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Abstract: This paper investigates the parameter learning problem for the probabilistic Boolean control
networks (PBCNs) with input-output data. Firstly, an algebraic expression of the PBCNs is obtained by
taking advantage of the semi-tensor product technique, and then, the parameter learning problem is trans-
formed into an optimal problem to reveal the parameter matrices of a linear system in a computationally
efficient way. Secondly, two recursive semi-tensor product based algorithms are designed to calculate the
forward and backward probabilities. Thirdly, the expectation maximization algorithm is proposed as an
elaborate technique to address the parameter learning problem. In addition, a useful index is introduced
to describe the performance of the proposed parameter learning algorithm. Finally, two numerical exam-
ples are employed to demonstrate the reliability of the proposed parameter learning approach.
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1. Introduction

The Boolean network (BN), as a typical logic model, was firstly put forward by Kauffiman [1] with the aim of
understanding the dynamics of nonlinear and complex biological systems. An important application of the BN is to
simulate the dynamics of gene regulatory networks (GRNs) [2]. Understanding regulation mechanisms in GRNs
plays a crucial role in practical applications. A new Boolean model, namely the Boolean control network (BCN), has
been put forward in the pioneering work [3]. Recently, by taking advantage of the semi-tensor product (STP) of
matrices, a novel method called the algebraic state space representation (ASSR) has been proposed to analyse the
dynamics of BNs [4]. Consequently, the study of BNs has achieved great progress, such as controllability and
observability [5, 6], disturbance decoupling [7, &], synchronization [9, 10], optimal control [11, 12], output regulation
[13, 14] and others [15—18].

A recent yet important discovery in the field of systems biology is that the gene expression process involves
considerable uncertainties. Hence, a deterministic Boolean model might not be suitable for real applications. For the
sake of simulating thee dynamics of actual GRNs accurately, the concept of probabilistic Boolean networks (PBNs)
has been innovatively proposed by Shmulevich in [19]. The dynamics of PBCNs can naturally be regarded as a
stochastic expansion of BCNs. Specifically, at each time step, the governing BCN is randomly selected from a col-
lection of BCNs and endowed with a predetermined probability. In the past decades, much effort has been devoted to
the study of PBNs and PBCNs, such as synchronization [20], finite-time stability [21], model evaluation [22], state
feedback stabilization [23], optimal control [24], stability and stabilization [25, 26].

The parameter learning issue for BNs has emerged as a research topic of vital importance since it is helpful to
reveal the regulatory principles of genes and uncover the regulatory process of GRNs. The key of the parameter
learning problem lies in obtaining the parameters of BNs from time-series gene expression data. In other words, the
identified BNs should match the given data as much as possible. In the past decades, a significant amount of atten-
tion has been focused on the parameter learning/identification issue of BNs from gene expression data. Based on the
best-fit extension paradigm, some efficient algorithms have been proposed in [27] to identify the model structure,
which are extremely useful in situations where the measurements of the gene expression are noisy. In the interesting
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paper [28], a simplified search strategy has been introduced for the identification of BNs, which greatly reduces the
time required to learn the networks. Based on a novel representation method of PBNS, an efficient learning algorithm
has been designed in [29] for predicting the dynamic behavior of big-scale logic systems. It is worth noting that the
aforementioned identification algorithms of Boolean models only use information on the occurrence of samples. For
the purpose of extending the identifiable classes, a novel approach has been established in [30] to identify a PBN
from samples, which also makes use of the information on the frequencies of different samples.

By resorting to the STP technique, a logic function can be represented as an algebraic form, and a BN can natu-
rally be transformed into a discrete-time linear system. Then, the parameter identification problem of BNs can be
converted into the problem of identifying the parameter matrices of the linear system that has been established, which
definitely makes the learning problem more accessible. Note that the parameter learning issue for BNs has emerged
as a research topic of great importance. In recent years, many interesting results have been achieved regarding the
parameter learning issue of BNs. In the pioneering work [31], an STP-based method has been developed to construct
the dynamic model of BNs by using the observed data. Later, some necessary and sufficient conditions have been
established to identify a BCN via a series of input-output data [32]. In order to lower the data requirements, a position-
transform mining technique has been proposed in the work [33] to improve data utilization during the identification
procedure. In the interesting paper [34], an integer linear programming approach has been utilized to identify BNs
based on the time-series gene expression data and the prior knowledge of the partial network structure and interac-
tions between nodes.

It is worth mentioning that PBCNs contain several inputs and uncertainties, which makes it difficult to learn the
network. To the best of the authors’ knowledge, the parameter learning problem of PBCNss is still open and remains
challenging. Therefore, the main motivation of this article is to shorten this gap by designing some effective parame-
ter learning algorithms. The main technical contributions can be highlighted as follows: (1) the algebraic representa-
tion of PBCNs with input-output data is provided to simplify the learning problem; (2) two recursive STP-based
algorithms are designed to calculate the forward and backward probabilities; (3) the expectation maximization (EM)
algorithm is developed to learn the model parameters; and (4) a useful index is introduced to evaluate the perfor-
mance of the proposed parameter learning algorithm.

The rest of this paper is arranged as follows. We introduce several fundamental preliminaries with respect to the
ASSR of PBCNs and formulate the problem in Section 2. In Section 3, we present the main results of the parameter
learning of PBCNs with input-output data and introduce an index to evaluate the performance of the developed
parameter learning algorithm. In Section 4, two numerical examples are provided to demonstrate the validity of the
proposed learning strategy. Section 5 gives a concise conclusion of this paper.

2. Preliminaries and Problem Statements

For convenience, we first introduce some necessary notations. R” and RP*? stand for the p-dimensional
Euclidean space and the set of all p X g real matrices, respectively. I, is the identity matrix with degree p. N means
the set of non-negative integers. &), represents the ith column of 7,. A, refers to the delta set {J, | i=1,2,---,p}.
A e RP*? is called a logic matrix if A = [5;; 6;, 5;",’], where iy,ip,++,i; € {1,2,---, p}. For format compactness,
the logic matrix A can alternatively be denoted as 6,[i,i,- - ,i,]. The set of all logic matrices of dimension p X q is
denoted by LP*.

2.1. Mathematical Preliminaries

We present some indispensable preliminaries with respect to the STP technique, which will be quite instrumen-
tal in the subsequent study of the parameter learning problem.
Definition 1. [4] Let matrices A, € R™" and A, € RP*? be given. Then the STP of A and A, can be defined by the
Sfollowing formula:

AjxA; = (A ®1y,) (A ®1,)

where s denotes the lowest common multiple of integers n and p.
Remark 1. It is easy to see that the regular matrix multiplication can be regarded as a particular case of the STP of
matrices. Therefore, the symbol “=<” can be omitted if no confusions arise.
Lemma 1. [4] Some basic properties of the STP are listed as follows.
(i) Let A; € R? and A, € R? be two column vectors. Then,

Al I><A2 = W[q’p] I><A2 ><A1.
(ii) Let the p* X p logic matrix M, = [6),®6), 6,®6 --- 6h®060] and T € A, be given. Then,

I'<I=M,T.
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For convenience, the logic variable X € D = {1,0} is identified with the vector x = 5%”( .Based on Lemma 1, a
matrix expression of the logical functions is given as follows.
Lemma 2. [4] Let g(x1, %2, , %) : D" — D be a logical function. Then, there exists a unique matrix G € L2,
namely, the structure matrix of g, such that

(X1, X0, X)) = G X - Xy = GGL Xy, X € Ag.

Consider a PBCN with m control inputs, p output nodes and » state nodes. The state equation with a control
input can be written as

Xi(t+1) = f7 U@, Un(0), X1 (1), -+, X (1)) (1a)

where 7 € N denotes the discrete time instant. U(¢) = (U;(¢),---, U, (£))T € D™ represents the control input which is
assumed to be known and deterministic, and X(r) = (X,(7),---,X,(#))" € D" stands for the state vector. The logical
functions 7 : D" — D, i=1,2,---,n, o;=1,2,---,1;, can be selected in the domain {f, f2,---, £} with cer-
tain probability P, and > - P{" = 1. In this paper, the choose of each constituent BN is assumed to be indepen-
dent. It is easy to verify that there are L =[], /; possible realizations for the network, and the probability of select-

02

ing the realization f; = (f{"', f5,--+, f7*) is P, = [ [ 1=, P{". The observation output equation can be written as

where the vector Z(1) = (Z,(), -+ ,Z,(t))" € D refers to the measurement output at discrete time instant 7. V(¢) =
V1(®),---,V,.(1))" € D" indicates the measurement noise obeying the Bernoulli distribution, i.e., V(¢) ~ B(1,p;)
where i = 1,2,---,r. The function i; : """ — D, j=1,2,---, p denotes the time invariant logical function.

By taking advantage of the STP technique, the ASSR of system (1) can be obtained, which will essentially sim-
plify the parameter learning problem investigated in this paper. Let N = Ay, M = Ay, P = Ay and R = Ay. By
denoting x(¢) = =%, x,(1) € Ay, u(t) = <7 ,u;(t) € Ay, z(1) = < z(f) € Ap and V(1) = </_,v;(f) € Ag, one can obtain
the componentwise algebraic form of system (1) as

{ xi(t+ 1) = Flu()x(t), i=1,-.n,
z;(t) = Hyv(0)x(1), j=1,,p.

Based on Lemmas 1-2, the corresponding ASSR of system (1) can be obtained as follows:

{ x(t+1) = Fu()x(t)
2(1) = Hv(t)x(1)

where 7:1 = 7__10-| l><:-1:] [(IMN®7:I'0—')Mm+n] € LNXMN and H = 7‘{1 Xj‘;:l [(IPN ®7-{j)M1’+”] € ‘EPXPN' Here, Mm+n and
M,., are the group power reducing matrices [4]. Let Ex(¢) be the expectation value of the state variable x(z), we
have

{ Ex(t+1) = Fu()Ex(1) )
(1) = Hv(1)x(t)

where F = Zle P,F; € LYMN,

Based on the ASSR of the PBCNs, we can obtain the following auxiliary result whose proof is straightforward,
and hence, omitted here for brevity.
Lemma 3. Consider the ASSR of system (2).

(i) For the given control input u(t) = &y;, the one-step state transition probability that drives the state form
x(t) = 65{, tox(t+1)= 65(;' can be computed as follows:

p{x(t+1) = 65 [x(0) = 6y, u(t) = 63 } = [Fr<dy], 3)
(ii) The observation probability can be calculated as follows:
p{z =6}|xny =0y} = [H],, “)

where H % H < (<L, [pi I—pk]T).
Remark 2. Lemma 3 implies that the state process is Markov and the observations are conditionally independent
given the states.

2.2. Problem Formulation
For the PBCN (2), an important issue concerned in practical applications is to learn the model parameters which
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greatly match the observed output sequence. Actually, the dynamics of system (2) can be depicted by the state transi-
tion probability matrix [F =< 6”M} and the observation probability matrix H. Hereafter, the parameter learning prob-
lem of PBCN:ss is transformed into the problem of learning the above two probability matrices from the observed data.
That is to say, instead of identifying system (1) directly, we are going to acquire its algebraic form (2) in the first step,
and then, identify the corresponding system matrices. After that, it is possible to transfer the identified algebraic form
(2) back into its logical form (1), see [35] for more details.

For convenience, the complete parameter set of the algebraic form (2) is denoted by 6 = (F,H,n), where
7= (m, 7y, -+ ,Ty) represents the initial distribution of the state and m; = p {x(O) = 65\,} The parameter 6 can be
derived by maximum-likelihood estimation as follows:

6= argmax p{z; |6,up "'} )
o

where zg 2 (2(0),z(1),2(2),- -+ ,z(T)) represents the observation sequence and ug = (w(0),u(1),u(2),--- ,u(T)) rep-
resents the control input sequence.

Problem 1. Given the observation sequence 7} and control sequence ul™", the aim of parameter learning of PBCNs
with input-output data is to learn the parameter 0 that maximizes the probability p {Zg | 0, ub! } .

Remark 3. It is worth pointing out that the parameter learning problem for BNs can be addressed in two ways. The
one is supervised learning, where many observation sequences and corresponding state sequences are known for
inferring model parameters. The other is unsupervised learning, where only observation sequences are known for
inferring model parameters.

3. Main Results

The above proposed parameter learning problem will be studied in this section. We will firstly establish some
auxiliary results for computing forward and backward probabilities to facilitate the parameter learning of PBCNs.
Subsequently, the EM algorithm will be implemented to learn the system matrix of system (2) in a computationally
efficient way. Finally, an important index will be put forward to evaluate the performance of the proposed parameter
learning algorithm.

3.1. Forward and Backward Probabilities in PBCNs

For the ease of notations, the state sequence (x(0), x(1), x(2),---,x(T)) is denoted by x} . Without loss of gen-
erality, we assume that x] = (69,65, -+ ,6%), ul =" = (64,64, ---,6%") and 2} = (65,60, ,6%).
Theorem 1. Consider system (2) with the control sequence ul™" and observation sequence 7}, . The joint probability
of the system state x(t) = &%y (0<t<T) and the partial observation sequence z}, on the condition of 0 and uly" is

denoted by

0,u5} . (6)

Then, the forward probability «,(i,) can be computed in a recursive way as follows:

(i) = p {x(t) = 5;9,2([)

N

Wt i) = [H_ - | D [Foly] cadid|, k=0,1,,0-1 )

Le=1

with the initial condition a(ip) = m;, - [H ] ioda”

Proof of Theorem 1. According to the multiplication rule of probabilities and the definition of observation probabil-
ities, the initial condition can be obtained as
)

ap(ip) = p {x(O) =64,2(0) = 67
=p{x(0) =6y |60} -p {Z(O) =55 | x(0) = & ,9}

=m - [H] o
fo Joslo

Then, we prove the validity of the recurrence formula (7). It is apparent from (6) that
et (i) = p {2+ 1) = 85, 25" | 6,00}
= p{x(+ 1) =642 [ 0.} p {atk+ 1) = 87" | xe+ 1) = 6" 26, 0.5}
=p{x(k+1)=6y".25|0.us} - [H]

®)

j K+l ’ikH :
According to the total probability theorem and the definition of the one-step transition probability (3), we obtain
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= Oy, x(k+ 1) = &'

p{x(K+ 1) = 6%

Zp{xw St

N
- Z [Fm;’;,][ i) )

6} p {xk+1) = 85 [x(k) = 65,60}

k1l

By substituting (9) into (8), the recursion (7) is verified, which completes the proof of Theorem 1.

Theorem 2. Consider system (2) with a control sequence ul™" and an observation sequence zl . The probability of

observing 7%, on the condition of x(t) = 8%, the model 6 and the control sequence u’~" is denoted by

Bilin) = p {2l |x(®) = 6%.,0,ul '} (10)

Then, the backward probability B,(i,) can be computed recursively as follows:

N

Buli) =3 [H], . Benlicr): [F»«Sﬁ;} . k=T—1,T=2.1 (1)

I =1 Lessle

with the initial condition Br(ir) =1,ir =1,2,...,N
Proof of Theorem 2. It follows from (6) and (10) that
@) Bli) = p {x() = 63,2 | O.us ' } - p {20 | %) = 6. 0]}
=p el | x() =64, 0,ul "} p{zb | x(k) = 6%, 0,uf " } p{x(0) = Sy | 6,u }
=p{z [x(0) =6}, 0.u5"" }-p {x(6) = 5 [ 0,57 }
= p{ag.x(0) =Sy | 6,ug '}

By letting k = T', we have

p{a.x(T) =&,

ar(ir)

9’ uT—l
ﬁT(iT)z : } =

which implies that B7(iz) =1, iy = 1,--- ,N
The next thing to do in the proof is to show the validity of the recursion (11). By resorting to the total probabil-
ity theorem, we arrive at

N
Beli) = p{x(k+1) = 65", 2h,, | X6 = 65,0, }

i=1

= Zp{zm | x(k) = 8, x(k + 1) = 63", 0,u '} p{x(k+ 1) = 63" | x(k) = 6.0, "}

i =1

N
=" p{l [xw+ 1) =65 0.l p {xk+ 1) = 8y

i =1

x(k) = 8%, 0,ul '}
It follows from the definition of the backward probability that

ﬂk(zk)—z {ae+ 1) =% | x(e+1) = 60,1l - p {2y | x(k) = . 0,0 } - [F <],

Ler sl

N
=Z {ae+ 1) =65 | x(k+1) = 850,17} - Benr (o) [F<l],

tnﬁz ..

[H] . Benilin) - [F <o)

k+15lk
=1

This completes the proof of Theorem 2.

Remark 4. The calculation process of the forward probability is based on the path of the state sequence. The key to
the efficiency of the forward algorithm is to calculate the previous probability partially, and then use the path to
recursively sum up the previous probability to avoid unnecessary repeated calculations. Specifically, we calculate N
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possible values of a(iy) (i1 =1,2,---,N) at the discrete time k = 1. Similarly, we calculate N possible values of
Qu1(ix+1) by adding up all the previous probabilities a,(iy) (ix=1,2,---,N), which avoids the redundancy of
repeated calculations. At the same time, the reason for high computational efficiency of the backward algorithm is
also the same. Each step only depends on the result of subsequent steps without repeated calculations. As shown in
Figure 1, when calculating the probability of one or more states, if we can make full use of forward and backward
algorithms at the same time, the calculation complexity will be greatly reduced.

ﬁk*l(il\‘r])

a,(iy)

Figure 1. A trellis representation of the probability (i, ic1)-
Theorem 3. By using the forward and backward probabilities, the specific formula for a single state probability can
be obtained as follows.
(i) The probability of x(k) = 8% on the condition of the observation sequence z),, the model parameter 6 and
the known control sequence ul ™" is denoted by (i) = p { x(x) = 5 |zg ,0,ul ™' }. Then, the probability (i) can
be computed as follows:

i) = B (12)

; aK(iK) ﬁk(lk)

(ii) The joint probability of x(k) = &% and x(k+ 1) = 8% on the condition of the observation sequence z, the
model parameter 0 and the known control sequence ul is denoted by (i, ic1)=p {x(K) =0y, x(k+1)=

6?(,*' zg ,0, ug ’1} . Then, the probability {,(iy,ic+1) can be computed as follows:

a(iy) {F xé‘n‘;} [H] . Bealicn)

J

Lliicn) = : (13)
; .Zla”((i") |:FD<6?4:| o |:H:|] i ﬂK+1(iK+1)
Proof of Theorem 3. According to the Bayesian formula, one has
W) P{x(K):(Sﬁ(,,zg H,M(f’l} p{x(x):éj(,,zg e,ug*'} "
Yill) = = .
T T-1 N i
pla |0} > p{a0 =6.4f [ 6.5}

By the definition of a,(i,) and B,(i), it is not difficult to verify that
i) Bli) = p{x(0) = 8,26 | 0,u ™'} - p{al | x60 = 65, 0,u '}
= p{a | x(0) = 6%4.0,u57' } - p{x) = 8 | 0. - p L, | x00) = 6}, 0,ul "}
= p{ah [x0) = 63005 | - p {0 = 5 0.y |
= p{xtx) = 6.2 |0.uf '}

Taking (14) into consideration, we have (12).
We are now in the position to verify the correctness of (13). From the definition of (i, ix+1), we have

p{x(K) = 55(,,X(K+ 1= 65(,*‘,z6 9,u’6‘1}
N N _ _ . (15)
gglp{x(x) = 6} x(k+ 1) = 6325 | 5™ }

gk(ikvik-%—l) =
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In the light of

P{x0 = 05 xtet D =35 s} =i o] [H] Bt (16)

which, together with (15), implies that (13) holds. The proof is complete.
Remark 5. The forward and backward probabilities allow for the efficient computation of the likelihood of observed
data, which is a critical component of the EM algorithm that will be discussed below. Instead of recomputing the
probabilities from scratch at each iteration, the existing calculations are reused to make the algorithm significantly
faster with the help of the forward and backward probabilities.

3.2. Parameter Learning of PBCNs

The EM algorithm, originally put forward by Dempster, is an iterative technique for computing maximum like-
lihood estimation with incomplete data [36]. The EM algorithm consists of two steps: an expectation step (i.e., the E-
step) and a maximization step (i.e., the M-step) Algorithm 1. Specifically, the expectation is with respect to the latent
variables, which utilizes the present estimate of the parameters conditioned on the observed data. The M-step pro-
vides a novel estimation of parameters. The two steps are iterated until convergence. We first define the incomplete
data as D" = (u}~',z{) and complete data as D° = (u{ ', z{, x}). Then, we can acquire the likelihood functions of
the above two types of data, the likelihood function of the incomplete data L,,.(6, D¢y & p{zg | ug "1,9} and the
likelihood function of the complete data L.(6, D) £ p{z{,x{ | uf .60} .

Algorithm 1 EM algorithm for parameter learning of PBCNs

Input: the observation sequence zg and the control sequence ug
Output: the model parameters 6

1: Randomly initialize 6

2: Set the maximum number of iterations M

3: Set the convergence threshold e

4:fort=1to M do

50 if 169"V -0 =€ then

6 fort=0to T do

7: E-step:

8 compute Q(6,6D) via (17)

9 M-step:
10: calculate argmax, Q(6,67~D) via (21) and (22)
11: end for

12: Set new ¢ := 6

13:  else

14: Return optimal model parameters 6
15:  endif

16: end for

The EM algorithm for the parameter identification problem of PBCNs can be conducted as follows (provided in
Algorithm 1). First, the algorithm will initialize the system parameter 8% . After that, the E-step and the M-step are
alternated until the change of 6 is less than a given threshold. Algorithm 1 shows the general progress of estimating
the optimal parameter 6°. Each step of the iteration will make the log-likelihood function increase and the algorithm
will make the likelihood function approach to a local maximum value. In Algorithm 1, the Q function is defined as
follows:

(b, G(f—l)) = Exg [loch(g’ DY) } DInC’H([_l)]
=Ey [logp{zg,xg | ug‘l’g} | ug-l,zg,eo—w}

- Zlogp{zg’)% | ”371’9} 'P{xg | ugfl,zg,e(f*”} . 1
5

p{a [0, uf 1}

where 8~ means the present parameter estimate and 6 denotes the latest parameter that increases the value of Q. It
is obvious that x} and #“~ can be seen as constants, and @ is the only variable required to be optimized. Note that
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the last term in the right-hand side (RHS) of the above equation can be treated as a constant. The Q function can be
simplified as

0.6 = logp{d.xb

0

G,Mg_l} -p{x“ug_l,zgﬁ(’_”}. (17)

The next step is to find 6 that maximizes the value of the Q function (M-step), that is

6" = argmax Q(6,6"7"). (18)
0

Given the state sequence and control sequence, we have

T-1

G,Mg_l} ~p{zg|xg,0,ug_l} =7 [leéuﬁ}[} o - [H]j,,z}'
M0

t=0 t

0,uy '} = p{xg

T T
P{Zo»xo

By taking the logarithm of the above expression, the Q function can be rewritten as

06.6"") = Zlognm 'P{xg ’ugfl,zg,ﬂ(“l)}

wa
Xo

+Z <§log [Fxé‘,f;,]i > -p{xg‘ug’l,zg,ﬁ(”“}
=0 ol

T
Xo

+Z (Zo:log [H]j,,i,> ~p{xg}ug_l,zg,9('_”}. (19)

T
Xo

In view of the complexity of (19), we tend to, respectively, maximize the first term including m;,, the second term
including [F > 5uM] ., and the last term including [H ] ;.. since they are independently unrelated.
The first item of formula (19) can be rewritten as

N
> logm,plag |ug 2.0V} = logm, - p{x(0) = 6 [ 5.6

io=1
N

Since the initial probability distribution satisfies Z”io =1, we introduce the Lagrange multiplier A to generate the
ip=1

following Lagrange function. By taking the partial derivative of the Lagrange function with respect to the variable m;, ,
we can obtain

0
on

Io

N N
3 g p{s0) =65 ot} -4 (-1 ) | <o
ip=1 ip=1
Then, let the value of the formula to be zero after conducting the partial derivative, and we have

pix(0) =6y

ug 25,00V} + Ay, = 0. (20)
N

In the light of the fact that Z“io =1, we take the summation of equation (20) from iy =1 to N and obtain A =
ip=1

—p{z |0, uf™"}. Plugging the result into (20) yields
p{x(O) — 5% Mg_l,Zg,g(’_l)}
iy p{zg |9(r—l)’ug—1}

Moreover, combining the above result with equation (12), we have m;, = 1 (io).

Similarly, the middle item of formula (19) can be converted into the following form to determine [F > 6;'4] ety -

3 (Sowelrwai], ) ol )
=0 et

T
o

N N T
=55 log [Fx(sﬂ ,- -p{x(t) =&l x(t+ 1) =% [ul ™",z

< - [}
=1 iy =0
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Then, it can be obtained by introducing another Lagrange multiplier and multiplying the restraint condition
Yia [Fed], =1 that

Lol

ET: {x(t) = 6} x(e+ 1) = 6 [ud ™", 20,0070}
[FK5X'4] _ =0 |

Lstsl

T )
> {x0) = 6 [ug 2600
=0
After applying the expressions of y,(i;) and ;(i;,i,,1), we arrive at

T
th(it’it+l)
[Fway] —=5—. 1)

[ A T
Z 7:(ir)
t=0

To find [H ] juis » the third item of (19) can be transformed into

T N T
by (Zlog [H] ) p{at a0} =D 0 Slog [H] p{x(e) = 55 |ug .00}
t=0

Xg ii=1 t=0

N
We can analogously introduce a Lagrange multiplier under the condition of Py [H ] ok 1 Thus, there holds

T .
LIECRARAR!

(22)

ﬁ
=
I
i
(=l

T
Z v:(iy)
=0

where 6 [z(t), (5{5] denotes the Kronecker delta function.

Remark 6. In the following, we introduce the index p to describe the performance of the proposed parameter learn-
ing algorithm. Let the matrix G be the actual system parameter matrix and G be the learned parameter matrix, and
both matrices have m rows and n columns. Then, the index of the performance of the parameter learning algorithm
can be defined as follows:

Gij—Gy
=1 j=
p=l-—m

m n
=1

=1 j=1

where G; is the entry located in the i-th row and j-th column of the matrix G. It is not difficult to infer from the
above definition that the parameter learning performance index p is theoretically a number more than 0 and less
than 1, without any unit. When the value of p is more closer to 1, it means that the performance of the parameter
learning algorithm is better, and vice versa.

Remark 7. In fact, the transition probability matrix in the network that we learn can further be used to reconstruct
the system back to the logic expression [35]. At the same time, the reconstruction process from the probabilistic state
transition matrix to the PBCN is not unique, so it is worth further improving the reconstruction algorithm of the log-
ical expression of the PBCNs. More deeply, the reconstructed network cannot be completely consistent with the real
network, so there is still much optimization work to be done in the process of network reconstruction.

4. Numerical Examples

Example 1. Consider a PBCN with 12 state nodes and 4 inputs. The network structure of the PBCN is shown in
Figure 2, and the logic model is given as follows:
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Figure 2. The model construction of the PBCN example in system (23).

xi(k+ 1) = (2x5(k) A (mx6(K) A x12(6))) V (xX5(K) A (2x6(K) V x12(6))), PT' =1
X(k+1)= () V x10(k), P =1
x3(k+1) = (mxg(k) A (=x4(K) A Xo(K))) V (x3(K) A (mx4(K) V x9(k))), PT* =
| () Axio() Vui(x), PP =0.6

Xy(ke+ 1) = { xe(K) V x10(K) A 42 (K), P‘;” =04
xs(k+1) = (~xp(K) Axi(K) Vus(x), P =1
Xo(k+1) = (mx11(K) A (—x1(K) A X5(K)) V (x12(6) A x5(6)),  PT* =
x(k+1) = x;0() Vxpk), P =1 (23)
xg(k+1) = x(0) Axe(k), PP =1
Xo(k+ 1) = x4(k) A x12(K) Vug(x), PP =1

_ nEVxk, Pr=07
ok +1) = { B ATE, P =03
xk+1) = —xg() Axo(c), P =1

_ _|)C(,(K) A XQ(K) A )Cl()(K), P =0.2
k1) = { —x6(K) V %0 (K) V x10(K), IP‘;T 2 =0.8

The corresponding output observation equation can be described as

21 (k) = X2(6) A x7() V vi (K)
25(K) = =X9K) A vy (k)

23(K) = x6(K) V x10(K)

24(Kk) = x3(5) A (=x5(K) V x3(K))

24
25(06) = ~x10(0) Y x7(0) A x2(4) 29
26(K) = X4(K) V x12(K) A v3(K)
27(k) = X10(k) A =x9(K)
28(k) = =x4(K) V v4(k)
Based on Lemmas 1-2, the algebraic representation of model (23) can naturally be obtained as
xi(k+1) = F'u(k)x(k)
X (k+ 1) = F7u(k)x(k)
. (25)

xlz(K'-I- 1) = F7u(k)x(k)

where F7 e £272" (i=1,2,3,5,6,7,8,9,11) and F7 € {F{",F5'} € L*7?" (j =4,10,12).
Then, the following 8 structure matrices can be calculated as

Fl =Fo ... F% *Fiﬁ*F(rsn'F(rg*Fl]Tm*F(rn *F(]TD
Fo=F" - F s F{ «F% ... F7x F{" %« F7n « F5*
F3 =Fo...F%s *Fiﬂ % Fo5 ... 9 *Fgm*ch *F;ﬂz
F4=F‘T' ... FOs *F(IT‘ % Fo5 ... 9 *Fg“’*F‘T“ *Fg‘z
F5 =F9...Fs *Fg'4 % Fo5 ... 9 *F‘l"w x Fou *Fglz
F():FU'] ___FO';,*Fg'4*F(rsn'FUq*F;’m*F(rn *Fg'u
F7=F" - F"xF «F% ... FPx F{" %« F7n « F]?
FS :Fo'. ...FO'-;*F‘ZJ-A*FO'5”'F(TQ*F;TIO*FO'“ *F(lryz.

The algebraic representation form of model (23) can be written as
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{ Ex(k+1) = Fu(k)Ex(k) (26)

z(k) = Hv(k)x(k)

where the logic matrix H € £2**" | the logic matrix F = P, -F,+Py-Fy+---+ P, F, € £272° and each proba-
bility satisfies

Py =P P PY PO BT PO PO PO = 0.084
Py =P ... P PS PO PT PO PO PO = 0.336
Py =P .. PO PO PO PO PO PO PO = 0.036
Py =P P PO PO PO PO P PO = 0.144
Ps =P ... P Pgt PO PO PO P PO = 0.224
Py =P - -PT-Pg* P9 PT - PY0-PT - PY = 0.096
Py =P PO Pg PO PT PO PO PO = 0.056
Py =P ... -Pg*-PT - PP - PY0 -PO - PY = 0.024.

The measurement of the output observation value is shown in Figure 3 by resorting to the previously proposed
algorithms to learn the parameter F under the designated output observation sequence. By resolving the former prob-
lem (5), we conduct three sets of parameter learning experiments and take the mean and variance at each iteration
step. The mean value of the parameter learning performance index p of matrices F and H are pr = 0.84 and
pu = 0.87. As the iteration step increases, the parameter learning performance indexes of the two matrices continu-
ously increase and finally stabilize at a certain high level shown in Figure 4.

1.0 1.0
< o5t < 05
N N
or 0
0 5 10 15 20 25 30 35 40 0 10 15 20 25 30 35 40
k k
1.0F 1.0
< o5t < 0s
N N
or 0
0 5 10 15 20 25 30 35 40 0 10 15 20 25 30 35 40
k k
1.0F 1.0
< o5t < 05t
N N
or 0r
0 5 10 15 20 25 30 35 40 0 10 15 20 25 30 35 40
k k
1.0 1.0r
< o5t < 05t
N N
or 0F
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
k k
Figure 3. The measurement of the output observation value in system (24).
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Parameter learning performance of network
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Figure 4. The parameter learning performance in system (26).

Example 2. We consider a PBCN originated from an actual apoptosis network model, which is an essential bio-
logical regulatory network that keeps a fully functional organism. A faulty apoptotic network can lead to a variety of
disecases with ecither insufficient apoptosis or excessive apoptosis [37]. Then, the logic model of the
apoptosis network can be described as follows:
P(k+1) = P(x)
F7 1< Csu(k+1) = P(k) A Cgu(k) (27a)
Cgu(k+1)=Cs,(k) VN(), P]'=0.2

P(k+ 1) = (=P(&) A C34(k)) V N(k)
F i Caalk+1) = P(&) A C3a() (27b)
Csa(k+1) = P() A Cso(k), PJ* =08

where Cg,(k), Cs,(k) and P(k) indicate the active caspase 8 (C8a), active caspase 3 (C3a) and concentration degree
in the inhibitor of apoptosis proteins, respectively; and N(k) stands for the tumor necrosis factor's concentration
degree. For the ease of notations, let x(x) and u(k) be, respectively, the state vector and control input vector of the
apoptosis network, that is x(k) = (P(k), C3,(k), Csa(k)) € D* and u(k) = N(x) € D. System observations contain
noise disturbances with v(k) = (v1(k), v2(k)) € D?, where v;(k) ~ B(1, p;) for i = 1,2. The network structure of the
PBCN (27) is shown in Figure 5. Each state node can freely switch its state in the range of network F”' and F”*
with the probabilities P”' = 0.2 and P> = 0.8.

00— | CP=6D
Fol Fo2

(a) The network structural diagram of state nodes in system (27)

@

(b) The structural diagram of output observation nodes in system (28)

Figure 5. The network structure of PBCN in Example 4.

The output equation can be described as
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{ 21(k) = Cgq(K) Vv1(K) (28)

2(Kk) = (P(k) A 2C34(K)) V (2 P(K) A va(K)).
Let x(k) = P(k) »< C3,(k) < Cg,(k), u(k) = N(x), z(k) = X?:lz,-(K) and v(x) = xlevi(K). With the help of the STP
technique, the ASSR form of system (23) can be obtained as follows:

{ Ex(k+1) = Fu()Ex(k)
2(k) = Hv(k)x(k)

where
F=026[3,3,3,3,5,7,5,7,3,3,4,4,5,7,6,8] +0.855[1,1,4,4,4,4,4,4,5,5,8,8,4,4,8, 8]
and
7‘(254[2,4, 1,2,2,3,2,1,3,4,2,3,1,2,2,4,1,2,2,4,1,3,2,1,3,4,2,2, 3, 1,2,4].
In the simulation, we take the control input sequence of the system as u}’ = [6},83,63, - ,63,65,63]  and

p1 = p> = 0.1. Then, the observation probability matrix H can be obtained as

009 0 o001 O 018 081 0 0.10

0.01 0.09 099 082 001 009 0.10 O

090 O 0 009 081 010 O 0
0 091 0 009 O 0 0 090

H=

Figure 6 displays the observed output sequence zj.49 produced by the PBCN in (27) with the known observation
probability matrix H and state transition probability F'. The proposed algorithm is used to learn the matrices H and
F under the designated output observation sequence. Let F= [F , F 2] . The matrices can be estimated as follows:

1.0r

z(k)

0.5

Figure 6. The measurement of the output observation value in system (28).

[0.74 075 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.17 025 0.19 021 O 0 0 0
£ = 0 0 075 077 081 0.77 0.75 0.80
0 0 0 0 016 0 021 O
0 0 0 0 0 0 0 0
0 0 0 0 0 018 0 021
| O 0 0 0 0 0 0 0 |
[ 0 0 0 0 0 0 0 07
0 0 0 0 0 0 0 0
0.17 023 0 0 0 0 0 0
£ = 0 0 025 026 073 086 O 0
078 075 0 0 022 0 0 0
0 0 0 0 0 0 017 O
0 0 0 0 0 022 O 0
L O 0 079 094 O 0 085 0.89]
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and

0 0 0 0 021 079 0 0.11

0 009 097 082 0 0.07 012 O
089 0 0 012 083 012 O 0

0 09 o0 010 O 0 0 091

H=

The parameter learning performance index p of matrices F' and H are pr = 0.88 and py = 0.89, respectively.
The learning results of the above numerical example implies that our proposed algorithm performs well in identify-
ing the model parameters under the real biological background.

5. Conclusion

In this paper, the parameter learning problem has been investigated for PBCNs with input-output data. By uti-
lizing the STP technique, the ASSR of PBCNS has been obtained. Based on it, the parameter learning problem has
naturally been converted into the one of identifying the corresponding parameters of a linear system, which definitely
makes the learning process more mathematically accessible. Subsequently, the STP-based recursive forward and
backward algorithms have been proposed. Then, the EM algorithm has been utilized to deal with the parameter
learning problem. After that, an index has been introduced to describe the performance of the designed parameter
learning algorithms. Finally, a regular logical model and a GRN model of the biological cell apoptosis network have
been employed to show the effectiveness of the developed parameter learning algorithms.
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