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Abstract: Generative adversarial network (GAN) is an overwhelming yet promising method to address
the data imbalance problem. However, most existing GANSs that are usually inspired by computer vision
techniques have not yet taken the significance and redundancy of features into consideration delicately,
probably producing rough samples with overlapping and incorrectness. To address this problem, a novel
GAN called improved GAN with feature filtering (IGAN-FF) is proposed, which establishes a new loss
function for the model training by replacing the traditional Euclidean distance with the Mahalanobis dis-
tance and taking the ¢,,-norm regularization term into consideration. The remarkable merits of the pro-
posed IGAN-FF can be highlighted as follows: 1) the utilization of the Mahalanobis distance can make a
fair evaluation of different attributes without neglecting any trivial/small-scale but significant ones. In
addition, it can mitigate the disturbance caused by the correlation between features; 2) the embedding of
£12-norm regularization term into the loss function contributes greatly to the feature filtering by guaran-
teeing the data sparsity as well as helps reduce risk of overfitting. Finally, empirical experiments on 16
well-known imbalanced datasets demonstrate that our proposed IGAN-FF performs better at most evalu-
ation metrics than the other 11 state-of-the-art methods.

Keywords: imbalanced data; generative adversarial network; ¢,,-norm regularization; mahalanobis dis-
tance

1. Introduction

With the rapid growth of data types and data volumes in the information explosion era, data processing has
emerged as a vitally relevant research topic in the field of data analytics. Classification is an important computer task
in machine learning and has led to significant advances in areas such as medical diagnosis [1, 2], fault detection
[3—5], and financial fraud [6—8]. It is worth mentioning that the success of these approaches is heavily dependent on
balanced data categories. This is not always the case in classification problems, as some classes have significant dif-
ferences in the number of classes between them due to their low frequency of occurrence. As a result, the bigger the
imbalance ratio, the greater the difficulty in classification. To tackle the challenging issue of imbalanced data classifi-
cation, a significant amount of work has been dedicated to addressing such challenging work and a body of promis-
ing results has been reported in the literature [9—13], which can be roughly divided into two categories: model-ori-
ented methods and data-oriented methods. The former usually involves developing efficient models directly by scru-
tinizing the intrinsic characteristics of the data, such as imbalance ratios, without changing the amount of data. Never-
theless, the classification performance of these approaches turns out to be unsatisfactory under overlap between
classes and extreme imbalance. As far as the data-oriented approach is concerned, the primary concept is to regulate
the sample size to achieve a balance between the different classes by means of sampling.

Among the data-oriented methods, oversampling and undersampling are two typical coping tools. However,
given that undersampling leads to loss of information and in turn affects the classification performance, an increas-
ingly prominent approach in addressing classification problems with imbalanced datasets is oversampling. This
method is considered effective as it not only restores data balance but also preserves the inherent characteristics of the
original data. Nonetheless, most oversampling methods, such as the synthetic minority oversampling technique
(SMOTE) [14] and its variants generate new samples by interpolating between an existing sample and its K-nearest
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neighbors, which often leads to ambiguous sample features inconsistent with the original distribution. So far, many
researchers have been interested in the study of data distribution recently during oversampling. In [15], K-means
SMOTE considers data distribution by introducing the idea of clustering into the oversampling strategy of assigning
weights. Similarly, MWMOTE [16] assigns weights to each minority cluster appropriately, not generating instances
beyond the range of clusters to ensure the safety of the synthetic instances. Dai et al. [17] synthesized new samples
based on the weighted distribution of two factors including the inter-class distance and the cluster capacity. Although
these methods can take the data distribution into account in some sense, it is still difficult to ensure that the synthe-
sized samples strictly conform to the original distribution for datasets with complex distributions, which directly gives
rise to one of the motivations of this paper.

Recently, methods based on generative adversarial networks (GAN) [18] have been applied to sample expan-
sion and data augmentation. Due to their powerful feature extraction and characterization capabilities, the GAN-based
methods make the generated samples closer to the real data distribution. Furthermore, Douzas et al. [19] proposed the
use of conditionally generated adversarial networks (CGANS) as an oversampling method for binary class imbalance
data. Moreover, Gao et al. [20] investigated the Wasserstein generative adversarial network (WGAN) with gradient
penalty to generate data where the accuracy of the classifiers has increased on the experimental dataset. Although the
above methods are effective in obtaining samples that match the distribution of the original data, most synthesized
samples tend to be considered desirable only within a strictly specific space, which omits the effects of trivial but
essential features. The main reason for this problem is that GANs are trained based on Euclidean distance, which
makes it difficult to effectively portray problems such as correlation and inconsistency in magnitude between features.
Additionally, GAN-based sampling algorithms are usually designed to be very complex and many parameters are
required to tune which not only leads to the characterization of some redundant feature information and then affects
the quality of the synthesized samples, but also leads to overfitting during the model training process. Such an issue
therefore motivates us to develop a new oversampling method to bridge such a gap.

Stimulated by the above discussions, our attention is devoted to investigating the problem of diversity and
parameter optimization for GAN synthetic samples. Such a problem is seen as nontrivial for the following obvious
discerned obstacles: /) how to assess different attributes fairly and be able to mitigate the interference caused by cor-
relations between features? and 2) how to simultaneously avoid the impact of redundant features on synthetic sam-
ples and prevent model overfitting? To cope with these potential obstacles, we make the corresponding contributions
in this paper outlined as follows.

» Utilizing the Mahalanobis distance enables impartial evaluation of different attributes without ignoring
any trivial/minor but crucial characteristics and alleviates the interference caused by correlation between fea-
tures.

* Embedding the ¢;,-norm regularization term into the loss function ensures the sparsity of the data, which
greatly facilitates feature filtering and reduces the risk of overfitting.

* Our proposed methods achieve satisfactory outcomes in handling the imbalanced classification, as
demonstrated by a comparison with various oversampling approaches and experimental assessments on sev-
eral public datasets.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 presents the details
of the main results. The experiment results and analysis are presented in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Related Work

In this section, some generative adversarial network-based learning methods for imbalanced data are reviewed
and introduced. Besides, the commonly used regularization in optimization functions as well as distance are dis-
cussed, and the motivation for research based on the above discussion is given in light of the current shortcomings of
GANES.

2.1. Generating Adversarial Network

Imbalanced learning techniques [21, 22] intend to tackle the problem of imbalanced data, in which at least one
class of data is much smaller in number than the other classes of data. In general, the minority class tends to have a
large impact on many real-world problems, such as cancer detection in medical diagnosis and fault diagnosis in
industrial systems.

Existing methods for imbalanced learning mainly encompass: 1) sampling-based methods, which learn the
imbalanced classification by oversampling [23, 24] the minority class or undersampling [25] the majority class. Rep-
resentative methods such as SMOTE [26] generate data from existing minority classes. 2) cost-sensitive methods [27,
28] that employ different cost matrices to compute the cost of any particular data sample. 3) kernel-based methods,
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which use classifiers such as support vector machines (SVMs) [29] to maximize the separation margin. 4) GANs-
based approaches [30, 31], which are analogous to our proposed method using the generator to balance the data class
distribution by creating a minority class. Nevertheless, most of the current GAN methods are used to deal with prob-
lems in images, with little work using these GAN-based methods for solving classification studies to tackle imbal-
anced data.

Generative Adversarial Network is an unsupervised deep learning model, which has been proposed by Good-
fellow in the literature [18]. GAN is composed of generators and discriminators, where the generator produces fake
samples by receiving random noise samples, and the role of the discriminator is to determine whether the generated
synthetic samples are true or false. As the discriminator determines that the synthetic samples are more similar to the
real data, these samples are augmented into the minority class to constitute a balanced dataset X’. However, the
Euclidean distance used in GAN makes it difficult to deal with problems such as inconsistency of magnitude, which
makes the synthesized samples only be considered ideal samples in a harsh spatial range, which in turn causes the
synthesized samples to be easy to overlap and neglect essential features. In this regard, how to improve the diversity
of the synthesized samples is a research motivation of this paper.

2.2. Regularization in Optimization Functions

In optimization problems, to balance the model in terms of complexity and performance, a regularization term is
usually added to the objective function. To date, the most popular norms used in the objective function of optimiza-
tion problems are £;-norm [32] and ¢,-norm [33]. For the former, due to the inherent property of the £;-norm, the
solution to an ¢;-norm optimization is sparse, hence the £;-norm is also called the sparse rule operator, and feature
sparsity can be achieved by the £ -norm, thus filtering out some redundant features. Analogously, the ¢,-norm is the
most prevalent norm in optimizing objective functions. For example, overfitting is another recurrent issue encoun-
tered when training on a dataset with a small sample size. To address the phenomenon of overfitting and to improve
the generalization ability of the model, the problem can be solved by applying an ¢, -norm to the objective function.

As discussed above, models in real-world issues often require both £, -norm for filtering redundant features and
{>-norm for preventing the model from overfitting to cater to the excessively complicated training set. Therefore, a
mixed norm that incorporates both ¢; -norm and ¢,-norm is a natural choice for this paper. In addition, there is no rel-
evant research on employing generative adversarial network models embedded with mixed norm [34] to deal with the
imbalance problem, so this is another research motivation for this paper.

3. Main Results

In this section, in order to tackle the imbalanced classification problems, we propose a GAN-oriented imbal-
anced learning method, called IGAN-FF, which incorporates ¢ ;-norm regularizer and Mahalanobis distance. The
generator with £;,-norm regularizer is not only effective in improving the robustness of the model and removing
redundant features but also in preventing overfitting. In addition, the discriminator is trained to discriminate between
real samples and fake (i.e., generated) samples, and also between minority samples and majority samples on the syn-
thetic balanced dataset. It should be noted that, all problems in this paper are addressed by using the Mahalanobis dis-
tance to replace the traditional Euclidean distance.

3.1. Optimization Based on Mahalanobis Distance without Regularizer

GANS are extensively used as they can generate high-quality data that matches the distribution of the original
data with a large amount of training. As shown in formula (1), the essential idea of this model is to design the gener-
ator G and the discriminator D to play a maximal-minimal game. There is a competition between G and D. The
generator G tries to learn the distribution of the input data from the random variable z and produces a new sample
G(2). The discriminator D is responsible for distinguishing between G(z) and real samples, and the training process
of GAN is to run the generator and discriminator repeatedly until the discriminator cannot distinguish between G(z)
and real data. In contrast to common generative models, GANs can generate high-quality data and do not need to
predefine the data distribution of the input samples. Therefore, we select to rebalance the imbalanced data by using
GAN to generate more samples of minority classes. The objective function is shown in the following equation:

mGin mgx V(D,G) = Eivp,. wllog D(x)] +E.. . [log(1 — D(G(2)))], (1)

where V(D,G) is the value function and E denotes the expectation of the distribution, x is real data obeying the dis-
tribution pg, and z is a noise variable obeying the distribution p,.

It is difficult for GAN to deal with the problem of inconsistency in magnitude by utilizing the Euclidean dis-
tance to measure the relationship between samples and features, which limits the spatial range of the synthesized
samples and ignores potentially valuable attributes. In this regard, the Mahalanobis distance is used in this paper to
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impartially assess the different attributes because it has the merit of handling samples with inconsistent dimensions.
Using Mahalanobis distance for the similarity measurement can effectively solve the interference of correlation
between sample features, greatly eliminate the influence of dimension on algorithm processing, and also help detect
outliers. The Mahalanobis distance [35] of two samples (denoted as D(x,y)) can be calculated by

D(x,y) = /(x=y)Tcov(x,y) " (x—y), ()

where x and y are two different samples, cov(x,y) and cov(x,y)™! are the covariance matrix of these two samples
and their inverse matrix. From this, we can see that the covariance matrix cov(x,y) requires an inverse. If there is a
serious correlation in the variable space, the covariance matrix would be singular, which obviously results in (2) being
insolvable. Therefore, when the number of minority class samples is less than the number of features, we need to
reduce the dimensionality of the samples.

The principal component analysis (PCA) [36, 37] is a multivariate statistical method used to reduce the dimen-
sion of variables. It projects high-dimensional data into low-dimensional principal component space. Therefore, the
calculation of the Mahalanobis distance is transferred to the principal component space, and the data dimension is
compressed to effectively avoid the problem of matrix singularity. On the premise that cov(x,y)™' has a solution, in
order to retain the information of the real data, the number of principal components is guaranteed as much as possi-
ble.

3.2. £, 2-Norm Regularizer

¢, -norm is widely used in optimization problems and is considered a very useful tool for solving sparsity prob-
lems [32]. For example, given a dataset with a large number of features for training, a typical issue encountered is the
effect of redundant features on the training results, i.e., the trained model may characterize implicitly noisy and irrele-
vant features in the data, which reduces the training effectiveness. Therefore, one solution to avoid similar problems is
to include a regularization term in the loss function. In this regard, by using the regularization term represented by the
¢,-norm in 3, it is possible to make the final desired solution a sparse one by making the value of the £;-norm as

minimal as possible:
IX]l, = E ’xij
ij

where X denotes a matrix and x;; denotes an instance of the ith row and jth column of the matrix X. Due to the
inherent property of the £;-norm, the solution to an ¢;-norm optimization is sparse, and hence the ¢;-norm is also
called the sparse rule operator, and feature sparsity can be achieved by the ¢;-norm, thus filtering out some redun-
dant features. For instance, while classifying a user's movie hobby, the user has 100 features, only a dozen of which
may be useful for classification, and most of the features such as height and weight may be irrelevant and can be fil-
tered out by using the £, -norm.

Analogously, the ¢,-norm is the most prevalent norm in optimizing objective functions [33]. For example,
overfitting is another recurrent issue encountered when training on a dataset with a small sample size. To address the
phenomenon of overfitting and to improve the generalization ability of the model, the problem can be solved by
applying an £,-norm to the objective function, which is denoted by the £, -norm as shown below:

1/2
IX]l, = (Z lxij|2> : )

ij

’ 3)

Considering that removing redundant features and preventing model overfitting are often needed simultane-
ously in real problems, a mixed norm that combines £; -norm and ¢, -norm comes naturally to mind. Until now, there
have been still only a few studies on ¢,-norm regularization for GAN training [38], even without the so-called mixed
norms of £, ,-norm. In this paper, we tackle the problem of parameterizing a GAN with a suitable ¢, ,-norm regular-
izer that achieves parameter sparsity and prevents model overfitting by mixing ¢ ,-norm regularizers. Specifically,
the €} ,-norm is defined as:

1/2
I©12 = (Zua,u%) , ®)
ij

where O is the set of training weights of generator or discriminator, 6;; denotes the i jth entry of ©.

3.3. Improved GAN Model with Regularizer

With the above discussion, we design a GAN that incorporates the Mahalanobis distance and ¢; ,-norm regu-
larizer to solve the problems of inconsistent magnitude between samples, feature redundancy and model overfitting.
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To be specific, the generator is a multilayer perceptron (MLP) trained to generate realistic data from a random noise
z. The loss function of G is

Lg =er + L+ Ly + Ly,

=) " —qilogP,(y; = reallx;) + Y _ —glogP,(y; = minority|x;)
i=1 i=1

rrrrrr

1 e«
+ 3N = )T eov(xi,x) 7 (- x)) +all®ll; o (6)

I

i=1 j=1

where this loss function consists of four terms. The first L, and second terms L,,; are the confusing discriminator
loss over the generated minority samples, in which g; € {(real, minority),(real, ma jority),(fake, minority)}
denotes the sample labels, and Yi represents the output (prediction probability) of the discriminator. The third term
L, aims at making the generated minority samples close to the real minority samples, n, and 7,,, denote the num-
ber of synthetic samples and the number of minority class samples, respectively, and |- | denotes the absolute value of
"|-|". The last term L,, is £, ,-norm regularizer, in which @ is the set of training weights of the generator with regu-
larization coefficient .

Similarly, the discriminator is an MLP trained to distinguish real data x and generated data from the input. The
loss function of D is

LD :Lfa + L(:[ + me + Lree

Mg F i+ Mo

= > —lglog(P,(i = fakelx;) + (1 - g)log(1 - P,(5; = fakelx;)]
i=1

Mg i+ j

+ Y —lgilog(P,(; = minority|x;) + (1 - g)log(1 - P,(y; = minority|x;))]
i=1

Nynin inaj

=SS = hpTeov(hi, by =) +BlO] 2 (7)

=1 j=1

where this loss function consists of four terms. The first term Ly, is the cross entropy loss to discriminate whether the
sample is generated by a generator or a real sample of the original dataset, 7,,,; denotes the number of majority class
samples, n, and n,,;, are defined as in (6). The second term L, is also the cross entropy loss to discriminate whether
the sample is a minority class or a majority class. The third term L,,, aims at making the different class samples far
away from each other. The last term L, is a regularizer, in which O is the set of training weights of the discrimina-
tor with regularization coefficient 3.

Finally, the adversarial training objective function of IGAN-FF is given as equation (8):

mGin mgx(D, G) =E,.,,.o[10gD(x) + Ly + Ly + Lyee]
+E..).ollog(1 = D(G(2))) + Lyi + Lai + Ly @®)
The goal of the generator is to generate fake minority samples to simulate the real minority sample distribution

to confuse the discriminator. The goal of the discriminator is to correctly classify between the real training samples
and the fake samples generated from the generator, and also between the minority samples and the majority samples.
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Algorithm 1 IGAN-FF method

Input: Real data {X}}; Latent variable {Zj} ; Training batch size m;
Output: Synthetic data G(Z);

1: for number of training epoch do

2: for number of discriminator iterations do

3: Sample mini-batch of m real data from distribution x ~ pgara(x);

4: Sample mini-batch of m latent variables from distribution z ~ p;(2);
S: Compute discriminator loss Lp by (7);

6: Update discriminator by Lp;

7: end for

8: for number of generator iterations do

9: Sample mini-batch of m latent variables from distribution z ~ p,(2);
10: Compute generator loss Lg by (6);

11: Update generator by Lg;

12: end for

13: end for

So far, we have discussed the proposed generative adversarial network algorithm embedded with £, ,-norm and
Mahalanobis distances for imbalanced data, i.e., IGAN-FF. The pseudo-code for rebalancing imbalanced data is
given in the following Algorithm 1. The characteristics of the proposed method can be highlighted in the following
three advantages: 1) GAN incorporating the Mahalanobis distance can impartially evaluate the different attributes of a
sample without ignoring any trivial but crucial attributes and mitigate the interference caused by correlation between
attributes; 2) the generator with ¢; ,-norm regularizer is not only effective in improving the robustness of the model
and removing redundant features but also in preventing overfitting; and 3) the discriminator can effectively distin-
guish not only between generated samples and real samples but also between majority samples and minority samples.

4. Experimental Results

4.1. Datasets Analysis

The experimental datasets in this paper are derived from the 16 common datasets borrowed from KEEL and
UCI [39] machine learning repository to investigate the performance of the proposed method in various scenarios.
Considering that the research task of this paper is to test the learning capability of the algorithm in a binary classifi-
cation assignment, some modifications have been made to the labels of several original datasets with multiple classes.
The details of these datasets are shown in Table 1. The column “Minority” indicates the class that is considered as a
minority class in the experiment, and the last column “IR%” indicates the ratio of the number of samples in the
minority class to the number of samples in the majority class.

Table 1 Information of the Datasets

Dataset Minority Features Size Size of Maj Size of Min IR%
Wine Class “2” 13 198 151 47 31.1
Vehicle Class “van” 18 846 646 200 31
Ecoli4 Class “0” 7 336 316 20 6.3
Libra Class “1” 90 360 336 24 7.1
Abalone Class “18” 7 4177 4135 42 1.0
Pima Class “1” 8 768 500 268 53.6
Iris Class “2” 4 150 100 50 50
Vowel Class “0” 18 846 647 199 30.8
Yeast Class “0” 8 1483 1150 303 26.3
Liver Class “1” 6 178 107 71 66.3
Pageblock Class “text” 10 5472 4913 559 11.3
Segment Class “WINDOW” 18 2310 1980 330 16.7
Glass Class “1” 9 208 138 70 50.7
Letter Class “0” 16 20000 19266 734 3.8
Defalut Class “0” 23 30000 23364 6636 28.4
Judicial Class “5” 60 5473 5242 231 7.04
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4.2. Evaluation Metrics

Accuracy is a widely used evaluation criterion in classification, which reflects the number of samples classified
correctly. However, accuracy may not be able to judge the minority samples precisely under the imbalanced learning
condition. Hence, concerning the imbalanced data, multi-indices are used to evaluate the effectiveness of the pro-
posed method, which include Precision, Recall, F-Score and G-Means [40, 41]. To give a better explanation, a confu-
sion matrix is defined in Table 2.

Table2 Confusion matrix

Predicted
Actual
Class_1 Class_2
Class 1 TP FN
Class_2 FpP TN

In Table 2, Class 1 represents minority class, then Class 2 stands for the remainder. 7P and FN are separately
the numbers of correctly predicted and incorrectly predicted samples in Class Class_1. TN and FP are the numbers of
correctly predicted and incorrectly predicted samples in Class 2, respectively.

Based on the above confusion matrix, indices borrowed from [17, 42] are given to evaluate the proposed
method as follows:

TP+TN

Accuracy = ©)

TP+FN+FP+TN

TP
Precision = ——— (10)
TP+FP
TP
Recall = ——— (1
TP+FN
F— Score = 2% Rec.a{l X Precision (12)
Precision + Recall

TP TN

G —mean = \/ X \/ (13)
TP+FN TN+FP

In experiments, we hope to find sufficiently small values of P and FN, i.e., FP and FN are expected to be close to 0,
then the above five evaluation metrics are expected to be close to 1. Besides, the area under the curve (AUC) of
receiver operating characteristic (ROC) is an effective metric to evaluate the performance, especially for imbalanced
data [43, 44]. The closer AUC is to 1, the better the classification performance will be [12, 45].

4.3. Simulation Analysis and Discussion

4.3.1. General Setting

All experiments are conducted on a PC server with a 2.5 GHz CPU and 16 GB memory, and all tested models
are implemented on Python to check their stability for real usage. The strategy of the 70%—30% train-test setting and
S-fold cross-validations are employed to obtain unbiased results.

4.3.2. Tested Methods

To demonstrate the performance of our proposed techniques, the experiments compare four state-of-the-art
oversampling techniques, four ensemble classifiers and three deep learning GAN-based methods, which include K-
means SMOTE, MWMOTE, DFBASO, IFID [9], adaptive boosting (AdaBoost) [46], random forest (RF) [47], gra-
dient boosting (Gboost) [48], self-paced ensemble (SPE) [49], GAN, WGAN, CGAN. In addition, except for the four
ensemble classifier methods, the classifiers used are all deep neural networks (DNN) with 2 hidden layers.

In addition, the parameters of IGAN-FF are set corresponding to the experiment. From the perspective of net-
work structure, the experimental experiment uses a three-layer fully connected neural network to construct the gener-
ator and discriminator. The numbers of units for the hidden layers of the generator and discriminator are set to 32-256
and 16-128, respectively. The batch size is set to 32 and the number of epochs is 5000 and Rectifying Linear Unit
(ReLU) is chosen as its activation function. In the output layer, the sigmoid function is used as the activation function.
To optimize the loss of the generator and discriminator, the Root Mean Square Prop (RMSProp) optimizer is applied
to set the learning rate to 0.001. Figure 1 illustrates the training process of IGAN-FF, where the purple and blue lines
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indicate the changes in the loss values of the generator and the discriminator, respectively. From the figure, we can
easily find that the fluctuation of the generator and the discriminator is very obvious before 10000 iterations, and
when the number of training times exceeds 20000, the loss of the generator and the discriminator tend to stabilize.
Under this condition, the trained IGAN-FF model can output synthetic data more similar to the real original samples.

—Discriminator_loss
4t — Generator_loss

0 10000 20000 30000 40000

Figure 1. Generator and discriminator loss values for IGAN-FF.

4.3.3. Simulation Analysis and Discussion

According to the evaluation indicators described in 9-13, the results of the comparison experiments of different
evaluation indicators are shown in Tables 3—5, where the best results of each indicator are highlighted in bold. Table 3
presents a comparison between IGAN-FF and 11 other comparative approaches to evaluate classification effective-
ness on 16 public imbalanced datasets [39] using F-Score metrics with DNN as the classifier. As can be noticed from
the table, the IGAN-FF proposed in this paper performs satisfactorily on 16 datasets, out of which the best perfor-
mance is obtained on 11 datasets and the second best results are obtained on 2 datasets. However, the proposed
method of IGAN-FF classification is not desirable for the datasets Libra, Segment and Judicial, leading to this situa-
tion may be due to the fact that the number of minority samples in these three datasets is too scarce to be statistically
distributed. In addition, the imbalance rates of these three datasets are high, which are 7.1%, 16.7%, and 7.04%,
respectively. It may lead to a large hyperplane bias of the classifiers, and thus the applicability of the proposed
method IGAN-FF to such datasets could be improved.

Table3 Results of F-Score for IGAN-FF on 16 imbalanced datasets
Datasets K-SMOTE MWMOTE DFBASO IFID AdaBoost RF Gboost SPE GAN WGAN CGAN IGAN-FF

Wine 0.978 0.978 0976  0.971 0.943 0937 0927 0947 0954 0979  0.968 0.98
Vehicle 0.841 0.84 0.872  0.851 0.838 0.803 0.802 0.841 0.862 0.873  0.865 0.881
Ecoli4 0.825 0.801 0.819 0.822  0.773 0.798 0.713  0.767 0.836 0.854  0.842 0.857
Libra 0.903 0.855 0.874  0.881 0.767 0.796 0.718 0.785 0.884 0.897  0.888 0.896
Abalone 0.856 0.841 0.822  0.825  0.565 0.612 0582 0599 0.841 0.858  0.843 0.861
Pima 0.732 0.732 0.747  0.725  0.672 0.635 0.613 0.664 0.717 0.741  0.746 0.753
Iris 0.877 0.879 0.883  0.866  0.947 0.92 0948 0925 0917 0.928  0.926 0.937
Vowel0 0.903 0.916 0914 0927 0.871 0.891 0906 0.896 0.906 0.924 00912 0.934
Yeast 0.705 0.748 0.769  0.766  0.761 0.754  0.765 0.748 0.747 0.781  0.766 0.799
Liver 0.681 0.669 0.688 0.674 0.646  0.649 0.645 0.609 0.663 0.683  0.677 0.687
Pageblock 0.779 0.782 0.781  0.784  0.719 0.73 0.68 0.647 0.762 0.793  0.771 0.801
Segment 0.783 0.812 0.859 0.817 0.714  0.759 0.741 0.719 0.815 0.839  0.841 0.855
Glass 0.754 0.734 0.761  0.757  0.417 0.08 0.124 0333 0.722 0.751  0.744 0.765
Letter 0.698 0.71 0.688  0.691 0.719 0.73 0.68 0.647 0.751 0.801  0.779 0.816
Default 0.792 0.768 0.782  0.784  0.719 0.73 0.68 0.647 0.833 0.845 0.84 0.852
Judicial 0.83 0.845 0.819  0.837  0.719 0.73 0.68 0.647 0.819 0.857 0.839 0.851
Average 0.809 0.807 0.816  0.811 0.737 0.722  0.700 0.714 0.814 0.838  0.828 0.845
Ranking 6.063 6.500 5.125 5813 9375 9.250 10.063 10.188 6.625 2.625  4.438 1.438
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Table4 Results of G-Means for IGAN-FF on 16 imbalanced datasets
Datasets K-SMOTE MWMOTE DFBASO IFID AdaBoost RF Gboost SPE GAN WGAN CGAN IGAN-FF

Wine 0.974 0.975 0973  0.969 0934 0918 0.908 0.936 0.96 0.988  0.971 0.989
Vehicle 0.934 0.933 0.931 0.929 0.848  0.865 0.828 0.849 0944 0.952  0.943 0.955
Ecoli4 0.93 0.923 0933 0911 0.782  0.809 0.703 0.767 0.929 0.938 0.927 0.933
Libra 0.925 0.885 0.911 0.903 0.768 0.8 0.717 0.778 0913 0922 00915 0.927
Abalone 0.903 0.933 0.871 0.884 0.621  0.676  0.636 0.685 0.899 0.924 091 0.922
Pima 0.655 0.656 0.674  0.649 0463 0471 0458 0.467 0.651 0.669 0.671 0.684
Iris 0.812 0.823 0.886  0.838 0.893  0.881 0914 0.893 0.891 0.911 0.903 0.92
Vowel0 0.895 0.904 0.901 0.924 0.92 0918 0923 0936 0919 0937 0.928 0.941
Yeast 0.92 0.937 0.922 0917 0.742  0.73 0.739 0.718 0.892 0.929 0914 0.933
Liver 0.646 0.628 0.656  0.635 0362 0.45 0.437 0312 0.672 0.689  0.667 0.695
Pageblock 0.923 0.923 0925 0911 0.715  0.729 0.685 0.734 0913 0919  0.909 0.922
Segment 0.93 0.943 0.928  0.939 0.702  0.74 0.723 0.69 09 0.924  0.929 0.933
Glass 0.688 0.682 0.688  0.691 0.388  0.09 0.119 0.319 0.681 0.692  0.688 0.702
Letter 0.893 0.9 0.887  0.899 0.715  0.729 0.685 0.734 0923 0946 0.926 0.944
Default 0.795 0.796 0.776  0.781 0.715 0.729 0.685 0.734 0.851 0.869  0.866 0.871
Judicial 0.858 0.892 0.855  0.866 0.715  0.729 0.685 0.734 0.861 0.9 0.892 0.904
Average 0.855 0.858 0.857  0.853 0.705 0.704 0.678 0.705 0.862 0.882  0.872 0.886
Ranking 5.688 5.188 5813  6.438 10.063  9.750 10.500 9.313 6.000 2.688  4.500 1.625

Table 5 Results of AUC for IGAN-FF on 16 imbalanced datasets
Datasets K-SMOTE MWMOTE DFBASO IFID AdaBoost RF Gboost SPE GAN WGAN CGAN IGAN-FF

Wine 0.978 0.979 0977  0.981 0.949 0.939 0956 0.958 0.982 0.993 0.98 0.997
Vehicle 0.979 0.974 0972 0956 0914 0921 0932 0924 0977 0984 0979 0.989
Ecoli4 0.947 0.941 0952 0937  0.898 0.877 0.861 0.898 0951 0.959 0.955 0.96
Libra 0.997 0.994 0992 0989  0.945 0955 0.941 0.961 0993 0.99  0.991 0.996
Abalone 0.956 0.976 0923 0946  0.837 0.849 0.822 0.839 0958 0.961  0.956 0.966
Pima 0.733 0.735 0.748  0.728 0.796  0.828 0.831 0.805 0.734 0.744  0.743 0.761
Iris 0.877 0.886 0886 0.879 0985 0982 0977 0972 0934 0.952 0.946 0.971
Vowel0 0.967 0.982 0.983  0.991 0.959 0.968 0.967 0.976 0977 0986  0.981 0.993
Yeast 0.951 0.953 0971 0969  0.959 0971 0972 0962 0969 0978 0.964 0.982
Liver 0.685 0.671 0.691  0.685 0.758 0.776  0.765 0.713 0.723 0.773  0.758 0.783
Pageblock 0.955 0.96 0963 0959  0.887 0.874 0.884 0.878 0.944 0957 0951 0.961
Segment 0.931 0.943 0.93 0.941 0976  0.969 0.965 0971 0.933 0.945 0.951 0.971
Glass 0.771 0.768 0.774  0.775 0.568 0.585 0.561 0.596 0.759 0.768  0.771 0.78
Letter 0.938 0.945 0936 0944  0.887 0.874 0.884 0.878 0969 0982 0971 0.989
Default 0.872 0.855 0.868  0.862 0.787 0.774 0.784 0.778 0901 0.922 0911 0.937
Judicial 0.904 0.912 0.891 0911 0.887 0.874 0.884 0.878 0901 0942 0.925 0.939
Average 0.903 0.905 0.904  0.903 0.875 0.876 0.874 0.874 0913 0928 0.921 0.936
Ranking 7.250 6.500 6.438  6.813 8.375 8375 8313 8375 6313 3438 5.188 1.813

Along the same lines, Table 4 exhibits the performance achievement of the proposed method IGAN-FF as
compared to 11 diverse approaches in terms of G-Means. Note from Table 4 that IGAN-FF achieved 10 best results,
3 secondary and 3 tertiary results in the 16 datasets, with an average ranking of 1.625, which is 1.063 higher than
WGAN, having an average ranking of second. An inference can be drawn from the results in the table that the four
algorithms based on deep learning outperform the mean of the four methods based on oversampling in terms of mean
as well as average ranking, while the four algorithms based on ensemble learning are significantly inferior to the pre-
ceding two methods. The cause of this result may be that although ensemble learning algorithms can handle imbal-
anced classification problems, their capabilities for dealing with extremely imbalanced classification problems are still
limited.

In Table 5, we compare the AUC experimental results of different methods separately. Although IGAN-FF
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obtains only 9 optimal and 5 sub-optimal results on 16 datasets, its average ranking is 1.813, which is much higher
than the second-ranked WGAN by 1.625. It is worth mentioning that the average rankings based on the four over-
sampling algorithms, four ensemble algorithms, and four deep learning algorithms are 6.750, 8.360, and 4.188,
respectively. Similarly, the average AUC values are 0.904, 0.875, and 0.925, respectively. The proposed method
IGAN-FF outperforms the highest-ranked oversampling method MWMOTE by 3.43% and outperforms the highest-
ranked ensemble algorithm RF by 6.85%. According to the above discussions, the comparison results demonstrate
the effectiveness of our proposed algorithm.

In what follows, Figure 2 illustrates the radargrams of the different approaches on the 16 datasets. From the fig-
ure, it is easy to see that the proposed algorithm IGAN-FF is the best in terms of robustness of the three estimators (F-
Score, G-Means, AUC). It is also worth noting that as the number of minority samples is too limited, the minority
class samples may not have a data distribution or statistical significance, and therefore the discriminator will not be
effective during the synthesis process, which then makes it difficult to determine the sample distribution and perform
the correct synthesis. As mentioned above, given that the method proposed in this paper is based on generative
adversarial neural networks, the number of minority class samples cannot be too small.
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Figure 2. Comparison of classification robustness of different methods(a-p).

Next, for a better summary of Tables 3—5, the results of the average values and average rankings of each algo-
rithm in terms of different metrics are displayed in Figure 3. From the figure, it is easy to find that the average value
of the proposed method is optimal in terms of F-Score, G-Means and AUC, which sufficiently verifies the robustness
and effectiveness of the proposed method. Nevertheless, among the three evaluation metrics, unsatisfactory results
can be found for the datasets Pageblock and Segment. The reason for this may be related to the inaccurate transfor-
mation of the dataset's unstructured data into structured data, which affects the subsequent classification results.
Moreover, the datasets Ecoli4 and Libra also yielded poor results, which may occur as the number of samples in the

10


https://doi.org/10.53941/ijndi.2023.100017

1JNDI, 2023, 2(4), 100017. https:/doi.org/10.53941/ijndi.2023.100017

minority class is excessively sparse and the statistical distribution may not even be available. As a result, the discrim-
inator is incapable of accurately determining whether the synthesized samples are proximal to the original data, which
results in the synthesis of a large number of samples that do not match the distribution of the original data. Regarding
the analysis of the above results, the method proposed in this paper is more suitable for datasets with a certain num-
ber of samples of minority class, that is to say, the algorithm will have satisfactory results only for the samples of
minority class with statistical distribution.
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Figure 3. (a) Average and (b) Ranking of different algorithms for each evaluation metric on 16 datasets.

Finally, to shed further light on whether IGAN-FF is significantly distinct from other algorithms and to ensure
that the improvement is statistically significant, the Mann-Whitney Wilcoxon test [50] is employed to validate the
conjecture that the proposed method outperforms the other methods, and the p-values comparison of all algorithms in
F-Score, G-Means and AUC is reported in Table 6. In Table 6, the p-values of F-Score, G-mean and AUC of the
proposed method IGAN-FF over other compared methods on 16 datasets are described in three rows. Considering the
stochastic properties of the computations, a hypothesis test employing such a result is conducted to show whether
there is a significant difference between the two algorithms. Without loss of generality, we set the null hypothesis that
there is no significant difference between the two algorithms. It is evident that when the significance level « is set to
be 0.05, the p values are substantially less than @, and thus all p values are statistically significant. Hence, by ana-
lyzing the results in Table 6, it can be summarized that the proposed algorithm IGAN-FF gets 29 significant results
out of the total 33 comparisons of F-Score, G-means and AUC. However, there exist four metrics for which the
results are not significant, which may be caused by the fact that all three data-based algorithms and one GAN-based
method take into account the data distribution to some extent, resulting in a higher quality of synthesized samples and
a better classification performance. In summary, the proposed algorithm IGAN-FF is superior to the other compara-
tive methods and is significant.

Table 6 Mann-Whitney Wilcoxon test results of F-Score, G-Means and AUC between IGAN-FF and each of the
compared methods

Comparison
Metric "JGAN-FF IGAN-FF IGAN-FF IGAN-FF IGAN-FF IGAN- IGAN-FF IGAN-FF IGAN-FF IGAN-FF IGAN-FF
vs K-SMO vs MWM vs DFB  vsIFID vs ADA FFvs RF vs GBO vsSPE vs GAN vs WGAN vs CGAN

]f—g/alue of 0.000831  0.001474 0.005757 0.001474 0.029268 0.048867 0.027238 0.012642 0.408716 0.002083 0.018016
-Score

g_;:z:;s()f 0.013033  0.001328 0.035589 0.002977 0.029295 0.034276 0.005937 0.00321 0.029509 0.002592 0.005937
ii}/élue of 0.3374  0.363304 0.310897 0.023129 0.022103 0.011585 0.002366 0.001258 0.004367 0.013683  0.002592

5. Conclusions

In this paper, we have proposed a GAN-oriented imbalanced learning method, called IGAN-FF, which incor-
porates ) ,-norm regularizer and Mahalanobis distance. To evaluate the different attributes fairly without neglecting
any trivial/small-scale but important attributes and also to attenuate the interference caused by correlation between
features, GAN incorporating Mahalanobis distance has been adopted to address the issue. Subsequently, the £, ;-
paradigm regularization term has been embedded into the loss function, which ensures the sparsity of the data, greatly
facilitates feature filtering, and reduces the risk of overfitting. In the end, experiments on several public datasets have
been utilized to show the effectiveness and universal applicability of the proposed methods. It can be observed from
the above experimental results that we have developed an effective way by the proposed IGAN-FF strategy to handle
the imbalanced data, meanwhile, it has good practical applicability because 1) the datasets adopted in the experi-
ments have covered various fields, such as traffic system, judicial system, mail detection, etc., and 2) the datasets with
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different scales and imbalanced ratios have been employed to fulfill the comparison experiments with other methods.
In future work, we may try to develop a new deep-learning method to fulfill the data imputation without sacrificing
much computational cost. Besides, the semi-supervised classification for imbalanced and incomplete data can also be
our next work direction.

In future work, we plan to extend the results obtained to handle datasets without data distribution.
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