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Abstract: A piezoelectric actuator is commonly utilized in nanopositioning for its stiffness, fast response, and 
ultrahigh precision. However, hysteresis in piezoelectric materials dramatically degrades system 
performance. By introducing a straightforward and effective modification to a classical extended state 
observer, a phase-optimized extended state observer is proposed to provide a phase-leading estimation of the 
generalized disturbance. Accordingly, a phase-optimized active disturbance rejection control is designed, and 
much more satisfied performance can be guaranteed. Convergence of the phase-optimized extended state 
observer and closed-loop stability of the phase-optimized active disturbance rejection control have been 
analyzed. Moreover, steady-state estimation error and phase-leading property have been proved. Advantages 
of the phase optimized active disturbance rejection control over the PI and the active disturbance rejection 
control are confirmed. Experimental results show that the phase-optimized active disturbance rejection 
control can achieve more desired disturbance rejection and motion tracking.

Keywords: active disturbance rejection control; hysteresis; phase optimized extended state observer; 
piezoelectric actuators; positioning

1. Introduction

Motion systems driven by piezoelectric actuators (PEAs) have numerous advantages, like nanometer 
resolution, rapid response, and large output force [1]. They have been widely utilized in different fields, such 
as micromanipulators, atomic force microscopes, and ultra-precision machines [2]. However, hysteresis in 
PEAs dramatically degrades positioning accuracy [3]. To address it, hysteresis models are constructed. For 
example, a Prandtl-Ishlinskii model (PIM) [4] and a modified PIM [5] for asymmetric hysteresis have been 
presented. A Hammerstein-like structure has also been utilized to describe a piezoelectric-actuated stage, and 
a new modeling approach is proposed [6]. Based on those models, numerous model-based techniques have 
been designed to promote precision and speed of the stages. One common way is to build an inverse 
hysteresis model to compensate the hysteresis. By taking an adaptive strategy to eliminate the accumulated 
error, an improved inverse model has been presented [7]. An inverse Bouc-Wen model connected an iterative 
learning controller was also designed to compensate both nonlinearities and uncertainties [8]. Another 
approach is to directly employ hysteresis models to serve as feedforward compensators. Bouc-Wen modeling 
and inverse multiplicative structure have been taken to compensate the hysteresis [9]. A generalized Duhem 
model has also been used to realize the feedforward compensation [10].

It is known that the model-based methods take effect when system models are consistent with system 
dynamics. However, hysteresis, a typical amplitude and frequency-dependent phenomenon [2], depends 
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heavily on both amplitude and frequency of an input signal. It is difficult to build a faithful model. Naturally, 
positioning accuracy degrades remarkably if those model-based approaches are still utilized. To effectively 
address the hysteresis, control techniques, which are less dependent on system model and robust enough to 
external disturbances, can guarantee the closed-loop performance and they are in great need. Numerous efforts 
[11–13] (and references therein) have been made. For the positioning stage, a finite-time learning control [14] was 
proposed to reduce the requirements on system model to improve the positioning, a decomposition-learning-
based output tracking approach [15] was designed to address the robustness of the output tracking, and a neural 
networks-based learning algorithm [16] was developed to deal with uncertainties in a piezoelectric 
positioning system in an online way.

Active disturbance rejection control (ADRC) [17], proposed by Han in 1990s, is a unique way to 
address uncertainties and disturbances. From the viewpoint of the ADRC, all undesired factors, such as 
perturbations of system parameters, un-modeled dynamics, and external uncertain disturbances, are regarded 
as generalized disturbance. Furthermore, the generalized disturbance is defined as a new state, i. e., the 
extended state. Then, an extended state observer (ESO) is designed to reconstruct system states and the 
extended state. Taking advantage of the reconstructed extended state, the ADRC can compensate disturbance 
before it corrupts system outputs. In other words, control action of the ADRC is more active, and the closed-
loop system is robust enough. For advantages of the ADRC, it has been exploited in many occasions, such as 
thermodynamic systems [18], hypersonic vehicles [19], powered parafoils [20], oxygen masks [21], high-
purity distillation columns [22], and nano-positioning systems [23–25].

Although the ADRC effectively deals with uncertainties and disturbances, it still needs to be 
enhanced. For example, theoretically, a classical ESO can estimate a constant disturbance without steady-
state error [26]. However, in reconstructing a time-varying disturbance, the steady-state estimation errors 
still exist, even if they may be acceptable in engineering. That is the insufficiency of a classical ESO, 
since the disturbance is seldom constant. The powerlessness in reconstructing a time-varying disturbance 
limits the ADRC. To address it, increasing the order of an ESO [26–28] and introducing nonlinearities [29] 
are commonly utilized. Satisfied estimations can be obtained, but the shortcomings are also apparent. 
First, it is under the assumption that the generalized disturbance is m-th order differentiable [26]. Second, 
it is the computational complexity of a modified ESO [26]. Therefore, it is necessary to design an 
optimized ESO to get a more desirable reconstruction.

In this article, a classical ESO, which makes the ADRC reject disturbance actively, is optimized to 
estimate the generalized disturbance timelier and more actively. Unlike our previous work [30], a phase 
optimization law (POL) is proposed and seamlessly incorporated into a classical ESO. Then, without 
introducing any linearity or nonlinearity, a phase-optimized ESO (POESO) can be obtained more 
conveniently and a timelier and more active generalized disturbance estimation is achieved. Accordingly, 
control action of the ADRC becomes more active and the closed-loop performance is promoted notably. The 
main contributions are listed below:

(1) The estimation phase greatly decides the closed-loop performance of the ADRC. To reduce the 
phase delay of the generalized disturbance estimation, a phase optimization law is proposed.

(2) A POESO is proposed, and based on the POESO, a phase-optimized active disturbance rejection 
control (POADRC) is presented.

(3) Theoretically, the advantages of the POESO on both phases and steady-state estimation errors are 
confirmed. Moreover, to achieve an optimized generalized disturbance estimation phase, a solid 
guidance on determining the adjustable POL parameter is obtained via the final-value theorem.

(4) Based on a positioner, comparisons and evaluations under different scenarios are performed. The 
advantages of the POESO and the POADRC have been testified via experimental results.

The remainder of this article is organized as follows. In Section 2, a positioning stage is described and 
the problem is presented. The POESO is proposed, and the POADRC is designed in Section 3. The 
convergence of the POESO, closed-loop stability of the POADRC, steady-state estimation errors of the 
POESO, and the advantage of the POESO are also discussed. Section 4 presents experimental results. Finally, 
Section 5 presents the conclusion.
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2. Experimental Setup and Problem Statements

2.1. Experimental Setup

A positioning stage shown in Figure 1 is employed. PEAs drive the stage, and it is connected to a 
voltage amplifier. Horizontal movements of the stage are up to 100 µm. The resonant frequency of the 
stage is 190 Hz. Output displacements are measured by a built-in capacitive displacement sensor, whose 
resolution is 0.8 nm. A host computer controls a hardware-in-the-loop system, which produces voltages to 
drive the stage.

2.2. Problem Statements

Hysteresis is a typical nonlinearity in a PEA. It is an amplitude and rate-dependent nonlinear 
behavior [1,2]. Applying inputs with different amplitudes and frequencies, one has Figure 2. It presents 
amplitude and rate dependencies of the hysteresis. Figure 2a shows that the displacements of the system 
depend upon not only current inputs but also historical input voltages. In Figure 2b, it can be observed that 
the hysteresis becomes more conspicuous with an increasing input frequency. Thus, the hysteresis is complex 
and cannot be accurately described by a mathematical model. Therefore, if the hysteresis is not addressed 
effectively and efficiently, it definitely seriously degrades positioning speed, and accuracy, or even 
destabilizes a closed-loop system [1,2,15,16]. In other words, the hysteresis challenges the precise control of 
a stage driven by PEAs. To minimize the influence of the hysteresis, an effective and efficient technique, 
which is less dependent on the hysteresis model and can suppress the hysteresis, is in great need.

 

Figure 1.　Experiment setup.
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3. Phase Optimized Active Disturbance Rejection Control

Rather than model the hysteresis, viewing it as a part of the generalized disturbance, one can reconstruct 
and cancel it out. Moreover, a timelier and more active generalized disturbance estimation is crucial in 
achieving more satisfied closed-loop tracking performance. Thus, given that a leading estimation phase 
promises a more active estimation, a phase optimization law (POL) is proposed here. Based on the POL, a 
POESO is designed to provide a timelier and more active generalized disturbance estimation. Then, a 
POADRC can be constructed, and a timelier and more active control signal is obtained. In addition, due to the 
less dependent on the stage model and more active estimation and control, the proposed POESO and the 
POADRC are more effective and practical in controlling a positioning stage driven by PEAs.

3.1. The POESO

For a second-order system

ÿ =F ( yẏw) + bu (1)

where u is a control signal, y is the system output, w includes hysteresis, model uncertainties and external 
disturbances, F ( yẏ w) is a nonlinear function representing system dynamics, and b is an unknown control gain.

Let x1 =  yx2 =  y
.
, and f ( yẏw) =F ( yẏw) + (b - b0 )u. In ADRC, f ( yẏw) is defined to be a 

generalized disturbance. It includes all dynamics that differ from a pure integrator chain. Let f be an extended 

state, i.e., x3 = f ( yẏw). Then, system (1) can be rewritten as

(a)

(b)

Figure 2.　Hysteresis. (a) amplitude-dependent behaviors and (b) rate-dependent behaviors.
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ẋ1 = x2

ẋ2 = x3 + b0u
ẋ3 = h
y = x1

(2)

where x1x2 and x3 are system states, h is the derivative of f, and b0 is an adjustable parameter.

For system (2), a classical ESO can be designed as

ì

í

î

ï
ïï
ï

ï
ïï
ï

ż1 = z2 - β1( )z1 - y

ż2 = z3 - β2( )z1 - y + b0u

ż3 =-β3( )z1 - y

(3)

where z1z2 and z3 are outputs of an ESO, β1β2 and β3 are adjustable observer gains. The ESO works, i.e., 

z1® yz2® ẏ, and z3® f ( yẏw), if proper gains are selected.

However, the ESO (3) can only estimate a constant disturbance without steady-state error. It is not 
efficient enough. To address this, instead of increasing the order or introducing nonlinear functions to a 
classical ESO, a linear POL is proposed.

z3PO = z3 +
1
c

z3

.
(4)

where zPO is an optimized generalized disturbance estimation, c is an adjustable gain. If c tends to infinity, a 
POESO degrades into a classical ESO. Therefore, c plays a key role in phase optimization.

Remark 1. In the POL (4), a differential operation is introduced. However, it does not result in a noise 

amplification, since, from the ESO (3), one can get z3

.
 by -β3( z1 - y) without differentiating any signal.

By introducing the POL, a POESO can be designed as
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ï

ż1 = z2 - β1( )z1 - y

ż2 = z3 - β2( )z1 - y + b0u

ż3 =-β3( )z1 - y

z3PO = z3 + ( )ż3 c

(5)

Remark 2. The optimization in a POESO means a timelier and more active generalized disturbance 
estimation can be obtained by taking a proper c . Although it is not a typical optimization problem, and 
an adequate parameter to get an optimized generalized disturbance estimation phase can be fixed by 
guidance or through trial and error, it is still an optimized process. In following sections, it can be seen 
clearly that such a phase-leading design does improve an ESO on estimating the time-varying disturbance 
if a proper c is chosen.

3.2. The POADRC

Based on the POESO, a control law of the POADRC is

u =
kp( )r - z1 + kd( )ṙ - z2 + ( )r̈ - z3PO

b0

(6)

where rṙ are set-value and its derivative, kpkd are controller gains, z1z2 and z3PO are outputs of a POESO, b0 
is an adjustable parameter. Figure 3 presents a block diagram of the POADRC.

Figure 3 shows that the POADRC comprises a control law and a POESO. The POESO includes an ESO 
and a POL. It is worth pointing out that a POESO is constructed by a direct modification based on a classical 
ESO rather than introducing linearities, nonlinearities or increase its order. Therefore, a POESO can be 
obtained directly based on a classical ESO. In other words, it is a practical technique to improve the 
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generalized disturbance estimation, although its convergence and advantages presented in the following 

sections seem a little obscure.

Similar to Ref. [31], adjustable controller gains and observer gains can be selected. The adjustable gain 

c is chosen based on the final-value theorem (see Section 3.5). Then

kp =ω
2
c kd = 2ωc (7)

β1 = 3ωoβ2 = 3ω2
oβ3 =ω

3
oc = β3 /β2 =ωo /3 (8)

where ωcωo are controller bandwidth and observer bandwidth, respectively.

Remark 3. With the help of a POESO, the POADRC produces a more effective and efficient control signal to 

drive the positioning stage to track the reference timelier and more accurately. It is not necessary to get an 

accurate model of the complex hysteresis. However, if some model information is also available, it will 

definitely help improve the positioning performance. Thus, it is practical to address the hysteresis.

3.3. Convergence of the POESO

Let estimation errors ei(t ) = zi(t ) - xi(t ) i = 12, and e3PO(t ) = z3PO(t ) - x3(t ). From (2) and (5), the 

estimation error dynamics of the POESO is
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ï

ï
ïï
ï

ï

ï
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ï

ė1( )t = e2( )t - β1e1( )t
ė2( )t = e3PO( )t + ( )β3

c
- β2 e1( )t

ė3PO( )t =-h ( )t -
β3

c
e2( )t + ( )β1 β3

c
- β3 e1( )t

(9)

For convenience, let εi(t ) = ei(t ) /ωi - 1
o i = 12ε3PO(t ) = e3PO(t ) /ω2

oεPO(t ) = [ ε1(t ) ε2(t ) ε3PO(t ) ]
T
 and 

ε̇PO(t ) = é
ë
êêêêε1

. (t ) ε2

. (t ) ε3PO

. (t )ùûúúúú
T

. Considering (7) and (8), one can rewrite (9) as

ε̇PO(t ) =ωoAεεPO(t ) +Bε

h ( )t
ω2

o

(10)

where

Figure 3.　Block diagram of the POADRC.
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Theorem 1. Assuming that h (t ) is bounded, there exist constants σi > 0 and a finite time T1 > 0 such that 

| ei(t ) | £ σii = 12| e3PO(t ) | £ σ3"t ³ T1 > 0 and ωo > 0. Furthermore, σi =O (1/ωk
o ) for some positive integer k.

Theorem 1 shows that the estimation errors of the POESO are bounded and the upper bounds decrease 
with increasing ωo.

Remark 4. According to [32] the change rate in a physical world is limited or no change is instantaneous. 
For a positioning stage, it is also reasonable since no positioning stage will change abruptly. Thus, here, h (t ) 
is assumed to be bounded.

Remark 5. In fact, a relatively mild assumption and a more rigorous stability proof is available in [33]. 
However, the assumption on h (t ) is intuitive, and it does not violate physical laws. Moreover, it can be easily 

accepted by engineers.

3.4. Closed-Loop Stability of the POADRC

Let r = [ r1r2r3 ]
T
= [ rṙr̈ ]T

 and tracking errors ξi(t ) = ri(t ) - xi(t ) i = 12. Theorem 2 can be obtained.

Theorem 2. There exist constants μi > 0 and a finite time T3 > 0 such that | ξi(t ) | £ μii = 12"t ³ T3 > 0ωo > 0 

and ωc > 0. Furthermore, μi =O (1/ωq
c ) for some positive integer q.

Thus, its output is also bounded for a bounded reference. That is, the closed-loop system is bounded 
input and bounded output (BIBO) stable. Enlarging the controller bandwidth ωc can reduce the tracking 
errors ξi. In addition, the Appendix shows that minimizing σi(i = 123) also helps reduce ξi.

Remark 6. One cannot get the unknown control gain b, but an adjustable control gain b0 can be set in 
advance. The difference between b and b0 is viewed as a part of the generalized disturbance. The 
estimation error is convergent as long as the observer bandwidth is enough (Theorem 1). Based on the 
convergence of the POESO, tracking errors converge under a proper controller bandwidth (Theorem 2). 
Therefore, the unknown control gain b can be addressed effectively by a POESO, and the closed-loop 
stability can also be guaranteed.

3.5. Comparisons of the Steady-State Estimation Errors

Taking Laplace transformation on both sides of (3) and (5) and considering (8), one has

z1 =
3ωo s2 + 3ω2

o s +ωo
3

( )s +ωo

3
y +

b0 s

( )s +ωo

3
u (11)

z2 =
3ω2

o s2 +ωo
3 s

( )s +ωo

3
y +

b0( )s2 + 3ωo s

( )s +ωo

3
u (12)

z3 =
ωo

3 s2

( )s +ωo

3
y -

b0ω
3
o

( )s +ωo

3
u (13)

z3PO =
ω3

o s3 /c +ω3
o s2

( )s +ωo

3
y -

b0ω
3
o s/c + b0ω

3
o

( )s +ωo

3
u (14)

then estimation errors e1e2e3 and e3PO are
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e1 =-
s3

( )s +ωo

3
y +

b0 s

( )s +ωo

3
u (15)

e2 =-
s4 + 3ωo s3

( )s +ωo

3
y +

b0( )s2 + 3ωo s

( )s +ωo

3
u (16)

e3 = b0

é

ë

ê

ê
êê
ê

ê
1 -

ω3
o

( )s +ωo

3

ù

û

ú

ú
úú
ú

ú
u -

é

ë

ê

ê
êê
ê

ê
1 -

ω3
o

( )s +ωo

3

ù

û

ú

ú
úú
ú

ú
s2 y (17)

e3PO = b0

é

ë

ê

ê
êê
ê

ê
1 -

ω3
o s/c +ω3

o

( )s +ωo

3

ù

û

ú

ú
úú
ú

ú
u -

é

ë

ê

ê
êê
ê

ê
1 -

ω3
o s/c +ω3

o

( )s +ωo

3

ù

û

ú

ú
úú
ú

ú
s2 y (18)

In addition, system (2) can be rewritten as

ÿ = f + b0u (19)

then

e3 =
é

ë

ê

ê
êê
ê

ê ω3
o

( )s +ωo

3
- 1

ù

û

ú

ú
úú
ú

ú
f (20)

e3PO =
é

ë

ê

ê
êê
ê

êω3
o s/c +ω3

o

( )s +ωo

3
- 1

ù

û

ú

ú
úú
ú

ú
f (21)

When f is a step signal whose amplitude is K, i.e., f (s) =K/s, then steady-state estimation errors of z3 
and z3PO are

ì
í
î

ïï

ïïïï

e3s = lim
s® 0

  se3 = 0

e3POs = lim
s® 0

  se3PO = 0
(22)

It shows that, for a constant disturbance, both an ESO and a POESO have no steady-state estimation 
errors no matter what c is.

For (21), let c =ωo /3, and it follows

e3PO =-
s3 + 3ωo s2

( )s +ωo

3
f (23)

When f is a ramp signal with amplitude K1, i. e., f (s) =K1 /s2, steady-state estimation errors of z3 and 

z3PO are

ì

í

î

ïïïï

ïïïï

e3s = lim
s® 0

  se3 =-
3K1

ωo

e3POs = lim
s® 0

  se3PO = 0
(24)

It means that a POESO still has zero steady-state estimation error in presence of a ramp disturbance. By 
contrast, the steady-state estimation error still exists in a classical ESO.

When f is a sinusoidal signal, amplitude frequency characteristics of (20) and (23) are
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|| e3( )jω =
|

|

|

|
|||
||

|

|

|
|||
| ( )3ω2

oω
4 + 9ω4

oω
2 +ω6 1/2

( )ω2
o +ω

2 3/2 || f ( )jω

|| e3PO( )jω =
|

|

|

|
|||
||

|

|

|
|||
| ( )9ω2

oω
4 +ω6 1/2

( )ω2
o +ω

2 3/2 || f ( )jω

(25)

As long as the numerator of | e3( jω) | is larger than the one of | e3PO( jω) |, i. e., 3ω2
o > 2ω2, one has 

| e3( jω) | > | e3PO( jω) | in a large frequency range. It indicates that a POESO rejects the sinusoidal disturbance 

much better.
From the analyses, one can see that a POESO is definitely superior to an ESO on reconstructing a time-

varying disturbance.

3.6. Essence of a POESO outperforming an ESO

In this part, the advantage of a POESO is analyzed. Replacing s with jw in (20) and (23), one has phase 

frequency characteristics of the generalized disturbance estimation errors

ì

í

î

ï
ïï
ï

ï
ïï
ï

ψe3
= arctan 

ω 2   -  3ω 2o
3ω oω 

-Ð ( )ωo + jω
3
+Ðf ( )jω

ψe3PO
= arctan 

ω
3ω o  

-Ð ( )ωo + jω
3
+Ðf ( )jω

(26)

where ψe3
 is the phase frequency characteristic of an ESO’s the generalized disturbance estimation error, and 

ψe3PO
 is the phase frequency characteristic of a POESO’s the generalized disturbance estimation error.

Considering that the phase difference between the generalized disturbance estimation errors is just the 
phase difference between the generalized disturbance estimations, one can determine the latter by calculating 
Dψ, here

Dψ =ψe3PO
-ψe3

= arctan 
9ω3

o

6ω2
oω +ω3

(27)

Since (9ω3
o ) × (6ω2

oω +ω3 ) -1
> Dψ =ψe3PO

-ψe3
> 0. Thus, the phase of z3PO always leads the one of z3. 

This is the essence that a POESO is more active and effective.

4. Hardware Tests

In this section, hardware tests are performed to confirm the proposed POESO and POADRC. Three 
references are considered. A step reference is taken to verify the constant reference tracking. Another two 
references are both sinusoidal signals. One is selected to check the time-varying reference tracking, the other 
is utilized to examine the high-bandwidth tracking. Experiments are performed on the platform shown in 
Figure 1. The POADRC is designed as given in Figure 3. Parameters of the PI, the ADRC, and the POADRC 
are given in Table 1. References, disturbances and their descriptions are listed in Table 2. ADRC and 
POADRC take same ωc, ωo, and b0 to get impartial comparisons. The sampling interval is set to be 0.05 ms.

Additionally, in light of the generalized disturbance is not available in hardware experiments, advantage 
of the POESO is visualized by its leading generalized disturbance estimation.

Table 1.　Parameters of the ADRC and the POADRC.

References

r1

r2

r3

PI

P

0.01

2

2

I

1.3

50

60

ADRC

ωc (rad/s)

80

2000

4000

ωo (rad/s)

100

1155

1500

b0

3 × 104

1 × 106

1 × 106

POADRC

ωc (rad/s)

80

2000

4000

ωo (rad/s)

100

1155

1500

b0

3 × 104

1 × 106

1 × 106

c

18

385

500
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4.1. Step Responses

Set-point tracking and the disturbance rejection ability have been examined. To make fair comparisons, 
PI and ADRC are tuned to achieve similar rising time. Results are shown in Figure 4. Responses of the PI and 
ADRC rise to 2% of the set-value at around 0.24 s, and the POADRC needs about 0.1167 s. In presence of a 
constant-type disturbance, dynamic falls of the PI, ADRC and POADRC are 0.7267, 0.3410, and 0.2008 μm, 

respectively. Their recovery time are 0.2514, 0.2380, and 0.1294 s, separately. For a ramp disturbance, the 
maximum positioning error (MPE) of the PI, ADRC and POADRC are 0.1797, 0.1026, and 0.0535 μm. For a 

sine disturbance, their MPEs are 0.9931, 0.4532, and 0.2639 μm. Control efforts are shown in Figure 4c. Root 

mean square (RMS) values of control signals generated by the PI, ADRC, and POADRC are 0.3763, 0.3735, 
and 0.3753. Obviously, the ADRC consumes least energy. By contrast, POADRC responds faster, and it 
requires just a little more energy. However, from 0.5 to 2 s, in presence of external disturbances, RMS values 
of the control signals are 0.3862, 0.3804, and 0.3782. It means that the POADRC consumes least energy in 
rejecting disturbances.

Table 2.　Signals and Descriptions.

Signals

References

Disturbances

Descriptions (Unit: µm)

r1 = 4

r2 = 2sin(10πt − 0.5π) + 3

r3 = 0.5sin(40πt − 0.5π) + 3.5

0.1

0.2(t − 1) + 0.1

0.1sin(8πt + 0.5π) + 0.1

0.5 ≤ t < 1

1 ≤ t < 1.5

1.5 ≤ t < 2

(a)

(b)

(c)

Figure 4.　Step responses. (a) Position tracking results. (b) Position tracking errors. (c) Control efforts.
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Usually, dynamic falls, MPEs and recover times are utilized to evaluate step responses in presence of 

external disturbances. Here, they are also employed and their values are summarized in Figure 5. They are 

consistent with Figure 4 and more concrete. RMS values are listed in Table 3. ∆1%is percentage of the RMS 

value produced by the POADRC over the one produced by the PI, and ∆2% represents percentage of the RMS 

value generated by the POADRC over the one generated by the ADRC. A negative percentage means the 

value of the POADRC is increased. Otherwise, it indicates that the corresponding value of the POADRC is 

decreased. Figure 6 shows that the generalized disturbance estimation phase of a POESO always leads the 

one of a classical ESO. Considering the data in the figures, we conclude that the POADRC has better tracking 

response and disturbance rejection, since much faster and more accurate disturbance estimation are 

guaranteed by a POESO.

Table 3.　RMS values of the Three Controllers.

References

Step

5 Hz Sine

20 Hz Sine

Indexes

RMS error (µm)

RMS control (V)

RMS error (µm)

RMS control (V)

RMS error (µm)

RMS control(V)

PI

0.6914

0.3763

0.0770

0.3284

0.0670

0.3521

ADRC

0.5241

0.3735

0.0467

0.3278

0.0372

0.3560

POADRC

0.4199

0.3753

0.0417

0.3268

0.0179

0.3530

∆∆1%

39.30%

0.27%

45.80%

0.49%

73.30%

−0.26%

∆∆2%

19.90%

−0.48%

10.70%

0.31%

51.90%

0.84%

Figure 5.　Performance comparisons of the disturbance rejection (For the case of step responses).

Figure 6.　The generalized disturbance estimations (For the case of step responses).
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4.2. Sinusoidal Responses (I)

A 5 Hz sinusoidal trajectory is taken as the set-value. Results are shown in Figure 7. RMS values of tracking 
errors and control signals are listed in Table 3. The POADRC consumes minimal energy to get the best tracking 
accuracy. Hysteresis loops suppressed by the PI, ADRC, and POADRC are presented in Figure 8. The POADRC 
also behaves best. From Figure 7 and the data listed in Table 3, one can find that the POADRC tracks the time-
varying reference best. Similar to Figure 6, Figure 9 presents a POESO’s phase advantage on the generalized 
disturbance estimation. Next, another sinusoidal reference is selected to test the system’s high-speed motion.

(a)

(b)

(c)

Figure 7.　5 Hz sinusoidal motion tracking results. (a) Position tracking results. (b) Position tracking errors. (c) 
Control efforts.
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4.3. Sinusoidal Responses (II)

Generally, a system runs at around 1/100 to 1/10 of the lowest resonant-vibrational frequency [34]. It 
does limit the operating speed and motivates a high-bandwidth positioning. Here, a 20 Hz sinusoidal 
reference, whose frequency exceeds 10% of the stage’s resonant frequency (190 Hz), is taken. The sampling 
interval is 0.06 ms. The tracking results are shown in Figure 10. Figure 10a shows tracking performance of 
the three control strategies. From Figure 10b, one can see the POADRC has the minimum tracking errors. 
Figure 10c presents facts that the POADRC’s control signals lead the ones of the ADRC and the PI, and the 
ADRC’s control signals are ahead of the ones of the PI. In other words, the POADRC is the most active 
regulation, and the PI is the most passive one. Accordingly, positioning errors shown in Figure 10b agrees 
with the control signals presented in Figure 10c. In addition, Figure 11 shows hysteresis curves compensated 
by the PI, the ADRC, and the POADRC. Apparently, the estimation phase advantage of the POESO shown in 
Figure 12 guarantees the POADRC provides the most active control and behaves best.

Figure 8.　Hysteresis curves by different control approaches (For the case of 5 Hz sinusoidal reference).

Figure 9.　The generalized disturbance estimations (For the case of 5 Hz sinusoidal tracking responses).
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(a)

(b)

(c)

Figure 10.　20 Hz sinusoidal motion tracking results. (a) Position tracking results. (b) Position tracking errors. (c) 
Control efforts.

Figure 11.　Hysteresis curves by different control approaches (For the case of 20 Hz sinusoidal reference).
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5. Conclusions

The POESO and the POADRC are designed, analyzed, and verified in this article. Instead of introducing 
linearities, nonlinearities or raising order, a POESO is realized by a straightforward and effective 
modification to a classical ESO. Experimental results show that the POESO ensures better positioning 
performance. It is practical and efficient. Nevertheless, parameter ‘c’  still needs a standard/systematic 
optimization. Furthermore, providing a leading generalized disturbance estimation phase may be a promising 
way to improve the ESO based ADRC approaches. It deserves further investigations.
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Appendix A

Appendix A.1. Proof of Theorem 1

Proof of Theorem 1. Solving (10), one has

εPO(t ) = eωoAεtεPO(0) + ∫
0

t

eωoAε( )t - τ Bε

h ( )τ
ω2

o

dτ (28)

Let

p (t ) = ∫
0

t

eωoAε( )t - τ Bε

h ( )τ
ω2

o

dτ = [ p1p2p3 ]
T

(29)

Since h (t ) is bounded, i.e., h (t ) £ δ, here δ is a positive constant, it follows that

| pi(t ) | £ δ
ω3

o
(|| (A-1

ε Bε ) i

|
| +

|
|
|||| (A-1

ε eωoAεtBε ) i

|
|
|||| ) (30)

for i = 123. Since A-1
ε =

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú-3 0 -1
-8 0 -3
0 1 0

, one has

|
| (A-1

ε Bε ) i

|
| =

ì

í

î

ïïïï

ïïïï

1   i = 1

3   i = 2

0   i = 3

(31)

Figure 12.　The generalized disturbance estimations (For the case of 20 Hz sinusoidal tracking responses).
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Since Aε is Hurwitz, there exists a finite time T1 > 0 such that

|
|
|||| [eωoAεt ]

ij

|
|
|||| £

1
ω3

o

(32)

for "t > T1ij = 123. Then,

|
|
|||| [eωoAεtB]

i

|
|
|||| £

1
ω3

o

(33)

for "t > T1i = 123. Here, T1 depends on ωoAε.

Let A-1
ε =

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úa11 a12 a13

a21 a22 a23

a31 a32 a33

, eωoAεt =
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ê

ê
êê
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ê ù
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ú
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úb11 b12 b13

b21 b22 b23

b31 b32 b33

, one has

|
|
|||| (A-1

ε eωoAεtBε ) i

|
|
|||| £ |∑

j = 1

3

aijbj3 | £

ì
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î

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

4
ω3

o

   i = 1

11
ω3

o

   i = 2

1
ω3

o

   i = 3

(34)

for "t > T1. From (30), (31), and (34), one has

| pi(t ) | £

ì

í

î

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

δ
ω3

o

+
4δ
ω6

o
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3δ
ω3

o

+
11δ
ω6

o

   i = 2

δ
ω6

o

                 i = 3

(35)

for "t > T1i = 123.
Let εm(0) = | ε1(0) | + | ε2(0) | + | ε3PO(0) |, then

|
|
|||| [eωoAεtεPO(0) ]

i

|
|
|||| £

εm( )0

ω3
o

(36)

for "t > T1i = 123. From (28), one has

| εPO(t ) | £ | [eωoAεtεPO(0) ] | + | p (t ) | (37)

According to (35)–(37), one has

|
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11δ
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ω3
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+
δ
ω6

o

                   i = 3

(38)

for "t > T1i = 123.
Let em(0) = | e1(0) | + | e2(0) | + | e3PO(0) |, then
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ì
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for "t > T1.□
Appendix A.2. Proof of Theorem 2

Proof of Theorem 2. From (6) and definitions of the tracking errors and the estimation errors, one has

u =
kp( )ξ1 - e1 + kd( )ξ2 - e2 + ( )r3 - x3 - e3PO

b0

(40)

and

ì

í

î

ïïïï

ïïïï

ξ̇1 = ṙ1 - ẋ1 = r2 - x2 = ξ2

ξ̇2 =-kpξ1 - kdξ2 + ( )kp -
β3

c
e1 + kde2 + e3

(41)

From (8), one has β3 =ω
3
o. Let ξ (t ) = [ ξ1(t ) ξ2(t ) ]

T
e (t ) = [e1(t ) e2(t ) e3(t ) ]

T
, and c =ωo /3, one has

ξ̇ (t ) =Aξξ (t ) +Aee (t ) (42)

where Aξ =
é
ë
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û
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, Ae =
é
ë
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û
úúúú0 0 0
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Solving (42), it follows that

ξ (t ) = eAξtξ (0) + ∫
0

t

eAξ( )t - τ Aee ( )τ dτ (43)

For Aee (τ ) = [0 ( )kp - 3ω2
o e1( )τ + kde2( )τ + e3( )τ ]T

, according to Theorem 1, "t ³ T1, one has

(Aee) 2
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Let φ (t ) = ∫
0

t

eAξ( )t - τ Aee ( )τ dτθ = [0γ ]T
, it follows that
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Taking (7) into consideration, one has
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when Aξ is Hurwitz, there exists a finite time T2 > 0 such that
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 and ξm(0) = | ξ1(0) | + | ξ2(0) |, it follows that
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for "t ³ T2i = 12.

|
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|
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γ
ω3

c

(49)

for "t ³ T3i = 12, and Let T3 =max {T1T2 }, one has
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for "t ³ T3.
From (45), (46), and (50), one has
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for "t ³ T3. From (43), one has
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According to (48), (51), and (52), one has
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for "t ³ T3i = 12.
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then | ξi(t ) | £ μii = 12"t ³ T3 > 0ωo > 0ωc > 0.□
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