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Abstract: To solve the segmentation problem of coke optical texture in coke photomicrograph, a seman-
tic segmentation method is proposed based on the multi-scale feature fusion and attention strategy in this
paper. The multi-scale module is com-bined with convolutional block attention module (CBAM) to
design a feature extraction strategy, and the Coke-Net network model is established to extract the coke
optical texture from coke photomicrographs. The relationship between pixels is fully considered to refine
the segmentation edge, and the extraction results with spatial consistency are output to complete the pre-
cise segmentation of the coke optical structure. The ablation experiment and contrast experiment are used
to demonstrate the effectiveness of the proposed method in coke optical texture extraction.
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1. Introduction

Coke is a kind of solid fuel formed by carbonization of coking coal at high temperature, and plays three major
roles in blast furnace ironmaking: the pillar skeleton, heater and reducing agent [ 1—2]. The microstructure of coke is
closely related to its quality. The study of coke optical texture depends on the understanding of coking coal and coke
properties, and has very important significance for rapid evaluation of coke quality and guidance of coal blending and
coking [3—6]. Coke optical texture refers to the coke stomatal wall structure presented by coke samples under the
polarized light microscope at 200-500 times magnification. Coking coal produces a large number of colloids during
the coking process, so that the coal particles are bonded together by interfacial bonding reactions to form the coke
stomatal wall structure. Therefore, colloids’ quantity and quality are related to the properties and strength of the coke,
and this directly determines the quality of coke [7, §].

In fact, photomicrographs are widely used in geological engineering, biomedicine, material chemical science
and other fields. Especially in biomedicine, watershed [9], edge detection, K-means [10], and deep learning [11] are
used in cell segmentation detection. In geological engineering, N. D. Deng et al. [12] used the binary segmentation
algorithm to obtain the contrast enhanced segmentation images. The Otsu algorithm [13], watershed region growing,
and machine learning-based multivariant classification [14] were used to segment rock components. Coal geology is a
branch of geology, and is closely related to the optical texture of coke. Coal is the basic energy source in China, and
the optical texture of coke microscopic image can directly reflect the thermoplasticity of coal, which can improve the
utilization rate of coal. Due to the proposal of the “double carbon” policy, significant effort is made to expand green
and low-carbon industries, and use energy efficiently.

In the past few decades, many scholars have used image processing methods to analyze and study the
microstructure of coke, and have achieved significative results. Image segmentation algorithms represented by the
mean shift method [15], watershed algorithm [16], and K-means [17] were applied to the field of coke photomicro-
graph analysis. In particular, H. Liu et al. used the K-means method to segment various tissue components in coke
optical tissue images, where the coke optical tissue was extracted and clustered for tissue segmentation. An improved
mean-shift clustering algorithm was proposed in [18] to extract the optical texture of coke, aiming at solving the
adhesion of different tissue components and fuzzy boundaries in coke photomicrographs. However, the above meth-
ods still need a lot of manual intervention to improve the processing results in applications, and the segmentation

Copyright: © 2024 by the authors. This is an open access article under the terms and conditions of the Creative
BY Commons Attribution (CC BY) license https://creativecommons.org/licenses/by/4.0/.

https://www.sciltp.com/journals/ijndi


mailto:xiu.kan@sues.edu.cn
mailto:xiu.kan@sues.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://www.sciltp.com/journals/ijndi

1JNDI, 2024, 3, 100022. https:/doi.org/10.53941/ijndi.2024.100022

accuracy of these methods has not reached the practical level.

With the development of deep learning, convolutional neural networks, with the ability of automatic feature
learning, have achieved better segmentation performance than traditional image processing methods based on image
segmentation [19-21]. In 2014, J. Long et al. [22] proposed fully convolutional networks (FCN), opening up the
application of deep learning to semantic segmentation. In 2015, O. Ronneberger et al. [23] proposed the Unet net-
work, which uses the design idea of the FCN network and adds the deconvolution operation and jump connection to
the network to enhance the ability to extract local features; Z. Chu et al. [24] combined the idea of residual connec-
tion [25] where the Unet and designed ResUnet were used to achieve the automatic segmentation of the sea-route
region in satellite remote sensing images. O. Oktay et al. [26] proposed a new attention model, which introduced the
attention mechanism into the Unet network for the first time, enabling the network to automatically focus on target
structures of different shapes and further improving the accuracy and efficiency of pathology segmentation in medi-
cal images. Coke photomicrographs share the commonality of high resolution and high complexity with remote sens-
ing images, and the coke optical texture is similar to medical pathologies but differs from other components only in
color and texture.

Based on the above analysis, it is obvious that coke photomicrographs are visual images of colloidal structures,
which can evaluate the quality of coke objectively. The correlation between coke microstructure and coke quality is
required to be clarifiedd. Thus, a fast and automated coke photomicrograph analysis method needs to be designed to
achieve automatic identification and characterization of each microscopic component of coke. By adding a novel
multi-scale module and convolutional block attention module (CBAM) [27], a Coke-Net is established to extract coke
optical textures from coke photomicrographs.

The rest of this paper is organized as follows. The proposed method is described in detail according to the pro-
cessing flow in Section 1. The experimental results are presented in Section 2, and the effectiveness of the method in
this paper is proved. Finally, Section 3 presents a summary of the entire paper.

2. Materials and Methods

2.1. Sample Collection and Image Acquisition

The photomicrographs of coke used in this paper are collected from coke samples that are made by profession-
als. The sample-making process strictly follows the standard of the China Coal Industry Association [28]. Firstly, the
coal to be tested is crushed to a size of 0.1 mm. Then, vitrinite enrichment is carried out, and the enriched vitrinite
particles are mixed with charred anthracite coal in a certain ratio. Finally, the charred coke blocks are cut vertically
along the central axis to make coke samples. The 3 x 3 mm area of each coke sample is photographed by the mosaic
photography method [29] and combined into an image with a resolution of 12659 x 12144 pixels. The image acqui-
sition process and the environment used in this paper are shown in Figure 1. The coke photomicrographs used in this
paper are shown in Figure 2.
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Figure 2. Microscopic images of coke samples and partial enlargements.
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2.2. Data Preparation and Image Pre-processing

In order to ensure the generalization performance of the model and the accuracy of coke optical texture extrac-
tion, the image data of this experiment is sourced with eight different coke samples made by professionals. Two coke
photomicrographs with different field-of-view resolutions are taken for each sample, and each coke photomicrograph
is sampled in blocks of 272 photomicrographs at 768 x 768 resolution, resulting in a final dataset containing 4352
images. The 2176 coke photomicrographs corresponding to four samples are extracted as the original training dataset,
and the 2176 coke photomicrographs corresponding to the remaining four samples are used as the original testing
dataset. 300 images are randomly selected from the original training dataset and divided into training dataset and vali-
dation dataset according to the 7:3 ratio. The professional is asked to label the coke optical texture in each image,
where the coke optical texture is marked as 1, and the other parts are marked as 0. The process of making the dataset
is shown in Figure 3.

The original resolution

microscopic image of coke Image split Label

Figure 3. Flow chart of image splitting and labeling.

2.3. Microscopic image analysis

Coke optical texture extraction: A Coke-Net is proposed which is a semantic segmentation network in the deep
learning stage. The structure of the Coke-Net is shown in Figure 4. It realizes the function of extracting coke optical
texture from coke photomicrographs.

I Max-pooling [ Deconv I CBAM block
I Multi-Scale block 1 Sigmoid -—=2> Copy

Figure 4. Structure of Coke-Net

The Coke-Net refers to the Unet and consists of both asymmetric decoder and encoder. The encoder of the pro-
posed Coke-Net is composed of four down-sampling modules, each of which includes a Multi-Scale module and a
max-pooling layer. The Multi-Scale module is responsible for extracting and outputting the low-resolution feature
matrix of the image. The connection module in the middle of the network consists of a Multi-Scale module and a
CBAM module. The CBAM module implements the filtering of useless information in the underlying features and
improves the efficiency of the network. The network encoder consists of four up-sampling modules, and each mod-
ule has a Multi-Scale module and a deconvolution layer. Correspondingly, the low-resolution feature matrix is reuced
to its original resolution size step by step. Since the max-pooling layer in the encoder tends to lose low-level seman-
tic information such as the position and shape, a connection consisting of the CBAM module is set up between the
encoder Multi-Scale module and the corresponding decoder Multi-Scale module. As the coke optical texture extrac-
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tion problem is essentially a pixel by pixel binary classification problem, the network finally outputs a probability
map through the sigmoid layer. Each position on the probability map corresponds to the pixel's probability value
belonging to the coke optical texture. By thresholding the probability map, the final coke optical texture extraction
results can be obtained finally. The library and parameters of the networks are shown in Table 1.

Table 1 Structure of Coke-Net

Block Layer(filter size) Channel Output size
Conv2D(3,3) 16 768 x 768
Multi-Scale Block1 Conv2D(3,3) 16 768 x 768
Multi-Scale Block9 Conv2D(3,3) 16 768 x 768
Conv2D(1,1) 16 768 x 768
CBAM Blockl 768 x 768
Conv2D(3,3) 32 384 x 384
Multi-Scale Block2 Conv2D(3,3) 32 384 x 384
Multi-Scale Block8 Conv2D(3,3) 32 384 x 384
Conv2D(1,1) 32 384 x 384
CBAM Block2 384 x 384
Conv2D(3,3) 64 192 x 192
Multi-Scale Block3 Conv2D(3,3) 64 192 x 192
Multi-Scale Block7 Conv2D(3,3) 64 192 x 192
Conv2D(1,1) 64 192 x 192
CBAM Block3 192 x 192
Conv2D(3,3) 128 96 x 96
Multi-Scale Block4 Conv2D(3,3) 128 96 x 96
Multi-Scale Block6 Conv2D(3,3) 128 96 x 96
Conv2D(1,1) 128 96 x 96
CBAM Block4 96 x 96
Conv2D(3,3) 256 48 x 48
Conv2D(3,3) 256 48 x 48
Multi-Scale Block5 Conv2D(3,3) 256 48 x 48
Conv2D(1,1) 256 48 x 48
CBAM Block5 48 x 48

1) Multi-Scale block

As the size of coke optical texture is different, and its ferret diameter often changes in the range of [300um,
100um]. Hence, a Multi-Scale module is designed to replace the two convolution layers in the network. Taking into
account the Multi-Scale module could reduce the semantic gap between different feature channel layers by fusing the
feature maps in adjacent layers [30]. Thus, the Multi-Scale module is used here to improve the semantic segmenta-
tion performance of coke optical texture boundaries. As shown in Figure 5, the Multi-Scale module uses a convolu-
tion block, two serialized convolution blocks, and three serialized convolution blocks to convolve the input image.
The extracted features are stitched together in dimensions and then output through a convolution block. Meanwhile,
referring to the residual network, the module input is added to the dimensionality result.

I 33 conv block [ 1x1 conv block
[ Conv layer ™™™ BN layer
["] ReLU layer

Figure 5. Structure of Multi-Scale block.

Each convolutional block consists of one convolutional layer, one batch normalization layer, and one activation
layer. The addition of the batch normalization layer can effectively reduce the complexity and uncertainty of the net-
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work in the training process. Moreover, the layer can effectively reduce the probability of overfitting the network dur-
ing training. The activation layer itself can increase the nonlinearity of the network, which can avoid the problem of
gradient disappearance to a certain extent and improve the generalization performance of the network.

2) CBAM block

CBAM reduces the interference of image background regions and other impurities, improves the detection
effect of coke optical texture regions, and then improves the segmentation efficiency of the model. Thus, the
approach adds the CBAM module to the designed network which implements the network's autonomous learning of
feature weights in coke photomicrographs. The CBAM module consists of a channel attention part and a spatial
attention part to retain more useful information. The channel attention part focuses on the features related to the opti-
cal texture in the multidimensional input features, and the spatial attention part focuses on meaningful components of
the coke optical texture. The CBAM module is shown in Figure 6.

B Multi-scale moudle = MLP
@l Max-pooling [ Avg-pooling
3 Sigmoid [ 7x7 conv layer

Figure 6. CBAM module architecture.

The CBAM module is located between the encoder and decoder, and ensures that the original features of coke
optical texture are completely preserved in the process of network coding. In other words, the CBAM module is
responsible for obtaining features from the encoder and giving weights taht are feedbacked to the corresponding
decoding module. The working process of the CBAM module is as follows: firstly, average-pooling and max-pool-
ing are conducted to the input features with the size of H X W x C, and two different spatial context descriptors are
generated with the size of 1 x 1 x C. Then, both descriptors are forwarded to a shared network to produce the chan-
nel attention features to be merged together. Finally, the channel weights are normalized to [0, 1] using the sigmoid
activation function, and the channel attention factor is multiplied with the input feature map to obtain the channel-
weighted feature map. The channel attention factor is shown in formular (1).

A.(I) = sigmoid(MLP(Avgpool(I)+ MLP(Maxpool(I)))) )

I'=A(DXI @)

The CBAM module generates spatial attention features by utilizing the inter-spatial relationship of features.
Firstly, two-channel features with the size of I’ and the size of H x W x 1 are aggregated by using the max-pooling
layer and avg-pooling layer, respectively. Each denotes average-pooled features and max-pooled features across the
channel. Those are then concatenated and convolved by a 7 x 7 convolution layer. The sigmoid activation function is
also used to normalize the space weight to [0, 1], and obtain the spatial attention factor in formulars (3) and (4).

A(I') = sigmoid(f" ([Avgpool(I"), Maxpool(I')])) 3)

" =A% I 4

The specific realization of spatial attention is to multiply the input feature matrix and the channel attention coef-
ficient directly, so that the key image features of coke optical isotropic organization are highlighted, and the network
pays more attention to this region. The principle is to extract the channel features, and then realize nonlinear changes
through the sigmoid activation function, so as to reflect the importance of different positions of coke optical organi-
zation for classification tasks. On the other hand, the basic idea of channel attention is to realize the weight calibra-
tion of features through global pooling of the feature matrix and feature interaction by a small network. Then, the sig-
moid activation function is used to calculate the correlation degree between different dimensions of the feature matrix
and the optical organization classification task of coke.

Sofll


https://doi.org/10.53941/ijndi.2024.100022

1JNDI, 2024, 3, 100022. https:/doi.org/10.53941/ijndi.2024.100022

3) Loss function

In the task of coke optical texture segmentation, there are two problems in the image data set. First, from the
perspective of the image data set, due to the random distribution of coke optical texture. When the original micro-
scopic image is divided into several image samples with a resolution of 768x768, there is no coke optical texture but
only image backgrounds in most samples. This results in the imbalance of positive and negative samples in the coke
optical texture image data set. Second, from the perspective of the image sample, even in the sample containing both
the coke optical texture and the image background. The proportion of the optical tissue is inconsistent with that of the
background, and the boundary of the optical tissue is blurred, which is excessively unclear from the background.

In order to solve the above problems, this paper adopts the Focal loss function, which optimizes the common
binary cross entropy loss function by introducing @ and y weight factors.

FLipss = =1 = y7)yilog(y}) + (1 —a)y;” (1 = y)log(1 - y})] (5)

where, y; represents the true value of pixels in the coke optical texture image, y; represents the output predicted value
of the Coke-Net, a represents the weight factor that balances the imbalance of positive and negative samples in the
image data set, y represents the modulation coefficient that controls the weights of easily and difficultly classifying
pixels in a sample image.

Since the coke optical texture occupies a small proportion in the whole coke photomicrograph, the ratio
between the coke optical texture and background can be balanced by setting the value of the sample balance weight
factor «. For the areas with fuzzy edges and low contrast, the modulation coefficient y can be set to make the Coke-
Net strengthen the learning and feature extraction of the edge during the training, so as to improve the edge segmen-
tation accuracy of the coke optical texture.

3. Experimental Rresults and Discussion

All the experiments in this section are based on the following hardware configuration of the computation plat-
form: CPU: Intel(R) Xeon(R) Silver 4208 CPU @ 2.1GHz, GPU: NVIDIA Quadro P4000, RAM: 64GB. Because of
Pytorch is the most common and stable framework, Pytorch12.0 is used as the deep learning framework. Moreover,
the GPU is used to accelerate the training and testing of the network.

3.1. Evaluation Metrics

Considering the coke optical texture extraction problem as a binary classification problem of pixels on coke
photomicrographs, four typical evaluation indexes: precision, recall, dice-coefficient, and accuracy, are selected to
evaluate the coke optical texture extraction results. The evaluation indexes are determined as follow:

precision=TP/(TP+ FP) (6)
recall=TP/(TP+ FN) )

dice =2TP/2TP+FP+FN) ®)
accuracy =(TP+TN)/(TP+TN+FP+FN) )

where, TP represents the area that the network correctly outputs the coke optical texture, TN represents the area that
the network correctly outputs the background, FP represents the area that the network incorrectly outputs the coke
optical texture, TN represents the area that the network incorrectly outputs the background. Thus, precession repre-
sents the proportion of pixels classified as coke optical texture that is indeed coke optical texture. Recall represents the
proportion of pixels classified as coke optical texture that is actually coke optical texture. The dice-coefficient
responds to the similarity of the extracted of coke optical texture to the real results. Accuracy represents the propor-
tion of pixels correctly classified as coke optical texture to all pixels in the image.

3.2. Model Training

In order to improve the convergence speed of the network and further prevent overfitting, the Adam algorithm
is selected as a parameter updating strategy. Adam [31] is suitable for problems with large data or parameters, and for
problems with noises. The basic idea of Adam is to calculate the network learning rate based on the first-order
moment of the gradient, while simultaneously calculate the mean momentum of the second-order moment of the gra-
dient to update the parameters. This benefits the handling of the problem of severe fluctuations in the network learn-
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ing rate or inability to update parameters when the gradient noise is too large or too small. In this paper, the initial
learning rate is set to be 0.0001. The batch size is set as 2 for the training phase and as 1 for the testing phase, and a
total of 200 training iterations are performed. The training flow of the coke microscopic optical tissue semantic seg-
mentation network is shown in Algorithm 1 below.

Algorithm 1: Training algorithm of coke optical texture segmentation network

Input: Train dataset: (x1,y1),(x2,y2),- -+, (Xm,Ym), Test dataset: (x1,y1),(x2,¥2),---,(xn,¥n), Learning rate: €, loss function: Loss,
maximum train epochs: N
: while epoches <N do:
1 generate mini-batch train dataset: Xrain, Yirain ;
train model based on back propagation algorithm: model < Network(x:rqin»Yrrain );

inference test dataset based on current model: ypredicr < Model(xyaiia);;

evaluate model: validjyss = LosS(Vtrain» Y predict);
if then valid;,gs is minimum:
save model: Modelpes; < Model

end if

1
2
3
4
5: calculate train loss function: Trainjyss = LOSS(Vtrain»Y predict);
6
7
8
9
10: end while

The change curves of the accuracy and loss rate of the network model designed in this paper are shown in Fig-
ure 7. With the increase of the number of iterations, the network accuracy rate keeps rising while the loss rate keeps
decreasing, and the network effect reaches the best in about 100 rounds. Therefore, the network parameters are saved
as the best network model at 100 rounds.
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(b) Loss rate change curve

Figure 7. Accuracy and loss rate change curve.

3.3. Experimental Results

1) Ablation experiment: To verify the effectiveness of the proposed Coke-Net model, this subsection designs
ablation experiments to demonstrate that the Multi-Scale module and the CBAM module can effectively improve the
segmentation performance. The experiments are conducted with the Unet as the backbone network, moreover, four
networks are selected: the Unet, Unet+CBAM, Unett+Multi-Scale+CBAM, and Coke-Net. Experimental results are
shown in Table 2 and Figure 8.

Table2 Ablation experiment results

Network P R Dice Acc
Unet 0.923 0.938 0.932 0.931
Unet+CBAM 0.946 0.943 0.945 0.943
Unet+Multi-Scale+tCBAM 0.959 0.961 0.959 0.963
Coke-Net 0.971 0.967 0.968 0.970
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Figure 8. Ablation experiment results.

As can be seen from Table 2 and Figure 8, the addition of both the Multi-Scale module and the CBAM module
can improve the network’s segmentation effect to a certain extent. Among them, the dice-coefficient and accuracy of
Unet+CBAM are improved by 1.3% and 1.2% compared to the Unet, moreover, the dice-coefficient and accuracy of
Unet+MultiScale+CBAM are improved by 2.7% and 3.2% compared to the Unet. The dice-coefficient and accuracy
of the Coke-Net designed in this paper reach the highest among the four networks approaching 0.968 and 0.970,
respectively.

2) Comparison experiment: To verify the practicality of the Coke-Net proposed in this paper, this subsection
compares the Coke-Net with three existing models including the Unet++ [32], Attention-Unet [26] and Trans-Unet
[33]. The Coke-Net uses the Unet as the baseline, and incorporates spatial and channel attention modules. The The
Unet++ is embedded with the Unet of different depths. Attention modules are added to the Attention-Unetto sup-
press irrelevant information in the image so as to highlight important local features. Therefore, it is persuasive to con-
duct comparative experiments with the Unet++, Attention-Unet and Trans-Unet. The experimental results are shown
in Table 3 and Figure 9.

Table3 Comparison experiment results

Network P R Dice Acc
Unet++ 0.961 0.957 0.954 0.956
Attention-Unet 0.965 0.964 0.960 0.966
Trans-Unet 0.975 0.968 0.965 0.972
Coke-Net 0.979 0.970 0.974 0.977

0.985
0.980 r

0.975 - \//
0.970 -
0.965 - '\.\/
0.960 -
0.955 - \\./

0950 1 1 1 1
P R Dice Acc

== Unet++ == Attention-Unet
Trans-Unet =e= Coke-Net

Figure 9. Comparison experiment results.

From Table 3 and Figure 9, it can be seen that the dice-coefficient and accuracy of the Coke-Net are improved,
respectively, by 2%, 1.4%, 0.9% and 2.1%, 1.1%, 0.5% compared to the Unet++, Attention-Unet and Trans-Unet.
The results indicate that the Coke-Net can effectively extract coke optical texture.

To illustrate capabilities of the Coke-Net, five typical photomicrographs are selected from the testing dataset,
and four networks are used for coke optical texture extraction experiments, respectively. The experimental results are
shown in Figure 10. As it is shown in Figure 10, the Coke-Net works better and can effectively extract the optical
texture in these five photomicrographs. The addition of the attention mechanism makes the extraction accuracy of the
Atteintion Unet significantly higher than that of the Unet++, but still poses the problem of misclassification of the
small areas in the 1st and the 4th photomicrographs. Due to the complex composition of coke optical texture, a small
part of inert maceral derived components show sblue and purple alternately under refracted light irradiation, which
will easily affect the segmentation of coke optical texture. As a result, the Unet++, Attention-Unet and Trans-Unet all
fail to properly segment the boundaries of optical texture. The Coke-Net proposed in this paper can overcome the
color transformation problem that is presented by coke at different angles of the incident light, and can identify coke
optical texture effectively from coke photomicrographs. The extraction results are close to the actual labeling results
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Figure 10. Visual segmentation examples of different models.

4. Conclusions

In this paper, a semantic segmentation method has been proposed to solve the segmentation problem of coke
optical texture in coke photomicrograph. Both Multi-Scale module and attention mechanism have been taken into
consideration in the framework of the proposed semantic network model. Ablation experiments and comparison
experiments have been designed showing that the dice-coefficient and accuracy of the Coke-Net have improved,
respectively, by 2%, 1.4%, 0.9%, 2.3%, 0.9% and 2.1%, 1.1%, 0.5%, 2.7%, 0.7% compared to the Unet++, Attention-
Unet, Tans-Unet, Unet+CBAM, and Unett+Multi-ScaletCBAM. This has demonstrated the effectiveness of the
designed Coke-Net model in extracting the coke optical texture.
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