size is 64 × 64. 29,120 pairs of image blocks were 
extracted from another 455 CT images for testing. 

Table 4. Performance of different models on the AAPM dataset. The table compares the denoising performance of 
various deep learning models on the AAPM dataset using three metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM 
(Structural Similarity Index), and RMSE (Root Mean Square Error). Higher PSNR and SSIM values indicate better 
denoising performance, while lower RMSE values are preferred. UNet achieved the highest PSNR score, 
suggesting its superior ability to retain overall image quality, while EDCNN obtained the best SSIM, highlighting 
its strength in preserving structural details. Visual examples of the denoised images are also provided to 
qualitatively compare the models’ outputs. Bold indicates the best results.  

Model REDCNN EDCNN QAE OCTNet UNet WGAN CTformer 
PSNR 31.6918 31.8518 28.1326  31.9020 32.2510 30.2021  31.4673 
SSIM 0.8841 0.8972  0.8581 0.8853 0.8884 0.8359  0.8821 
RMSE 10.6134 9.9714  15.9625  9.9126  9.7624  12.7829 10.6773 

Image 

Quadratic Autoencoder is a special autoencoder network. The network introduces a quadratic term loss 
function, which improves image feature capabilities and makes network training more time-consuming. It’s 
denoised image has more noise points, and its objective indicators such as PSNR and SSIM are the worst. WGAN’s 
images can retain the texture information of the original image, but cannot completely remove stripe artifacts. Its 
PSNR and SSIM results are lower than those using MSE-loss as the loss function (REDCNN, EDCNN, UNet, 
OCTNet). At the same time, since REDCNN only uses the MSE loss function for training, the texture of the image 
is blurred. EDCNN adds a trainable Sobel operator for edge enhancement before training, so the edge details of its 
images are more prominent. It obtains better PSNR and the best SSIM on the AAPM dataset, with SSIM = 0.9009. 
The denoising effects of OCTNet and UNet are close, but the denoised images of OCTNet suffer from loss of 
details. CTformer uses the powerful feature extraction capability of the attention mechanism to remove noise in 
images and achieves excellent results. Most deep learning models use gradient loss as the loss function, which will 
pay more attention to the subtle structure of the image, but will smooth some areas of the LDCT image. UNet can 
effectively remove noise and stripe artifacts and maintain high structural similarity with NDCT images. It has the 
highest peak signal-to-noise ratio and the smallest root mean square error, with PSNR = 32.2510 and RMSE = 
9.7624. 

Furthermore, we evaluate the performance metrics of regions of interest (ROI). As shown in Table 5, we 
zoomed in on the aorta in the chest image, the red box represents the ROI, and we calculated the test results of the 
local ROI and drew the ROI image. The enlarged ROI image that all models show varying degrees of denoising 
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effects. REDCNN and EDCNN based on the MSE loss function perform well on values and images, but have edge 
blur in details. The ROI image of QAE is still not good in experiments. OCTNet and UNet achieved good results 
with their large number of dense cascades and residual connections. The area of interest (aorta) of the two still 
maintains good structural similarity after amplification, and the edge information is not blurred. Although the 
visual effects are not as good as CTformer, it achieves the best numerical results. The WGAN network based on 
Wasserstein distance has texture blur at both the macro level and the micro level, which may be related to the 
instability of its training. The CTformer enlarged image has significant noise and blur at the edges, indicating that 
the ability of this type of model to process single-channel CT images has some limitations. 

Table 5. Test results of the AAPM dataset on abdominal images, the red box is the region of interest ROI. This 
table shows the denoising performance of various models on abdominal CT images from the AAPM dataset using 
PSNR, SSIM, and RMSE metrics. UNet achieves the highest PSNR, indicating better overall image quality, while 
EDCNN achieves the highest SSIM, highlighting better structural preservation. Visualized results include both the 
full image and the zoomed-in ROI for a detailed comparison. Bold indicates the best results. 

Model REDCNN EDCNN QAE OCTNet UNet WGAN CTformer 
PSNR 26.1672 26.3421 22.0271 26.5634 26.6253 23.7721 25.4271 
SSIM 0.5669  0.5676  0.4831 0.5661 0.5653 0.5659 0.5422 
RMSE 21.3844 21.1312 28.9304 21.4931 21.0823  26.7823 22.2216 

Pred-img 

ROI-img 

We calculated the average PSNR and SSIM of ROI images on the AAPM dataset and Piglet dataset. As 
shown in Figures 2 and 3, the results show that UNet has the best PSNR and EDCNN has the best SSIM. In general, 
all models show certain denoising capabilities. Different networks have different problems, the output image 
exhibits differences in the visual effects. REDCNN and EDCNN have texture blur but rich colors and contrast. 
UNet performs well in terms of structure preservation and texture details, and the test results at the macro and 
micro levels are excellent. UNet’s excellent denoising performance deserves further study for designing better 
models. 

Figure 2. Average PSNR of ROI on two dataset. This figure compares the denoising performance of various models 
based on the average PSNR values for the ROI. Higher PSNR indicates better preservation of image quality after 
denoising, with UNet achieving the highest score. 
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Figure 3. Average SSIM of ROI on two dataset. This figure shows the average SSIM values for the ROI, comparing 
the structural preservation capabilities of various models. Higher SSIM values indicate better structural similarity 
between the denoised and reference images, with EDCNN achieving the highest score. 

3.3.2. Assessment of Generalization Performance 

When using deep learning models to process LDCT denoising in actual clinical practice, their performance 
may be affected by acquisition parameters, equipment and other factors. To evaluate the generalization 
performance of deep learning models when processing new LDCT images, we tested their performance based on 
different datasets from two CT scanners. Specifically, we first train the model using CT images from one CT 
scanner, and then, we test the model using data from another CT scanner. 

As shown in Table 6, when the model is trained using the AAPM dataset, the best results on the AAPM dataset 
are PSNR = 33.0712, SSIM = 0.9221, and the best results on the Piglet dataset are PSNR = 27.9170, SSIM = 0.8616. 
When the model is trained using the Piglet dataset, the best results on the Piglet dataset are PSNR = 31.2192, 
SSIM = 0.8969, and the best results on the AAPM dataset are PSNR = 28.9191, SSIM = 0.8615. Among all models, 
OCTNet achieved better results in the model generalization performance test. The results show that the deep learning 
model performs better when the test and training data come from CT images from the same CT scanner. In summary, 
it is difficult to obtain the same performance when using a trained deep learning model to test new LDCT images. 

Table 6. Image quality evaluation results of the model on two datasets. This table displays PSNR and SSIM results 
for each model when trained and tested on AAPM and Piglet datasets, highlighting their performance on both same-
dataset and cross-dataset scenarios. UNet excels in same-dataset tests, while OCTNet shows better cross-dataset 
generalization. Bold indicates the best results. 

Model Train: AAPM 
Test: AAPM 

Train: AAPM 
Test: PIGLET 

Train: PIGLET 
Test: PIGLET 

Train: PIGLET 
Test: AAPM 

INDEX PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
LDCT 29.2454 0.8732 25.0054 0.7234 25.0054 0.7234 29.2454 0.8732 

REDCNN 32.3221 0.9103 27.3561 0.8371 30.6551 0.8965 28.5451 0.8472 
EDCNN 32.9791 0.9037 27.0181 0.8231 31.1081 0.8899 28.0169 0.8349 

QAE 29.2291 0.8759 25.0063 0.7762 25.0172 0.7881 26.0071 0.7876 
OCTNet 32.7813 0.9082 27.9170 0.8616 31.1102 0.8971 28.9191 0.8615 

UNet 33.0712 0.9221 27.6974 0.8421 31.2192 0.8969 28.6885 0.8571 
WGAN 30.5192 0.8882 26.9159 0.8334 27.8292 0.8251 27.6601 0.8102 

CTformer 32.2071 0.9092 27.0331 0.8264 30.3482 0.8020 28.0330 0.8351 

3.3.3. Assessment of Training Strategies 

To further explore the denoising ability of the deep learning model on CT images with different noise levels, 
we conducted the following experiments. Observe the performance of various deep learning models by varying 
the radiation dose. We use the Piglet dataset to train the model and test it on LDCT images with different noise 
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levels. Less radiation dose means more noise. Figure 4 shows CT images of the Piglet dataset denoised using 
different methods. Table 7 shows the objective indicators of various methods. 

Figure 4. The above figure is a visualization of four low doses CT images in the Piglet dataset using different 
methods to denoise. The first row is LDCT (50% of full dose reconstructed by FBP). The second row is LDCT (25% 
of full dose reconstructed by FBP). The third row is LDCT (10% of full dose reconstructed by FBP). The last row 
is LDCT (5% of full dose reconstructed by FBP). The last column NDCT is reconstructed by the FBP algorithm 
with a 100% dose. 

Table 7. Test results when trained on the Piglet dataset with 100% dose images. This table shows the PSNR, SSIM, 
and RMSE results for models tested on CT images with different dose levels (50%, 25%, 10%, and 5%). It 
highlights how each model adapts to lower dose levels, with EDCNN and UNet showing superior results at various 
dose reductions. Bold indicates the best results. 

Model 
50% Dose 25% Dose 10% Dose 5% Dose 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

LDCT 31.0736 0.8771 11.1785 28.0292 0.8414 15.8708 26.7750 0.8114 18.3361 24.1211 0.7779 24.8889 

REDCNN 28.5556 0.8940 14.9375 28.2353 0.8935 15.1827 31.4215 0.8963 10.7395 28.2437 0.8949 13.9151 

EDCNN 32.8634  0.9004 9.9734 30.7741  0.8877 12.1470 31.5269 0.9077 10.5100 29.7512 0.8962 12.8965 

QAE 31.0968 0.8769 11.1486 28.0512 0.8411 15.8307 26.7689 0.8113 18.3491 25.0084 0.7893 22.9941 

OCTNet 31.5507 0.9041 12.1175 30.7046 0.8904 12.4709 31.5017 0.9017 10.6408 28.8929 0.8846 14.3683 

UNet 32.2654 0.9198 10.6591 30.2083 0.8999 12.1786  31.5763  0.9066 10.5206 29.9512 0.8874 12.6204 

WGAN 29.2374 0.8226 13.1043 29.0836 0.8812 14.0566 28.8378 0.8620 14.4600 26.0153 0.8141 20.0122 

CTformer 29.8627 0.8720 12.1072 29.8460 0.8944 13.2094 29.3495 0.8605 13.6329 28.7136 0.8469 14.9342 

As shown in Figure 4, in the first column, with the gradual reduction of radiation dose, the noise in CT images 
increases significantly. When the dose is 5% of the full dose, noise seriously affects the visual effect of CT images. 
Notably, the RED-CNN can remove noise to some extent, but its images inevitably exhibit a smoothing effect and 
lose some details. WGAN performs well when noise is low, but when it processes LDCT images with the highest 
noise levels, its denoised images will have many noise points. In contrast, EDCNN, OCTNet, UNet and CTformer 
denoise CT images of different doses, and the image quality obtained is significantly better than other algorithms. 
The the model based on MSE-loss and compound loss function performs well in obtaining LDCT denoised images 
at different radiation doses. The denoised image can retain the rich details and texture structure of the CT image 
well. Among all models, UNet has better visual effects on denoised images for all four dose levels. 

We quantitatively analyze the denoising performance of different algorithms for different LDCT images. We 
calculated three objective indicators of the experimental results. The summary data are in Table 7. Of note, the 
LDCT image with a radiation dose of 50%, PSNR and SSIM are higher, which indicates that the 50% reduction 
of radiation dose has little effect on image quality. However, for images with a radiation dose of 5%, the values of 
the three metrics decreased significantly. That is, the image quality of Figure 4 becomes worse as the dose 
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decreases. The data show that UNet and EDCNN have better results in most cases, and both of them are ranked 
first and second in four rounds of tests (bold numbers represent the best, italics numbers represent the second best.). 
UNet has been ranked first in three rounds of tests many times, indicating that UNet has some robustness. 
Therefore, UNet performs well in denoising experiments on CT images with different noise levels. 

3.3.4. Model Complexity Evaluation 

Model efficiency is an important issue in deep learning. An excellent deep learning model should have both 
excellent denoising capabilities and fast inference speed. Based on the above criteria, we compared the number of 
trainable parameters (params), memory usage (MACs), and inference speed based on different devices (CPU and 
GPU) of the seven models. The experiment completes all experiments using Intel i9-10900X CPU and NVIDIA 
RTX3090 24G GPU. 

QAE uses 15 3 × 3 kernels in each convolutional layer, while REDCNN has 32 5 × 5 kernels, which means 
that REDCNN has 4 times more parameters than QAE. As shown in Table 8, WGAN occupies the largest real-
time memory. WGAN includes a generator and a discriminator and uses perceptual loss as the loss function. Its 
trainable parameter amount and memory usage are the highest, which makes it difficult to deploy the whole model. 
On the contrary, EDCNN has a relatively small number of parameters but a high memory usage, indicating that 
the network can effectively fuse image information, which can also explain its better PSNR. In addition to this, 
models process images with a CPU takes much longer than with a GPU. 

Table 8. CPU computation speed and GPU computation speed for the two datasets on seven models. This table 
presents the parameter count, MACs, and computation times on both CPU and GPU for seven models, along with 
their average PSNR scores. It highlights the efficiency and speed differences between models when processing the 
AAPM and Piglet datasets, with CTformer achieving the fastest CPU computation time on both datasets. Bold 
indicates the best results. 

Model Params MACs (G) 
AAPM-Dataset Piglet-Dataset

Avg-PSNR CPU Times 
(ms) 

GPU Times 
(ms) 

CPU Times 
(ms) 

GPU Times 
(ms) 

REDCNN 1848865 4.3 3182.1 12.1 109.2 5.2 31.4277 
EDCNN 80961 5.2 571.6 5.9 159.1 3.7 32.0321 

QAE 49818 2.5 1024.4 4.8 315.6 2.8 27.1272 
OCTNet 371073 3.1 684.2 13.4 229.3 6.5 31.8922 

UNet 7819201 4.9 726.3 11.4 238.2 4.6 32.4521 
WGAN 34071842 6.4 3682.1 28.2 1317.2 15.6 29.1281 

CTformer 1448265 6.2 531.8 9.4 134.6 3.5 31.3180 

In our experiments, the number of images in the AAPM and piglet test datasets were 1923 and 720, 
respectively. We calculated the processing speed of a single 512 × 512 LDCT image. QAE has the fastest inference 
speed, with a single image taking 3.9 ms. WGAN is the slowest, which also means that training WGAN takes 
more time. Therefore, we plotted a scatter plot of the model’s inference time versus PSNR, as shown in Figure 5, 
with the best results in the upper left. The results show that only UNet and EDCNN have PSNRs exceeding 32. 
Among them, UNet has the highest PSNR, but UNet’s inference time is slower. EDCNN achieves a balance 
between inference time and de-noising effect. Therefore, in terms of calculation speed and denoising performance, 
EDCNN is the strongest competitor compared to other models. 
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Figure 5. Performance results and inference speed of different deep learning models. This figure illustrates the 
trade-off between denoising performance (measured by PSNR) and inference speed (time in ms) for various models, 
highlighting the balance between image quality and computational efficiency. 

4. Discussion

Deep learning already occupies a significant position in medical image processing. In LDCT image denoising 
research, many studies have different experimental conditions and training strategies. To accurately judge and 
compare the denoising performance of networks, in our study, we trained and evaluated seven deep learning 
models under the same conditions and studied their training strategies. 

In the denoising performance analysis, UNet has the best effect. Through multi-layer residual connections, 
UNet can extract more image information and obtain the best results, with a PSNR of 32.25. The successful 
performance of the UNet architecture is due in part to its features specifically designed for biomedical image 
segmentation, including efficient utilization of small amounts of training data. However, it is worth noting that 
regardless of the size of the dataset, UNet is also likely to improve performance due to its efficient architecture. In 
our first experiment (3.1.1) and third experiment (3.1.3), the two experiments are based on different datasets and 
the number of images in the datasets is different. In both experiments, UNet achieved excellent results. Therefore, 
UNet’s own efficient architecture is the main reason for its success in small datasets. Similarly, REDCNN also 
achieves good performance using symmetric encoders and decoders. EDCNN introduces a trainable sobel operator 
before the residual connection to enhance the edge information of the output image, thus achieving better results. 
The LDCT denoising network based on CNN showed better performance, while the denoising network based on 
GAN and transformer was overall inferior to the denoising network based on CNN. Additionally, we zoom in on 
the region of interest to focus on detail recovery and edge information. Regarding detail recovery, EDCNN’s 
denoised image shows no obvious noise after enlargement, and the edge details of blood vessels are not blurred, 
indicating that its denoising effect is better than other models. Overall, the top-performing models did not exhibit 
significant differences in structural similarity. 

In deep learning, generalization performance is one of the important metrics for evaluating the stability of 
the model. In our study, we conducted cross-experiments to explore the model’s generalization ability on different 
datasets. UNet shows excellent denoising performance on the same dataset, while OCTNet has better denoising 
performance on different datasets. Therefore, OCTNet has stronger generalization ability than other models. 

In LDCT image processing, model running speed is also an important metric. Experimental results show that 
QAE has the fastest computing speed, which is consistent with its size, but its denoising performance is poor. 
WGAN consists of a generator and a discriminator and uses the VGG network as a feature extractor and complex 
loss function, and its calculation speed is the slowest. Overall, EDCNN balances computational speed and 
denoising performance. 

Our work has some shortcomings that we hope to address in the future. First, in this study, we employed the 
AAPM dataset and the Piglet dataset. The AAPM dataset primarily contains contrast-enhanced abdominal CT 
images, while the Piglet dataset consists of low-dose CT images of experimental pigs obtained by reducing the 
tube current. These two datasets represent different anatomical regions—human abdomen and experimental pig—
providing an opportunity to evaluate the applicability of the models across varying anatomical areas. Further 
validation of the models’ performance on CT data from different anatomical regions allows comprehensive 
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assessment of the denoising methods’ generalizability and applicability. In future research, we plan to test these 
denoising methods on CT datasets from other anatomical regions, such as the brain and chest, to more thoroughly 
evaluate their effectiveness and explore their potential in various clinical scenarios. Secondly, generalizability is 
a key issue. When evaluating the generalization ability of denoising methods, we did not consider their versatility. 
For example, a method trained on brain CT scans should also be applicable to chest CT scans. In future research, 
we plan to test these denoising methods on CT datasets from more anatomical regions (such as the brain, chest, 
etc.) to further explore their transferability and applicability across different anatomical regions. Moreover, transfer 
learning can utilize models pre-trained on large-scale datasets to provide better initial feature representations for 
other related tasks, thereby improving model training efficiency and generalization ability. This is especially 
recognized in medical image analysis [65–67]. In our study, although all models were trained from scratch, we 
acknowledge the potential advantages of transfer learning in enhancing model performance. In future research, we 
plan to evaluate the effectiveness of transfer learning in LDCT denoising, such as using models pre-trained on 
other CT image tasks as initial models and observing their impact on LDCT denoising. We believe that this 
exploration could further improve the denoising performance of the models and validate their broader applicability 
across different datasets and tasks. Finally, although we have conducted many sets of experiments, considering 
many top deep learning models, We need to continue updating the latest neural network models to take advantage 
of the new deep learning advancement. 

5. Conclusion

In our study, we implemented and evaluated the performance and efficiency of seven LDCT denoising 
models. The results show that UNet has the best performance in terms of PSNR, due to its multi-layer residual 
connected encoder. The output image of EDCNN is most similar to the original image and has the highest structural 
similarity. UNet has better denoising effect, but the calculation time is longer, which will increase the time 
consumption in actual clinical processing. In contrast, EDCNN can balance performance and efficiency, which 
has potential for practical applications. In addition, to assess the model's performance on new data, we evaluated 
its generalization performance, providing a benchmark for future research. 
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