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Abstract: This paper addresses the centralized fusion estimation problem in networked systems with
stochastic uncertainties characterized by random parameter matrices together with multiplicative and
additive noises. To reflect real-world engineering situations, it is further assumed that the network trans-
missions are simultaneously subject to random packet dropouts and deception attacks which randomly
alter real measurements by replacing them with noises. A novel approach is proposed that avoids the
need for a specific state equation, relying instead only on the mean and covariance functions of the pro-
cesses involved. The additive noises in the sensor measurements are considered to be time-correlated and
packet dropouts are managed through a zero-order hold compensation strategy that attenuates the effect
of data loss on the estimation process. On the basis of the available measurement information, recursive
fusion filtering and smoothing algorithms are developed using an innovation-based methodology. The
proposed approach is validated by numerical simulations, demonstrating its feasibility and correctness.
Comparative results show the superior performance of the proposed fusion estimation scheme over exist-
ing filters in the literature, highlighting its effectiveness in mitigating the impact of deception attacks and
packet dropouts in networked systems.

Keywords: centralized fusion estimation; random deception attacks; random packet dropouts; time-cor-
related noise; zero-order hold strategy

1. Introduction

With the advancement of technology and scientific progress, networked systems have become crucial in many
research domains, including health management, target tracking, traffic control, environmental monitoring, fault diag-
nosis and security monitoring (see, e.g., [1—3]). Among these systems, multi-sensor systems in particular have gar-
nered significant research attention due to their inherent characteristics such as flexibility, high performance, effi-
ciency, and resource sharing. The literature extensively addresses state estimation problems for sensor networks fac-
ing uncertainties in both measurement devices and transmission processes. For instance, in [4], the state estimation
problem for a class of spatial-temporal networks with time-varying delays is studied under event-triggered mecha-
nisms and encoding-decoding schemes. In [5], using a prediction compensation strategy, a distributed fusion filtering
algorithm is proposed for discrete-time linear network systems with stochastic disturbances in sensor measurements,
and both random one-step delays and random packet dropouts (RPD) in transmission processes. The optimal, subop-
timal and probability-dependent distributed Kalman filters are proposed in [6] for multi-sensor networked systems
under stochastic communication protocols and correlated noises. Comprehensive reviews of the key findings and
emerging challenges in this field are provided in [7—11].

Fusion estimation, which effectively integrates diverse sensor data to produce a more accurate estimate of the
system state, is a critical research area in multi-sensor networked systems. Broadly speaking, fusion estimation
methods can be divided into two main categories —centralized and distributed—, based on whether sensor
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measurements are transmitted to a fusion center (FC) or not. In centralized fusion (CF) estimation, individual
sensors forward their observations to a FC where all incoming data is collectively processed. This approach
relies on the FC to produce a single optimal state estimator utilizing measurements from all sensors across the
network, thereby achieving optimal results in the least-squares (LS) sense. Representative contributions to this
topic can be found in [12—15] and references therein. Despite their ability to yield optimal state estimators, CF esti-
mators generally suffer from limited robustness and computational drawbacks. In contrast, distributed fusion estima-
tion designs local estimators from pre-processed data at each sensor, which are then fused based on a specific fusion
criterion to obtain distributed fusion estimators. This approach, which is widely used due to its reduced computa-
tional burden and improved robustness, is discussed in [16—18]. However, distributed fusion estimation demands that
sensors have the computational ability to pre-process data. In situations where this capability is lacking, CF estima-
tion is more suitable, as it processes all raw sensor data at a central location and provides globally optimal estimates.

Networked systems are typically subject to different stochastic uncertainties due to physical constraints, envi-
ronmental complexities, changes in subsystem interconnections and random component failures or repairs. A com-
mon type of uncertainty in these environments is the presence of multiplicative stochastic disturbances in the system
model (such as multiplicative noises in the system state), missing observations or degradation of measurements.
These network-induced phenomena —which occur in diverse application fields, such as digital control of
chemical processes, radar control, navigation systems and economic systems — can be described using
stochastic parameter matrices within the system equations. In addition to these uncertainties, data transmis-
sion over communication networks may be affected by imperfect communication channels or network conges-
tion, resulting in stochastic uncertainties, such as random delays and RPD in the transmitted measurements. A
critical issue when dealing with RPD is how to compensate for lost measurements. A widely used compensa-
tion method involves employing the last successfully transmitted measurement when the actual one is unavail-
able —the zero-order hold strategy (ZOHS)— which effectively mitigates the impact of lost measurements.
Numerous studies have focused on designing estimation algorithms for systems with random parameter matri-
ces and transmission uncertainties, covering a broad range of network-induced uncertainties as discussed above.
Relevant examples include estimation studies with random parameter matrices, random transmission delays, and
packet losses in [19—24] and references therein.

Another major challenge is the presence of sequentially time-correlated measurement noises, which frequently
occur in fields such as electronics and engineering. Extensive research has focused on addressing this issue, often
assuming that measurements are affected by infinite-step time-correlated channel noises, modeled as the output of a
linear system driven by white noises. Two well-known approaches for managing this noise correlation are state aug-
mentation (which is straightforward but requires high computational cost) and measurement differencing (which
avoids increased dimensionality but needs two consecutive measurements to compute the difference and generate a
new measurement free of time-correlated noises). The design of fusion estimation algorithms for multi-sensor sys-
tems with time-correlated channel noises is a critical research area. In [24], centralized and distributed fusion filtering
and smoothing algorithms are derived for multi-sensor systems with random parameter matrices using the measure-
ment differencing method. However, when random delays or RPD occur, sensor measurements may not arrive at the
processor in time, making the measurement differencing method ineffective. Additionally, from a computational
viewpoint, developing novel non-augmentation methods to deal with time-correlated measurement noises remains a
significant challenge. In this context, alternative approaches that do not rely on augmentation or differencing, but
instead focus on the direct estimation of time-correlated additive noise, are discussed in [25] for stochastic uncertain
systems over packet-dropping networks and in [26] for nonlinear stochastic uncertain systems with RPD compensa-
tions. Furthermore, even in the absence of transmission losses, direct estimation of time-correlated additive noises has
been applied in [27] for networked uncertain systems where the stochastic uncertainties are characterized by white
multiplicative noises, and in [28, 29] for systems with random parameter matrices and deception attacks.

In addition to the various stochastic uncertainties affecting both measurements and transmissions in networked
systems, research on the estimation problem must take into account the high likelihood of cyber-attacks. Security vul-
nerabilities have been widely examined in the literature, with comprehensive reviews of recent advances and chal-
lenges provided in [30, 31]. In particular, random deception attacks (RDA), which aim to undermine data integrity by
maliciously and randomly altering information, have received considerable research attention. The distributed filter-
ing problem in sensor networks with specific communication topologies under RDA is explored in [32], considering
systems with fading measurements and multiplicative noises in both signal and measurement equations. Further
investigations into sensor networks with various network-induced constraints and simultaneous RDA on sensor mea-
surements are presented in [33]. The distributed estimation problem has also been studied in [34] for a specific class
of nonlinear systems under RDA. Additionally, networked uncertain systems affected by RDA —with uncertainties
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arising from both multiplicative and additive noises in the state and measurement equations— are examined in [35] to
develop distributed optimal and self-tuning filtering solutions utilizing compressed data.

Despite the extensive literature on sensor network estimation, the above discussion leads us to conclude that
several interesting challenges remain when the system dynamics include mixed complexities. These challenges serve
as the main motivation for our research, which focuses on the design of recursive CF filtering and fixed-point
smoothing algorithms for a class of multi-sensor networked uncertain systems with the following features:

(a) The state evolution equation includes both additive and multiplicative noises.

(b) The measured outputs contain stochastic uncertainties, that are depicted by considering that the entries of the
measurement matrices at the different sensors are random variables (1v).

(c) The additive noise of the sensor measurement equations has infinite-step correlation, which, as usual, is
described by a first-order auto-regressive model.

(d) In addition to the presence of sensor measurement uncertainties, RPD and RDA during transmission are also
considered.

The primary challenges of the addressed problem are: 1) how to compensate for lost measurements to improve
the estimation accuracy under RPD; 2) how to effectively obtain recursive estimators when infinite-sept correlation of
the sensor noises and RPD in transmission occur simultaneously, a challenge that cannot be addressed by subtracting
two successive observations due to the random loss of data packets; 3) how to adequately address the risks posed by
RDA, which can lead to significant estimation errors if not properly handled. The most outstanding contributions
achieved in this work are closely related to the strategies used to overcome these challenges; namely, the use of the
ZOHS to counterbalance the effect of RPD, the use of direct estimation of measurement noise to deal with time-cor-
relation, and the incorporation of the effect of RDA into the estimation algorithm based on the knowledge of their
probability of success, without needing to know whether a particular random attack was successful or not. In contrast
to the above commonly used methods for dealing with the estimation problem in systems with time-correlated addi-
tive noise, we propose a novel approach that combines the estimators of the state process and the measurement noise
to effectively handle the correlation of such processes. Another significant contribution of the current research is the
use of the state and noise mean and covariance functions, instead of the explicit state and noise evolution models,
together with an innovation-based methodology. This allows the algorithms to be easily derived while retaining their
precision and simple structure.

The remainder of this paper is structured as follows: Section 2 introduces the system model, which accounts for
random parameter matrices and time-correlated noises in sensor outputs, along with simultaneous RDA and RPD in
transmissions. This section also outlines the assumptions made regarding the stochastic processes involved. In Sec-
tion 3, the CF estimation problem is formulated, with detailed derivations of the filtering and fixed-point smoothing
algorithms. Section 4 presents an illustrative example that demonstrates the effectiveness of the proposed estimation
algorithms and examines how both RDA and RPD probabilities affect estimation accuracy. Finally, Section 5 con-
cludes with a summary of the key findings.

Notation and abbreviations. The following standard notation is used throughout the paper. R” and R™" denote
the sets of n-dimensional real vectors and m X n real matrices, respectively. For a matrix A, AT and A~! denote its
transpose and inverse, respectively. Diag(ay,...,a,) is the diagonal matrix with entries ay,...,a,, and (4, | A;)
represents the partitioned matrix with submatrices A; and A,. I, and 1, denote the n X n identity and all-ones matri-
ces, respectively, and 0,x,, is the nXm all-zero matrix. ® and o denote the Kronecker and Hadamard products of
matrices and @ represent the direct sum of matrices. If the dimensions of a vector or a matrix are not explicitly stated,
they are assumed to be compatible with algebraic operations. For simplicity, we write G, = G for any function
Gy, depending on time instants k and 4, when i = k. E[-] denotes the mathematical expectation and P(B) is the
probability of event B. dy, denotes the Kronecker delta function. Finally, the following abbreviations are used:

CF  centralized fusion FC  fusion center LS least — squares
MSE mean — squared error OPL orthogonal projection lemma | RDA  random deception attack(s)
RPD random packet dropout(s) | rv random variable(s) ZOHS zero — order hold strategy

2. Problem Formulation and System Description

This paper addresses the LS linear estimation problem for multi-sensor systems experiencing various
stochastic uncertainties in sensor measurements. It further considers that the transmissions are simultaneously
subject to RPD and RDA, which randomly alter the real measurements by replacing them with noises. The
design of LS linear estimators is based on the CF architecture, in which sensor measurements are transmitted
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through different communication channels to a FC, where they are merged to obtain the required estimators.
Utilizing an innovation approach and the ZOHS —which compensates for missing current measurements at
the FC by using the last received measurement— covariance-based recursive algorithms for CF filtering and fixed-
point smoothing estimators are derived. The system model and the assumptions necessary to address the LS linear
estimation problem are detailed in the following subsections.

2.1. State and Measurement Models

Consider a class of networked multi-sensor systems with stochastic uncertainties characterized by random
parameter matrices and multiplicative and additive noises, described by the state and measurement equations:

Xt = (Ap+ @) xe+wi, k=0, (1)

Tik = H,«,kxk +Vik, k= l; i€ M, (2)

where M ={1,2,---,m} denotes the set of sensors, x; € R™ is the state vector and z;; € R™ is the measured output
collected by the ith sensor. The matrices {A}r=>0, {Ak Jk=0 are known time-varying matrices.

All processes in equations (1) and (2) are assumed to be second-order and the following assumptions apply:
(D) The initial state vector x, and the noise processes {a}r=o and {wi k=0 are mutually independent and verify:

o The initial state x is a zero-mean random vector with known covariance matrix, Kg = E[xoxg ].

e The multiplicative noise {a =0 is a zero-mean scalar white process with known variances, o, = E[a}],
k=0.

® The additive noise {wy}i=¢ is a zero-mean white process with known covariance matrices, K}’ = E[wkw,{],
k=0.

Remark 1. From equation (1) and the above assumptions, it is easy to prove that the state process {x;};>¢ has
zero mean and its covariance matrices K} = E[xsxf] can be recursively obtained as:

Y =A, K AT ol ALK AT+ KV, s>

a,s—1

Then, by denoting A; = Hﬁ;}) Aj, and BT = AT'K?, the state covariance function K;, = E[x.x”] can be expressed
as: Ki, = ABY, s<k.
D) {Hixhe=1, i € M, are independent sequences of independent random parameter matrices whose entries h; pqa(k),
p=1L1,-,n, and q=1,--- ,n,, have known means, E[h;,,(k)]. The expectations E[hi,pq(k)h,-,,,,qr(k)} are also
assumed to be known, for p,p’ =1,---.,n, and q,q' = 1,--- ,n,. The mean matrices are denoted by ﬁ,-,k =E[H;;],
with B[H;,] = (E[hi,pq(k)])
Remark 2. From the independence hypotheses of assumption (II), for arbitrary i, j € M and any deterministic
matrix R = (rl’q)mxm , it is clear that E [H,-J(RHJT’S] = H,;kRHZS for j#i or s # k. When j=1i and s = k, the entries
of the matrix of E[H,xRH],] are computed by

n.xn,"

n, n

(B[HiRH[]), = > > Elhipak)higp()] 1o, prg =1, 1.

a=1 b=1
(IIX) The measurement noises {v;y}i=o, i € M, are time-correlated processes generated by:
Vik = Cip-1Vik-1 + Uip-1, k=1; ie M, 3)

where C;, € R™, i € M, are non-singular known deterministic matrices. The initial vectors v;y, i € M, and the
noises {u;;}x=0, | € M, are independent and they verify:

® The initial noises v;o, i € M, are zero-mean random vectors with known covariance and cross-covariance
matrices, K}, = E[viovi,], i,j € M.

® The noises {u; =0, i € M, are zero-mean white processes, independent of each other at different times,
with known covariance and cross-covariance functions K}‘j,k = E[u,»,kuik], k=0;i,je M.

Remark 3. From this assumption, it is evident that the measurement noises {v;}r=0, { € M, have zero mean
and their cross-covariance matrices K s :]E[v,-,kv_/T;S], i,je M, can be expressed as Kliys=Cix1--CisKy g,

s<k, where the matrices K,VJY = E[v,-,sva] are recursively obtained as:

v
Ki.f.s

= Ci,s—lK-v

ijs=1

T
Cis + K

ijs—1°

s=1; i, je M.

2.2. Measurements Subject to Random Deception Attacks and Random Packet Losses
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Consider the scenario in which the sensor measurements {z;;},>1, i € M, are transmitted to the remote FC via
individual communication channels subject to both RDA and RPD during data transmission. Binary indicator rv,
Aix €{0,1} and ;, € {0, 1}, are incorporated into the observation model to represent these random phenomena. More
specifically:

* Random deception attacks: The sensor measurements subject to RDA, denoted as Z 4, are described by

Zik = zig + AigZip, k=1 i€M, “)

where A;; € {0,1} is the successful attack indicator for the ith sensor at time k and Z;; = —z;x + &;x is the RDA sig-
nal introduced by the attacker to nullify the actual measurement z;;, and replace it with deceptive information repre-
sented by noise &;,. Expression (4) for the attacked measurement outputs can then be equivalently rewritten as fol-
lows:

Zie = =)z + Aix€ig, k=1; i€ M. 5)

* Random packet dropouts: Consider that data packets are simultaneously subject to random losses during
transmission to the FC. Let y;x € {0, 1} be the packet arrival indicator of the ith sensor measurement at the FC at time
k. To mitigate the effect of these packet losses, the ZOHS is adopted; specifically, the most recently received data
packet is considered to counterbalance packet losses. Thus, denoting y;, the measurements processed for estimation
under ZOHS, the following equation holds:

Yik = %‘,kZ‘,k + (1 =Yix)Yik-15 k=2, Yii1 = Vi1Zi; €M 6)

The next assumption is made regarding the processes involved in equations (5) and (6):
(V) The attack noises {€;}r=1 and the sequences {A;;}x=1 and {Vix}r=1 satisfy:

o {&iihi=1, i € M, are zero-mean white processes, independent of each other at different times, with known
covariance and cross-covariance functions, Kf;; = E[Sf,ké‘;k], k=1;i,je M.

® Both {Aishi=1, i€ M, and {y;;}i=1, i € M, are independent sequences of independent Bernoulli rv with
known probabilities P(A;; = 1) = A;x and P(yix = 1) =¥,

Remark 4. From the above independence assumption, it is clear that E[2;xy ;] =0, Vi, j € M, Vk,s=1, and

jI’,/Ca j: i, s = k,
Aigdjs, jEIOr S *k.

7[,10 j=i’ S=k,

Elyixy ] = { Yii¥iur JEIOrS £k

E[/li,k/lj,s] = {
Finally, the following independence assumption is required:
(V) For each i € M, the state process, {xi}r=0, the random parameter matrices, {H;}i=1, the noises, {viy}r=1 and
{€ixli=1, and the sequences {A; ;)= and {yix}i=1, are mutually independent.

3. Centralized Fusion Estimators

In this section, the proposed methodology to address the CF LS linear estimation problem for the system model
presented in Section 2 is described, and recursive filtering and smoothing algorithms are designed. Actually, using an
innovation approach, we derive recursive algorithms for the LS linear estimators Xy of the state, x;, based on the
measurements {y;1,---,yin, | € M} defined by (6), using the CF methodology. Specifically, we start by deriving a
recursive algorithm for the LS linear filter, X;/;, based on the measurements {y;1,---,yix, i € M}. Then, for each
fixed k, when successive measurements y; i1, Vik+2,*** »Vik+Ls § € M become available, the filtering estimator will
be recursively updated to obtain the fixed-point smoothing estimators Xz, L=1.

The section is organized as follows. In Subsection 3.1, the stacked observation model is introduced to address
the estimation problem under the CF architecture. Subsection 3.2 discusses the implementation of the innovation
technique and its integration with the proposed estimation method. Finally, Subsection 3.3 details the derivation of the
filtering and smoothing algorithms.

3.1. Stacked Observation Model: Properties

At the FC, the stacked vectors y, = (y{k, e, y,ﬂ,k)T with all the measurement information used for estimation
are considered. Next, we establish the mathematical model for these vectors and examine the properties that will be
necessary to address the LS linear estimation problem.

The following notation is used for the stacked vectors and matrices:

Zk = (Z{,k"” ,Z,Yy‘,’k)T, Zk = (Z{,k"” ?Z;y,k)T’ gk = (8{,/(’.“ ,8,7’;’]()7", Vk = (v{k’... ’vrTn,k)T’
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H; = (H1T,k H;,k)T, I'e= Diag()’l,ks"' s7n1,k) ®lI,, Ar= Diag(/ll,k,"' ,/lm,k) ®1,.

From equation (6), the mathematical model for the stacked vectors y is:
Vi = DiZe+ (Lo =T vieer, k225 y1 =T42), (7
where, from (5), the vectors Z; of measurements subject to RDA are:
Ze = (Don, — Ai) 2+ Mg k=1, (®)
and, from (2), the vectors z; are given by:
= Hyxp +vy, k=1, 9)
Note that, from (3), the additive noise {v;}r=0 is a time-correlated sequence, satisfying
Vi =CroiVier ey, k=1, (10)

with C = Ci3 @+ ®Cp and u = (uf -+ ,u;,k)T.

Once we have established the model for the stacked vectors, we must derive the LS linear estimators Xy of the
state, x;, based on the measurements {yi,---,yy} given by (7). For this purpose, the statistical properties of the pro-
cesses in the observation model (7)-(10) need to be studied. These properties are summarized in the following propo-
sition, whose proof is straightforward from assumptions (I)-(V).

Proposition 1. The processes involved in equations (7)-(10) satisfy the following properties:

(@) {Huy=1 is a sequence of independent random parameter matrices with know means H; =

(HITJ( ﬁ;k)T and, for any deterministic matrix R, the expectations E [HkRHST] = (E[H,-,kRHJTS])_ y are also
1)

known. Specifically, their entries E[H, ,ﬂ,kRHjT!s], i, j € M, are defined in Remark 2.
(b) The measurement noise, {Vi},=,, is a zero-mean time-correlated sequence, with covariance matrices
K}, =E[vv!] given by K}, = C_y - C,K, s <k, where K = E[v,v!] is recursively obtained as: K} = C,_|K]_,
T u > : U u L) ot Vo v
C.+K¢,, s=1, with K} = (Kijw’)i,jeM and initial condition K = (Kiflo)i,jeM'
and DT = C['K}, the noise covariance function K} ; can be factorized as: K} ;= C;D!, s<k.

. k-1
Moreover, denoting C = [[;—, Ch

(¢) The attack noise {&xlr=1 is a zero-mean white process with covariance matrices K ZE[Ské‘,{] =
w
(Kij,k) i,jeM-

(d) {Ar}i=1 and (T }i=1 are sequences of diagonal independent random matrices with know means
A =Diag (i, Anie) ®1y, Ti=Diag (V4o Vi) L, k=1,

Denoting A = (/11,10 S ,/l,,,,k)T ®1, and ;= (yl,k, e ,ym,k)T ®1,, k=1, the matrices Kf = E[ﬁkﬁ,{] ,
K,:_ﬁ = E[(lm,,: =L)AL, —,Bk)T] and Kf(l_’g) = E[,Bk(lmnz —ﬁk)T] , With By = A, v, are known and their entries
can be computed taking into account Remark 4.

(e) The state process {x}k=1, the random parameter matrices, {H}i>1, the noises, {vi}i=1 and {€;}i=,, and
the diagonal random matrices {Ay}r=1 and {Uy}i=1, are all mutually independent.

The covariance and cross-covariance functions of the observation processes involved in equations (7)-(9) will
be used in the filtering algorithm. The expressions for such functions are provided in the following proposition,
whose proof follows easily from the aforementioned properties.

Proposition 2. The sequences {Zk}kal and {yi}y=, are zero-mean second-order processes whose covariance and
cross-covariance functions, K =E[%Z"], K. =Ely’] and K,?s =E[Zy"], are given by the following expres-
sions:

 Ki = K\ o (E[HA Bl HI 1+ C,DY ) + K{ o Kf, k=1.

® K., = (. — A (HAABTH, +CDT) (L, — Ay, s<k—1.

o K =K; T, +K.\ (I —Ty), 2<s<k-1; K, =K. T\

o K=Kl oK+ K7 oK + K" oK+ (K" oKp\ ), k=2, K| =K]oKj.

o K,y =Ky + L ~TOKL,, k=2

Remark 5. For the sake of notational simplicity in the derivation of the filtering algorithm, let us consider a new
process {gi},>; defined as gi = yx — (L. —T)vie1, k=2; g1 =y,. This process has zero mean and their covari-
ance matrices, K} = E[gkng], k=1, are given by:
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K]f = Ki - (Imn, _Ijk)(K}:,k_l )T - K]i:k_l (Imn: - fk) + (Imn: - fk)1<]}:—1 (Imn: - fk)’ k>2’
The statistical properties of the processes involved in the stacked model, established in propositions 1 and 2,
ensure the existence of the LS linear estimators, the design of which is detailed in the next subsection.

3.2. Innovation Approach to the LS Estimation Problem

Given the observations {y1,---,yn}, the goal is to derive recursive algorithms for the CF LS linear estimators,
Xi/n» of the state x; based on these observations. As the observations are generally nonorthogonal vectors, the Gram-
Schmidt orthogonalization procedure is employed to transform the observation process, {yi},=, into a white process
{ttx )= , referred to as the innovation process. The estimators can then be expressed as a linear combination of the
innovations and the orthogonality of this new process greatly simplifies the derivation of the algorithms compared to
using the observations directly.

Specifically, replacing the observation process with the innovation process enables the LS linear estimate
Ek - (of an arbitrary second-order vector &, based on the observations { Y, RSN }) to be expressed as the following
linear combination of the innovations { tp, hSN } :

N
Eyv = B[&yu) |11, . (11)
h=1
where I1;, = E[uhu{] denotes the innovation covariance matrix.

The innovation at time k is defined as p; = yx —Yis-1, Where Yix—1 is the LS linear one-step predictor of the
observation y;. From the Orthogonal Projection Lemma (OPL), equations (7)-(9) and the properties established in
ﬁogositionAl, we have that Yix-1 = TiZii-1 + Ln, —T)Vie1, k=2, with %k/k_l = (L. — A)Zuicrt and Zy-1 =
H i Xpeji-1 + Vi1«

Thus, the one-step predictor ;-1 is expressed in terms of the state predictor, x; 1, and the noise predictor,
Visk—1; specifically, Yy -1 is given by:

Ykt = Delln, = M) (Hi Xt + Viger) + o, = Tdyicr, k=2 (12)

L ~ 2 . X .
For simplicity, we denote g, el = (g’;}’i ) the one-step predictor of the vector ¥ = ( v,]: ) Then, expression
(12) can be equivalently rewritten as:

Vet = De(ln, — Ay) ( Hy| Imn:) Wyt + Ly, —=Tyiet, k=2. (13)

Therefore, the determination of the innovation requires the linear one-step predictor , - which, together with
expression (13) provides the foundation for deriving the CF filtering and fixed-point smoothing algorithms presented
in the following subsection.

3.3. Centralized Fusion Filtering and Fixed-Point Smoothing Algorithms

In this section, we first present a recursive algorithm for the CF LS linear filter, X, of the state x; based on the
observations y;,---,y. Then, in order to obtain the smoothers at the fixed-point k, Xy/+., L=1, the filter X/, will
be recursively updated as successive observations Yy, Yi+2, - ,Vk+z become available. The performance of the CF
estimators is measured by the magnitude of the estimation errors, X; 4z = X — X/k+2 and, more specifically, by their
covariance matrices, Kj;,, =E [}k e LNk L] , L=0. Both proposed algorithms also provide recursive formulas for
the estimation error covariance matrices, thereby offering a measure of the estimation accuracy under the LS opti-
mality criterion.

Recursive centralized fusion filtering algorithm. Under assumptions (I)-(V), the CF LS linear filtering esti-
mator, Xy, and the corresponding error covariance matrix, Ki,., are given by:

&\k/k = (Ak |0n‘><mnj) €, k21, (14)

- T
K;/k = AkBZ - (Ak | Onkxmnz) K]f (Ak | On\xmnz) > k2 1, (15)
where the vectors e, and the matrices K =E [ek e,ﬂ are recursively obtained from:

€, =€ +‘I)kH];1/,lk, kZl, €)= 0, (16)
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Kf =K, +®I'®], k=1; K{=0, (17)
and the matrices ®, = E [ekp,ﬂ satisfy:
D, = ( (HBy | Dy) — (HiAr | Cx) K;;])T(Imn: -AOT, k=1 (18)
The innovations, [, and their covariance matrices, I1;, are calculated by:

e = Y = Tillm, — Ag) (ﬁkAk | Ck) et — Ly, —Tyict, k=25 =y (19)

1_Ik = K/f _rk(lmm _Kk) ( ﬁkAk | Ck) Kz_l ( HkAk I Ck) ( mn, _Ak)rk k>1 (20)

with K given in Remark 5.

Proof. To derive the innovation from (13), we need to calculate the predictor @k el Given that the filter of the
state vector is X/x = (I,,A Ontx,,,,lj) @k s« (which consists of the first n, entries of ‘/I’\k i ), we must obtain both the pre-
diction and filtering estimators ’\fk 15 S<k. Using expression (11) for the LS linear estimators, we write

Yo=Y Bully' . 1)
h=1
so the coefficients By, = E[Wiuh | = E[Wiy) | —E[¥iy)-1], 1<<h<k,need to be computed.
— On the one hand, by using equations (7)-(9), Remark 1 and the properties outlined in Proposition 1, we have:

E[Tkyz] = (AkB]{ ®CkD£) ( ﬁh | Imn,)T(Imn, _Kh)fh +E|:‘Pky}{_1} (Imn: _fh)9 2§h<k

— On the other hand, by employing (13) for ¥},/,_; in conjunction with (21) for the predictor /\flh o1 We obtain:
h
B[S ] =Y BT B (Hil L) U, = ATy + B[ Wiyl ] L, ~T), 2<h<k.
j=1

Consequently,
h-1
_ T B _ T S
Ba= ((8x® Co) (B, 1Dy) = (1=8,0)Y B By (Hyl )" ) U = AT 150k,
=1
ensuring that B, = (A, ®C)®,, 1 <h<k, where
h-1
@, = [ (HBy D)) = (1=6,,0) Y @11 D (Hyhy | C)" | = AT hZ1. (22)
=1
k
Now, by defining the vectors e; = Z(I),,H,j]ﬂh, k=1, we have that ‘/I’\k/s =(A,@CY e, s<k.

After these preliminary steps, }ﬁlle equations of the filtering algorithm are proven as follows:

® Since X, = (I,l\ Ontxm,,:) fl’\k/k, using that @k/k = (A, @CY) er» expression (14) is clear.

e Taking into account that K = E [eke,ﬂ , along with Remark 1 and (14), the expression for the filtering error
covariance matrices K, = E[x.x{ ] — E[XX; ] given in (15) is readily obtained.

o From their definition, the vectors e, clearly satisfy (16).

e The recursive formula (17) for the covariance matrices K{ = E[ecef | is derived directly from (16), taking
into account that the innovation is a white process.

o Using again the definition of the vectors €, and taking into account that the innovations form a white process,
k

it is clear that K} = Zd)hl'[,‘f(l){ . This expression for K along with (22), immediately leads to (18).

e By subs’ti'tutiilll:gl L i1 = (A ®Cy) ey in (13), the expression for the innovation in (19) is directly obtained.

® To derive expression (20) we use the notation gy = yx — (I, —T)yi_1, introduced in Remark 5, to express
the innovation as (y; = gx — Fka/k 1. Given that E[gkzk/k Jl"k =I\E [zkzk/k 1]l"k and, by the OPL, E[zkzk/k 1] =
E[zk/k,lzk 1], we obtain ITy = E[gegl | ~T1E [zk/k,lzk -1 T Thus, expression (20) is derived straightforwardly,
taking into account that K} = E[gigf| and 7 | = (7, &) (Hibi 1 C) e
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Recursive centralized fixed-point smoothing algorithm. Under assumptions (I)-(V), starting at any fixed
sampling time k=1 with the filter, X, and its error covariance matrix, K{;,, as initial conditions, the CF LS linear
smoothing estimators, Xy, L=1, and their error covariance matrices, K., L=1, are computed using the fol-
lowing recursive relations:

- - -1
Xipkrr, = Xigkrr + Groprr i flirr, L1, (23)

K/f/ku = K/f/mul - Gk,k+LHI:LGZ,k+L’ L=1. (24)
In these relations, the matrices Gy j+1, = ]E[xk,u,{+ 11 satisfy;
Grase = (Bl O ) =Fraerzt ) (Hrerbieer | Cir) (= Ais)Taer, N1, (25)

and ¥ = E[xiel,, ] is recursively obtained from:

_ -1 @7 .
Firir = Figrr-1 + Grpr I P s L=1;

Fii = (Al Oppomn ) Kf, k=1 (26)

Proof. The formulas of the fixed-point smoothing algorithm are proven in the following steps:

e From the general expression (11), it is evident that, at a fixed sampling time k=1, the smoother
Xiker, L=1, can be recursively calculated by (23), starting from the linear filter, %, as initial condition.

e Using (23), the smoothing errors can be expressed as Xp/x+r = Xi/k+r-1 — Gk,,ﬁLH,;‘ [Mirr, and (24) for the
error covariance matrices, K, , is clear.

e Expression (25) for the coefficients

Girer = vty ] = <E [kaSIQ-L] -E [xk/Z:'I{+L/k+L—l} ) Tipre

is obtained by denoting F ., = E[x;e’,, ] and taking into account that:
7T JR—
- E[kaZ+L] = BkA]Q.LH/H.L(Imn: —Aisr)

-E [xk/z:)l](-+L/k+L_1] =E [xkeL.L_l] (Hk+LAk+L | Ck+L) ! (Imn: _Kk+L)-

e Finally, the recursion (26) for the matrices F; 4. is easily derived using (16) for ey, . The initial condition is
obtained by applying the LPO, from which E [xe] | = E [X;/ce] | , and using (14) for Xy

Remark 6. It is important to note that the state evolution equation (1) has not been directly used in the design of
the proposed LS filtering and smoothing algorithms. Instead, it was utilized only to derive the state covariance matrix
in a separable form (Remark 1), which serves as the foundation for the algorithms derivation, together with the fac-
torization of the time-correlated noise covariance (Proposition 1). This makes our methodology applicable to a wide
variety of models, as long as they meet this covariance factorization property. The structure of the proposed algo-
rithms, designed on the basis of covariance information, differs from that of conventional LS linear estimation algo-
rithms based on the state-space model, but both approaches provide optimal linear estimators. Nevertheless, although
the proposed filtering and smoothing algorithms have attractive recursive structures due to the factorization property
of both state and noise covariance functions, the presence of mixed uncertainties causes additional difficulties in
deriving simple formulas for the innovation covariance matrix, I, (expression (20)). The definition of the vectors

/‘I\’k 1 = ( Xk/k=1") which combine the estimators of the state process and the measurement noise, overcomes this
. Vk/k=1 N . .. .
issue and makes the derivation of the algorithm significantly simpler.

4. Numerical Simulation Example

In this section, a four-sensor system with random uncertainties is considered to show the validity of the
designed estimation algorithms and assess the impact of different random uncertainties on the estimation accuracy.
Specifically, the following model is considered:

State equation: Described by (1), with A, = 0.9, A, = 0.05. The initial state, xo, and the rv in the sequences
{ai )= and {w;}; =, obey the standard normal distribution.

Sensor measurement equations: Described by (2), with M={1,2,3,4}, H; =0.99%, Hyy = 0.892,
H;, =0.705, and Hyy = 0.804,, where {9, }i>1, i € M, are sequences of independent rv with the following dis-
tributions:

— 4 and ¥, have uniform distributions over the intervals [0.1,0.8] and [0.2,0.9], respectively.

— ¥, are discrete rv with P(93, =0) = 0.1, P(93, =0.5) =0.5, P(3, = 1) =04, Yk=1.
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— ¥4, have Bernoulli distributions with P(64; = 1) = 64, Yk=1.

The noises (v }c=1, i € M, are defined in (3), with Cy = C4y = 0.7 and Cay = Cs; = 0.6, Yk=1. The noise
u;y. satisfies u;, = a;&;, with a; = a3 =0.25, a, = a4 = 0.5 and the rv in the white sequence {&;}r=0 obey the stan-
dard normal distribution. For i € M, v;o = vo and vy is also a standard normal rv.

Random deception attacks and packet losses: The random sequences {g;;},>1 in (5) are defined as €;; = £:{4,
where £, =0.25, &, =0.5, &5 = &, = 0.75, and the rv in the white sequence {{;},>; obey the standard normal dis-
tribution; so, K7 =&, i,jE€M. {/li,k}k>| and {%’,k} =1, are white sequences of Bernoulli rv with
Pliyy=1)=2, Plyyu=1)=%y, k=1, ie M.

Performance analysis. Assuming 94 = A =7 = 0.5, Figure | displays the error variances of the proposed esti-
mators and shows that the smoothers outperform the filters. It is also clear from this figure that the accuracy of the
smoothers improves as L increases and this fact is particularly notable for L<6, beyond which the difference in
accuracy becomes practically negligible.

2.6
24+
g
22t
s
-
520+
g
(5]
=
% L8} ——Filter
g —— Smoother L=1
53]

Smoother L;2 1
Smoother L=3

—_
(=)}

—— Smoother L=4
——Smoother L=5 |
Smoother L=6

,_
~
.

5 10 15 20 25 30 35 40 45 50
Time k

Figure 1. Filtering and smoothing estimation error variances for 9, =1=5 =0.5.

Influence of missing probability, 1 —1y, at sensor 4. Considering again 1 =7 = 0.5 and different values of ¥,
Figure 2 presents the filtering and smoothing (L = 1,3) error variances. From this figure, we infer that the probabil-
ity 99, of the state being present in the measured outputs of sensor 4 significantly influences the estimation precision.
More specifically, since the error variances decrease as 94 increases, we conclude that the proposed estimators per-
form better when the missing probability, 1 —13,, decreases. As in Figure 1, it is also clear that the filtering error vari-

ances are greater than those of the smoothers and also that the smoothing estimators with lag L = 3 outperform those
withlag L=1.

~ Filtering error variances 9,=0.9
1.4 ¥ —_Smoothing error variances L=1
—. Smoothing error variances L=3

1.2

5 10 15 20 25 30 35 40 45 50
Time k

Figure 2. Filtering and smoothing error variances for ¢, = 0.3,0.5,0.7 and 0.9.

Effect of successful deception attacks probability A. For 94 =% = 0.5, the filtering and smoothing error vari-
ances are analyzed as A varies from 0.1 to 0.9. The filtering error variances over all iterations are plotted in Figure 3(a),
which clearly shows that the filter performance deteriorates as A increases (an analogous conclusion is drawn for the
smoother performance). Figure 3(b), displays the estimation error variances at k = 50, versus A. Despite showing
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only the results in a particular iteration, this figure provides better visibility of the increasing trend of the error vari-
ances with increasing probability A.

5.0 _ —

<<<<<< ilter J

@ 4.5t --*--Smoother L=1
437 - Smoother L=

by
o

—7=0.1
—7=02
—7=03
—7=04
7=0.5
——7=0.6
7=0.7
7=0.8
7=0.9

35

(95)
W

3.0

2.5

Filtering error variances
(98]
1S

Moot
S

200 .

Estimation error variances at k=50

151 ]
15 oL )
10 20 30 40 50 NN NN
Time k Probability 4

Figure 3. (a) Filtering error variances for 1= 0.1 to 0.9; (b) Filtering and smoothing error variances at k = 50, versus 2.

Impact of transmission loss probability 1 7. Considering ¥, = A= 0.5, we analyze the influence of the loss
probability, 1 -7, on the estimation accuracy, by comparing the filtering and smoothing error variances as y varies
from 0.1 to 0.9. From Figure 4(a) we observe that the filtering error variances decrease as y increases; hence, better
estimations are obtained when the transmission loss probability 1 —% is low. This fact is better reflected in Figure 4(b),
which presents the filtering and smoothing error variances at k = 50 versus y.

F il
€. Smoother L=
5. o--Smoother L=3

by

(=]
¥
*

4.0

|
COOOO0O0O0OC

Filtering error variances
» e
(=) W
I,
[N
W —
Estimation error variances at k=50

7=0.5
7=0.6
2.5 ¥=0.7
7-0.8
7=0.9 :
2.0 -
a
15 (a) L5T(b) 9
10 20 30 40 50 SRR SR
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Figure 4. (a) Filtering error variances for y = 0.1 to 0.9; (b) Filtering and smoothing error variances at k = 50, versus 7.

Comparative analysis with CF filters in [24] and [29]. Finally, the designed CF filter is compared with the fil-
ters in [24] and [29]. From two thousand independent simulations, the comparison is made on the basis of the mean-
squared error (MSE), whose empirical value at time k is calculated by:

2000

MSE, = 7o > (X =3)° 1<k=<100,
where x{” and 36\2;),( denote the simulated state and filtering estimates, respectively, at time k for the s-th simulation
run. Assuming again 94 = 1 =y = 0.5, the results are depicted in Figure 5, which reveals that the MSE values of the
proposed CF filtering estimates are consistently lower than those of the other two CF filtering estimates. This out-
come was expected, as the proposed filter accounts for both RPD and RDA, while the filter in [29] does not account
for random packet losses and the filter in [24] overlooks both random attacks and losses during data transmissions.
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6.5
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4.0 ——MSE of filter in [24]
: ——MSE of filter in [29]

15 ——MSE of proposed filter |

10 20 30 40 50 60 70 80 90 100
Iteration k&

Figure 5. MSE comparison of the proposed CF filter and the filters in [24] and [29].

5. Conclusions

In this paper, we have designed recursive algorithms for the CF filtering and fixed-point smoothing problems in
networked systems operating under the dual challenges of RDA and RPD, in the presence of different perturbations
including multiplicative noise and time-correlated additive noise. The use of the process mean and covariance func-
tions rather than the explicit state evolution model, simplifies the derivation of the algorithms without sacrificing
accuracy. The impact of packet losses is mitigated by using ZOHS as a compensation methodology and time-corre-
lated noises are not handled by measurement differencing, but by direct estimation of the noises.

Through numerical simulations, we have demonstrated that our fusion estimation scheme not only meets theo-
retical expectations but also outperforms some existing filters in practical scenarios. The superior performance of our
approach underscores its potential for application in real-world networked systems where resilience to RDA and RPD
is critical. The empirical results have also shown that, as the probability of deception attacks increases, the estimation
accuracy decreases. It would be valuable to explore this inverse relationship theoretically in future research, by con-
ducting a rigorous monotonicity analysis of the error covariance with respect to the attack probability. Future work
will focus on extending this framework to more complex scenarios and further enhance its robustness and applicabil-
ity. More specifically, new challenges and future research topics include:

e Extending the proposed study to deal with quantization effects to cover systems with limited network band-
width, where it is common for sensor measurements to be quantized before transmission over the communication
network.

e Considering different types of random attacks (replay attacks, DoS attacks, etc.).

e Incorporating energy-saving communication protocols to reduce communication burden and enhance trans-
mission efficiency (event-triggered mechanisms, random access protocol, etc.).
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