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Abstract: Video summarization (VS) refers to extraction of key clips with important information from
long videos to compose the short videos. The video summaries are derived by capturing a variable range
of time dependencies between video frames. A large body of works on VS have been proposed in recent
years, but how to effectively select the key frames is still a changing issue. To this end, this paper
presents a novel U-shaped non-local network for evaluating the probability of each frame selected as a
summary from the original video. We exploit a reinforcement learning framework to enable unsuper-
vised summarization of videos. Frames with high probability scores are included into a generated sum-
mary. Furthermore, a reward function is defined that encourages the network to select more representa-
tive and diverse video frames. Experiments conducted on two benchmark datasets with standard,
enhanced and transmission settings demonstrate that the proposed approach outperforms the state-of-the-
art unsupervised methods.
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1. Introduction

With the widespread application of cameras in various scenarios, video data has exploded extensively in recent
years. To make effective use and analysis of the video data, video summarization techniques are attracting increasing
attention with the development of computer vision and deep learning technologies [1—5]. Video summarization,
which applies a network model to extract important information segments from long videos, can significantly
improve the efficiency of processing large amounts of video data. The processed video data can be used as the final
presentation or combined with other technical means, such as inputs for subsequent tasks’ networks, like natural lan-
guage processing (NLP) for video captioning [6—8]. Furthermore, video summarization can be used to generate high-
light reels as previews of the event video [9, 10]. Traditional local convolutional networks apply local convolution
operations iteratively on images or videos, and this is computationally inefficient process due to its step-by-step
nature. [11, 12]. Meanwhile, the propagation process must be carried out step by step, making it computationally
inefficient. Therefore, the advantages of non-local operations, which calculate relationships such as correlations
between the responses at various locations, are used to address the deficiencies of deep convolutional networks in this
aspect [13]. Zhang et al. [9] proposed a video summary method based on LSTM for the first time. In addition, the
method of combining LSTM with GAN [3, 14], and a subsequent improved algorithm [15] all have inherent limita-
tions, that is, for LSTM, although long-term dependencies on video can be captured, they cannot be parallelized.
GAN has the problem of unstable training, which indirectly affects the performance of methods. Non-local networks
are also capable of capturing long-term dependencies in data, allowing them to model relationships and interactions
between distant elements in a sequence. Moreover, the non-local network propagates information directly across the
entire input, eliminating the need for step-by-step processing [16]. This efficient propagation mechanism helps
improve the computational efficiency of the network. Overall, non-local networks provide a powerful tool for captur-
ing long-term dependencies, modeling global relationships, and improving computational efficiency compared to
local networks [17].

In this paper, we present a novel U-shaped neural network [ 18] model developed on top of a non-local network
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[13] and this model combines a custom reward function for video summarization. Compared with structure-based
methods, we propose a utility-based method, which defines predefined functions as well as network structures and is
easy to implement. The proposed method can handle a wider range of objects. The policy-based reinforcement learn-
ing approach is employed to maximize the accumulated reward value, which is achieved by setting a custom reward
function to filter the range of valid frames. Subsequently, the expected value of the accumulated reward is applied as
a loss function to update the network parameters with stochastic gradient descent. The contributions can be summary
as follows:

1) We introduce a novel U-shaped neural network model based on a non-local network structure. This model
enhances the capability of capturing long-term dependencies and global relationships in video data, significantly
improving the process of video summarization

2) An affective loss function is designed to integrate a custom reward function within a policy-based reinforce-
ment learning framework. This approach focuses on maximizing the accumulated reward value, leading to more effi-
cient selection of relevant frames in video summarization.

3) Experiments demonstrate that the proposed model outperforms other mainstream unsupervised methods.

2. Related work

The conventional methods for video summarization technologies typically begin by employing convolutional
networks to extract features from each frame of the video [19]. Subsequently, the extracted video frame feature infor-
mation is processed through a pre-built network model. According to the needs of the summary, the scoring criteria
are established to judge the probability score of each frame of the video as a valid frame. While in processing the
extracted feature information, the existing literature employs methods divided into utility-based and structure-based
approaches [20]. Utility-based approaches rely on predefined functions and networks to filter the video frames, and
are generally applied to identify salient objects and scenes in the video [21, 22]. This is accomplished by creating a
visual attention model incorporating both motion and static attention. The motion attention model is responsible for
capturing object motion information in the video, whereas static attention focuses on filtering background region
information. Alternatively, some utility-based methods segment the video into different categories based on environ-
mental information such as brightness and sound [23]. Subsequently, the starting and ending scenes are selected
according to the movie grammar. These selections often need to be made artificially, and the resulting information is
used to generate a summary of movie trailers.

Thanks to the advancement in machine learning, deep learning and other techniques, utility-based approaches
are no longer limited to the use of attention mechanism networks [24, 25]. Instead, more suitable networks and tech-
niques have been applied in this field. For example, the long and short-term memory networks (LSTM) in natural
language processing, which are commonly used in speech recognition and structured prediction problems in video
subtitle information [26]. Zhang et al. [9] treated the video summarization task as a structured prediction problem by
using LSTM with aim to model the correlation between video frames. Rochan et al. [10] modified a full convolu-
tional network originally used for semantic segmentation due to the fact that its input and output satisfy the condi-
tions of video summarization. In addition to improve network structures, existing means are combined with other
learning methods for unsupervised video summarization based on existing networks. For instance, unsupervised
learning has achieved impressive performance by using adversarial learning combining attention mechanisms [15].

Another method, known as the structure-based approach, requires the prior knowledge of the hierarchical struc-
ture of the video being processed [27—29]. Since the typical movie layering structure is with a corresponding story
structure, the structure-based method is generally based on scenes, actions and events, etc. as references for extract-
ing information. Yeung et al. [30] divided the clustered shots and other similar shots into a class of scenes, and gen-
erated a scene transition map by using the scene transfer graph (STG) to represent the movie trailer. Li et al. [23]
combined the visual images with audio information to achieve the classification of scenes, i.e., shots with the same
background audio are also in the same class of scenes. At present, due to the dependency of understanding of video’s
hierarchical structure, this technique is more suitable for generating summaries of movies, TV series, event videos,
etc., which have fixed editing rules.

The medical image processing faces the challenge of database shortage compared to general image processing
[31]. The use of standard deep convolutional neural networks is prone to low training efficiency and overfitting,
However, the emergence of the U-shaped network has addressed the issue of medical image segmentation [32]. This
architecture maintains the original accuracy while using less training data. The U-shaped network consists of similar
structures on both the left and right sides [33]. In the process of acquiring image information, the contraction path on
the left side utilizes the down-sampling coding operation to gain the low-frequency detailed features of the image. On
the other hand, the expansion path on the right side is responsible for integrating the information acquired at each
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stage of the down-sampling phase and achieving the final output through the up-sampling decoding operation [34].
The key advantage of this architecture lies in its ability to enable the network to capture richer and more comprehen-
sive information about the image features, which can then be combined and analyzed in the subsequent processing
stage. Furthermore, the effectiveness extends to applications with samples from smaller datasets.

Reinforcement learning aims at maximizing the reward through the interaction between an intelligent agent and
its environment [35, 36, 39]. Custom reward functions can be used to filter the desired video frames using the princi-
ples of reinforcement learning [37]. The reward mechanism plays a pivotal role in continuously trying to interact with
the environment until the optimal state-behavior correspondence is obtained. Unlike supervised learning, reinforce-
ment learning does not require the labeling of samples during the training process.

3. Methods

The proposed model employs a U-shaped network structure to capture the detail feature information from dif-
ferent dimensions, which enables the model to extract the feature information more effectively. And the non-local
network is used to capture the temporal dependencies within the model. We first employ the GoogleNet as a CNN
model following [38] to extract features from the video data. Each frame of the video is treated as image data, and
convolutional neural networks are used to extract features from the images to obtain feature vectors for each video
frame. These feature vectors serve as the input to our designed network model based on a special convolutional net-
work known as the non-local network [13]. The network structure is illustrated in Figure 1.
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Figure 1. Basic architectural flow of a U-shaped structured non-local network applied to video summarization.

As shown in Figure 1, {F, F», F5,---, Fr} represents a video containing T-frames. {x;, X2, X3, -, x7} refers to
the video frame features after CNN processing. The importance probability scores {pi, p2, p3,---,pr} of each frame
are generated by a U-shaped nonlocal network. These probabilities are transformed into 0/1 probabilities by the
Bernoulli operation. Finally, the frames with a score of 1 are selected to form the V-set. In this paper, we take advan-
tage of the U-shaped network structure, by capturing the contraction path of context relations and supporting the
symmetric expansion path of precise non-localization. The use of data-dependent enhancement makes the sample
training more effective. Figure 2 demonstrates the U-shaped network framework.
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Figure 2. U-shaped network framework structure.
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The U-shaped network consists of a shrinking path on the left and an expanding path on the right. The left path
is similar to the traditional convolutional network model in that it is a unit consisting of convolutional operation and
rectification linear units and pooling layers. The right path includes the up-sampling operation of the feature.

Video summaries usually require a summary module to evaluate the importance score of each frame, and then
guide the training of the summary module by evaluating the generated summary. The proposed model is inspired by
the U-shaped network structure in image segmentation, which can capture long-term time dependencies in deep neu-
ral networks through the U-shaped network summary module. In the proposed model, it is used to simulate the
dependencies between video frames to generate an importance score for each frame. In the training stage, the
stochastic gradient strategy method based on reinforcement learning principle is used to train the model. Finally, the
video frame level importance score is used to calculate the shot level score, and the optimal segment is selected to
generate the summary video.

The structure of the U-type network summary module in the model is mainly composed of the convolutional
network and non-local module. A unit takes the visual features of the video frame {xi},-T:1 as the input. These features
are processed by the convolution layer, and the output is recorded as {C;}._, . Then, the output is fed as the input of a
non-local module, which captures the dependency between the features of the video frame. After the whole U-type
network summary module is processed, the prediction probability {p;}~, for each video frame is generated.

For subsequent probability distribution operations, {p;}, needs to map between 0 and the final probability for
each video frame, and can be performed using the following formula:

pi = sigmoid(Wp, + b) (1

After that, the Bernoulli operation is performed to filter the frame composition of the summary video (V) with
the prediction label 1. Finally, the summary video consisting of keyframes is formulated below:

a; ~ Bernoulli (p;),a; ={0,1},i=1,2,3,---T )

V:{Fila,izlsl.:13293”'} (3)

In the training stage, the self-defined reward function is used to train the network using the strategy gradient
method of reinforcement learning. In this paper, the conditions for limiting video summaries are mainly included:
selecting the most representative clips in different categories, using a clustering algorithm to classify the set of video
frames to ensure that each frame in the selected clips has low similarity, and applying cosine distance to calculate the
similarity between different video frames, which is used to filter out the clips with excessive similarity. Considering
these conditions, the model calculates a probability score for each frame to be included in the summary. Afterward,
the whole video is divided into segments by the KTS algorithm [50]. The probability score of each segment becom-
ing a summary is then calculated based on the known probability scores of the video frames contained in each seg-
ment. The specific formula is as follows.

The K-median method is applied to classify the video frames initially, and the set of video frames with less
similarity in each category is selected as the representative frames of this category.

T
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After clarifying the video frames in each category, they are compared in terms of similarity, and the video
frames with low similarity are selected. Considering that a long interval is a high probability but not a decrease in the
effectiveness of appearing the same scene, the similarity between two frames is chosen to be ignored when they are
too far apart.
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where [ and i represent the subscripts of key frames within the video sequence V. The parameter A denotes the tem-
poral distance between the frames indexed by / and i. The ultimate reward function formulated in the proposed
method is expressed as R, which is the sum of R,., and Ry;, .

The reward function is used as the expectation function, and the policy gradient algorithm in reinforcement
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learning is used to maximize the expectation function. (6) The equation ;7 represents the action sequence, and
p (a/ LT3 0) is the probability distribution of the possible action sequences «@; r under the parameter 6.

R(0)=E,(, 4 [R] (6)
1 N T
VRO~ > > (R —b)Vslogm (a;lP,) ™

n=1 i=1

where «; in is the action taken by the policy at the i moment, P; is the output of the nonlocal network at the i
moment, and N is the number of episodes. The parameter 4 is the baseline to reduce the increase in the variance. The
value of b is the average of all rewards so far.

In addition, to control the percentage of frames selected by the model while improving performance, a regular-
ization term with parameters is designed to limit the percentage of frames to be selected as shown in the following
equation.

T

%Zpi_s

i=1

GZQ—QVQ |f]1

+77229,-2,J~—R(9)] ®)
2 ij

The regularization term R(.) is added to avoid overfitting in Eq. (8) where the learning rate « is set to be le-05,
m and 17, and is set to ber 0.01 and le-05, respectively.

Finally, after network processing, each video frame will get a probability score. The KTS algorithm [50] is used
to take the points with drastic changes in the video as truncation points, and the video is divided into J segments,
where the length of each segment is ¢. The video frame probability score g;, is used to calculate the probability score
of each segment G ;. Finally, the video segment with the highest comprehensive probability score is selected to form
the video summary as follows:
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4. Experiment

4.1. Experimental dataset and Settings

Experiments in this paper are mainly conducted based on four data sets, where most of the videos are sourced
from various online websites. These four datasets are TVSum [40], SumMe [41], YouTube [42] and OVP [43]. It
should be noted that the experimental results obtained were cross-validated five times in order to reduce randomness
and noise in the data.

As shown in Figure 3, TVSum contains 50 different categories of videos collected from the YouTube video
website, including news, documentaries, event logs, personal video logs, etc., with each video lasting 2-10 minutes.
Each video in the TVSum dataset is manually rated and annotated for importance by 20 users.

Figure 3. TVSum Dataset.
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According to Figure 4, SumMe is composed of 25 videos covering various topics ranging in duration from 1
minute to 6 minutes. Each frame of each video is rated by 15 to 18 people based on its importance, with a frame level
importance rating provided. Finally, a summary video with a duration not exceeding 15% of the original video is
generated based on the rating.

Figure 4. SumMe Dataset.

Figure 5 and Figure 6 illustrate the YouTube and OVP datasets, respectively, which are used as supplementary
datasets in the enhancement experiment and migration experiment: 39 videos are included in YouTube and 50 videos
are mostly documentaries in OVP.

To comprehensively evaluate the network performance, three sets of experiments are formed by combining the
existing four basic datasets: the basic experiment, enhancement experiment, and transfer experiment.

Figure 6. OVP Dataset.

Canonical experiment: The network performance is tested on two basic datasets, TVSum and SumMe, and
compared with the latest experimental data. As shown in Figure 7, the training set, validation set, and testing set are
all derived from unrelated data from the same dataset. We randomly select 80% of the data from the TVSum dataset
for training and validation, and the remaining 20% for testing.
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80%TV
Sum

Train, validate Test
Figure 7. Canonical experiment dataset processing diagram.

Augmented experiment: YouTube and OVP are used as extended data to be added to the training and verifica-
tion process for testing network performance. As shown in Figure 8, with TVSum as the basic data set, 80% of the
data in TVSum and SumMe, YouTube and OVP are randomly selected to form the training set, and the remaining
20% of the samples in the TVSum data set are used as the test set. If the data set is based on SumMe, 80% of the data
in SumMe, TVSum, YouTube and OVP constitutes the training set, while the remaining 20% of the samples in
SumMe data set are taken as the test set.

80%TV
Sum

Train, validate Test

Figure 8. Augmented experiment dataset processing diagram.

Transfer experiment: This setting is to test whether the model can still generate good abstracts from the video
without any relevant annotations. Therefore, as shown in Figure 9, we evaluate the learned model on a given dataset
and use three different datasets that are unrelated to it as the training set. If the TVSum dataset is selected as the given
dataset for testing network performance, SumMe is combined with YouTube and OVP to form a training set. If the
SumMe dataset is selected as the given dataset, the other three datasets are combined to form a training set. This
approach allows us to assess whether the model can still maintain good performance under the condition of unla-
beled samples.
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Train, validate Test

Figure 9. Transfer experiment dataset processing diagram.

4.2. Evaluation metrics

In this paper, the video frame importance score obtained through the video summarization network will be used
to determine whether or not to use it for summarization fragments. Therefore, for network performance measurement,
a harmonic average based on precision and repetition rate is used, known as the F; metric. According to existing
video summarization networks, this metric is commonly used as a measure of network performance. In order to
maintain consistency and fairness in comparison, this article also introduces the F-scores as the basis for evaluating
the effectiveness of network summarization.

We calculate the F-scores by the network's accuracy P and completeness R, and use it as a metric to evaluate
the network performance: S is the summary generated by the network while Sy is the summary generated by user
annotation.

The following check rates are used to calculate how many frames of information of interest to the user are con-
tained in the filtered video summary:

_1Sen Syl

P= #(11 11
T (1)

Use the completeness rate to calculate how many video clips that users consider to contain important informa-
tion are filtered into the video summary:

ISe NSyl
R=——7-— 12
Sul (12
The F1 metric is based on the summed average of the calculated accuracy and completeness rates:
2PXR
= CPXR) 1 00% (13)
(P+R)

5. Analysis of experimental results

In this paper, we compare the proposed method with the current state-of-the-art video summarization methods
GAN_dpp [44], UnpariedVSN [45], DR-DSN [46], SUM-FCN [10], PCDL [47], SUM-GAN-VAAE [15], SUM-
GAN-AAE [15], DSR-RL-GR [48], DSR-RL-LSTM [48], Tessellation [49], and SUM-GAN-GEA [3]. The specific
data is shown in Table 1:
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Table 1 Performance of TVSum and SumMe with the new network (%)

Methods SumMe TVSum
GAN_dpp 39.1 51.7
UnpariedVSN 47.5 55.6
DR-DSN 41.4 57.6
SUM-FCN 41.5 52.7
PCDL 42.7 58.4
SUM-GAN-VAAE 45.7 57.6
SUM-GAN-AAE 48.9 583
DSR-RL-GR 50.3 60.2
DSR-RL-LSTM 43.8 61.4
Tessellation 41.4 64.1
SUM-GAN-GEA 53.4 61.3
OURS 53.4 63.0

We compare the performance of our model with nine other models on the SumMe and TVSum datasets. As
presented in Table 1, the summary performance of our model (for videos) compares favorably with the existing state-
of-the-art methods on both datasets. In particular, there is a significant improvement on the SumMe dataset. However,
the performance of the Tessellation method on the TVSum data set is better than ours. The reason is that it is a data
set customization technology and has better performance on a specific data set. Its performance on SumMe is far
inferior to our model. The SUM-GAN-GEA model has the same score as ours on the SumMe dataset, but our model
is superior to it on TVSum. We believe that the temporal dependencies of obtaining videos on different dimensions
are helpful in the generation of the final video summaries.

In addition to the experiments on the two base datasets, we have also conducted enhancement experiments and
migration experiments using the supplemental datasets and compared the performance with methods DR-DSN [46],
DSR-RL-GR [48] and DSR-RL-LSTM [48], as shown in Table 2.

Table2 Results of different methods for basal, enhancement and migration experiments (%)

Dataset Method Canonical Augmented Transfer
DR-DSN 41.4 42.8 424
DSR-RL-GR 50.3 48.5 48.7
SumMe
DSR-RL-LSTM 43.8 433 44.2
OURS 53.4 50.1 50.8
DR-DSN 57.6 58.4 57.8
DSR-RL-GR 60.2 59.2 58.9
TVSum
DSR-RL-LSTM 61.4 60.2 59.9
OURS 63.0 61.3 61.1

As shown in Table 2, from the data of both the basic experiment and the other two groups of supplementary
experiments, the proposed network performs better than other networks. As the performance of the network on the
TVSum dataset in isolation, the performance of the network video summary proposed in the basic experiment setting
improves by about 2% compared with the optimal network at present. In the migration experiment setting, the net-
work proposed in this chapter shows notable improvements ranging from a minimum of 1% to a maximum of 3%
compared with other networks. In the enhanced settings, the proposed network enhances with performance improve-
ments ranging from a minimum of 1% to a maximum of less than 3%. Based on the horizontal data comparison
results, it becomes evident that the network model performs the best under the basic experimental setting. The perfor-
mance of the network under the enhanced experimental setting is 2% worse than that under the basic experiment, but
still better than that under the transfer experimental setting.

The performance effect of the network on the SumMe dataset is consistent with that on the TVSum dataset. The
difference is that the network performance in the basic experimental setting is 3% higher than that of the optimal net-
work. In the enhanced experimental setting, the proposed network video summary improves by less than 2% com-
pared with the optimal network. In addition, the proposed network improves by 2% in the migration experiment set-
ting. Based on the experimental results integrated on two datasets, our network’s performance in the basic experi-

9of 13


https://doi.org/10.53941/ijndi.2024.100013

1JNDI, 2024, 3, 100013. https:/doi.org/10.53941/ijndi.2024.100013

mental setting is always the best group. The network performance in the enhanced experimental setting is 3% lower
than that in the basic experimental setting, while better than that in the transfer experiment.

In summary, from the experimental data of the network enhancement effect under the three experimental set-
tings, the enhancement effect of the network model proposed under the basic experimental settings is more obvious
than that of the other two groups of supplementary experiments. Most of the network performs in the basic experi-
ments better than those in the two groups of supplementary experiments, and the enhancement effect is also the most
obvious in the basic experiments, followed by the enhancement experiments. The migration experiment is the least
obvious. However, the effect of any data network on SumMe dataset is not as good as the TVSum dataset. It can be
seen from the experimental data that under the basic experimental setting, the video summary effect of the network
on the SumMe dataset is 10% less than the TVSum dataset. In addition, the performance of the network in the
TVSum dataset is 10% higher than that in the SumMe dataset under the enhanced experiment setting and the migra-
tion experiment setting. Based on the characteristics of these two data sets, the possible reason is that the video length
and the number of videos in TVSum are longer than the former, so the amount of data contained in TVSum dataset is
large. Thus, the network can obtain more effective information for training, which leads to more accurate prediction.
From the above data results, it can be concluded that the U-shaped structure can help the network to obtain more
information in the video, and thus improve the performance of the network video summary.

In addition to the above data results, Figure 10 shows the video frame information contained in the summary
generated by the video.

Video video_11 F-score 60.2%

1.0 1

0.5 - N
0 200 400 600 800 1000 1200 1400 1600

* 8 @
(a)
1.00
0.75
0.50

0 1000 2000 3000 4000 5000

(b)

Figure 10. Visualization results of video 11 (a) in the SumMe dataset and video 43; (b) in the TVSum dataset.
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The gray part of Figure10 shows the annotated labels of the video frames, representing the importance of each
frame labeled by 20 individuals. The blue part indicates the importance of each frame predicted by our network. We
select a video in each of the TVSum and SumMe datasets and analyze the effect of the network on its video summa-
rization. It can be found that the regions with higher probability scores in the graph can be accurately predicted by the
network. Thus, accurate extraction of valid information from the video can be achieved. However, the network only
extracts the regions where the high probability scores are concentrated, so it is not very clear whether the extracted
information is comprehensive, which is one of the issues we want to explore in the future.

6. Conclusion

In this paper, we have designed a U-shaped non-local network to extract information from videos across vari-
ous dimensions and to discern the temporal dependencies among them. The probability of selecting each frame for
the summary has been determined based on these conditional relationships. By analyzing the probability scores
assigned to each frame, we have calculated the scores for each video segment. Ultimately, we have filtered out sev-
eral video segments that meet our criteria to form the video summary. Our experiments have been conducted on two
base datasets to demonstrate that understanding the temporal dependencies between different dimensions of video
information enhances the effectiveness of video summarization. Additionally, we have incorporated two supplemen-
tary datasets to conduct enhancement and migration experiments, with the experimental data indicating improved
performance of our model. In future work, we aim to explore additional techniques to capture the temporal depen-
dencies of video information across different dimensions for improving video summarization models.
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