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Abstract: The large-scale flexible job shop dynamic scheduling problem (LSFJSDSP) has a more com-
plex solution space than the original job shop problem because of the increase in the number of jobs and
machines, which makes the traditional solution algorithm unable to meet the actual production require-
ments in terms of the solution quality and time. To address this problem, we develop a dynamic schedul-
ing model of a large-scale flexible job shop based on noisynet-double deep Q-networks (N-DDQNs),
which takes the minimum expected completion time as the optimization objective and thoroughly takes
into account the two dynamic factors (the new job arrival and the stochastic processing time). Firstly, a
Markov decision process model is constructed for dynamic scheduling of a large-scale flexible work-
shop, and the corresponding reasonable state space, action space and reward function are designed. To
address the problems (of solution stability and unsatisfactory scheduling strategy selection) in the con-
ventional exploration method of DDQNs, learnable noise parameters are added to the DDQNs to create
the N-DDQN algorithm framework, where the uncertainty weight is added. Secondly, the learnable noise
parameters are added to the DDQNs to form the N-DDQN algorithm framework, and the uncertainty
weight is added to realize automatic exploration. Hence, the issue is solved that the traditional DDQN
exploration method may result in unsatisfactory solution stability and scheduling strategy selection. The
proposed method, which has significant flexibility and efficacy, is demonstrated (by experimental find-
ings) to be superior to the conventional method based on compound scheduling rules in tackling large-
scale flexible job shop dynamic scheduling problems.

Keywords: large-scale flexible job shop; dynamic scheduling; new job arrival; stochastic processing
time; deep reinforcement learning

1. Introduction

Flexible job shop scheduling problems (FJSSPs) have been widely found in semiconductor manufacturing,
automobile assembly, machinery manufacturing and other fields due to their flexibility with the actual production
mode of the workshop [1]. The FJSSP is frequently extended to a large-scale flexible job shop scheduling problem
(LSFJSP) in the actual production of complex parts, such as aviation equipment, rail transit equipment, and weapon
equipment, due to the increasing numbers of parts and machines. Due to the influence of a large number of dynamic
interference events, such as the machine breakdown, change of delivery time, new job arrival and stochastic process-
ing time, etc., a typical large-scale flexible job shop dynamic scheduling problem (LSFJSDSP) is further formed,
which has an exponentially increasing number of feasible solutions as the problem size grows. The search solution
space has gradually become exceedingly complex due to the abundance of locally optimal solutions, making it a
research hotspot and an industry focus.

The order-based production mode has become a common production mode in the manufacturing industry over
the past few years as a result of the continued development of network technology and the manufacturing sector. As a
result, the arrival of new workpieces has become an essential disturbance factor in this production mode [2—4]. The
fluctuation of processing hours will be caused by the replacement of tools or tooling, the alteration of cutting parame-
ters, the irregular maintenance of equipment, and the operational expertise of workers during the production process.
Hence, the stochastic processing time has also become a significant disturbance factor affecting production efficiency,
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and has become a research topic for dynamic scheduling in recent years [5—8]. Actual production may experience
two different dynamic disruptions at once. Therefore, it is more appropriate for the actual production environment to
take into account the two disturbance aspects of the new workpiece arrival and the erratic working hours.

The workshop scheduling problem is the subject of numerous optimization proposals [9], but the scale of the
solutions is typically not large. Although large-scale scheduling problems cannot be directly solved by many tradi-
tional optimization techniques due to both efficiency and quality issues, such problems can currently be resolved by
problem-based decomposition approaches that include the decomposition method based on the model structure, time,
workpiece and machine. For example, Van et al. [10] used the D-W algorithm to solve the machine scheduling prob-
lem, and proved that the method can effectively decompose the model of complex problems to simplify the model
requirements. Liu et al. [11] iteratively decomposed the original large-scale scheduling problem into several sub-
problems by resorting to the rolling horizon decomposition method and the prediction mechanism, and proposed an
adaptive genetic algorithm to optimize each sub-problem.

In general, when addressing complex flexible job shop scheduling issues, the problem-based decomposition
strategy described above has achieved some positive results, although there are still certain limitations that can be
listed as follows. 1) It is difficult to guarantee the quality and speed of the solution when this method divides the large-
scale FISSP into smaller sub-problems because additional constraints will be generated for each sub-problem. 2)
Most decomposition algorithms are complex and do not adequately account for dynamic infection factors (like the
arrival of new jobs and random working hours in the actual process), making them unsuitable to be used in actual
production. Therefore, it is crucial to research more effective scheduling optimization methods for resolving LSFJS-
DSPs.

Deep reinforcement learning (DRL) has recently emerged as a more advantageous approach for resolving
scheduling problems with multiple interference factors and dynamic interference factors due to its ability to achieve
real-time scheduling optimization of the production line. For instance, Luo et al. [12] proposed an online reschedul-
ing framework for a two-level deep QO-network with the two practical objectives (of the total weighted delay rate and
the average machine utilization rate) optimized. Luo [13] proposed a deep Q-network and six rules to solve the
dynamic FISSP with new order insertion in continuous production. Gui et al. [14] proposed a Markov decision pro-
cess with compound scheduling actions, which converts DFJSP into RL tasks and trains the policy network (based on
the deep deterministic policy gradient algorithm) to complete the weight training.

To solve the problem that reinforcement learning is limited by scale, a deep neural network is added to the rein-
forcement learning to fit O values. For example, Waschneck et al. [15] designed some DQN-based collaborative
agents for job shops. Each agent is responsible for optimizing the scheduling rules (of a work center and the global
reward) while monitoring the behavior of other agents. For LSFJSPs, Song et al. [16] proposed a new DRL method
to solve the difficult problem of one-to-many relationships existing in complex shop scheduling processes (in terms of
decision-making and state representation), and verified its effectiveness in large-scale cases. Park et al. [17] proposed
a semiconductor packaging device scheduling method based on deep reinforcement learning, and introduced a new
state representation to effectively adapt to changes in the number of available machines and production demands.

Note that the existing research on algorithms for LSFJSPs pays little attention to practical dynamic scheduling,
and has limitations of poor algorithm stability and low solution accuracy. Therefore, this paper systematically studies
the LSFJSP based on the new job arrival and stochastic processing time, and designs pertinent dynamic scheduling
methods based on the DRL. The main contributions are given as follows. 1) The FISSP is extended to an FJSP based
on the new job arrival and random working hours, and a real-time scheduling framework based on the N-DDQN
algorithm is constructed to solve the dynamic scheduling model of the large-scale flexible job shop. 2) The state fea-
ture and the sensitive action set of the LSFJSP are designed, and the round and single-step hybrid reward mechanism
is established to ensure the feasibility of the deep reinforcement learning framework and solve the scheduling prob-
lem. 3) The noisynet and the DDQN are combined to solve dynamic FISSPs, where a set of learnable noise parame-
ters is added to double-DQN networks, and weights are introduced into uncertainties to realize automatic exploration.

The remainder of the paper is organized as follows. Section 2 introduces the description and mathematical
model of LSFJSDSPs based on the new job arrival and stochastic processing time. The noisy DDQN algorithm for
flexible job shop dynamic scheduling is introduced in Section 3, which includes the design process of the state char-
acteristics, action set and reward function. Section 4 completes the experimental design and analysis. Finally, the con-
clusion and future perspectives are drawn.

2. Problem Description and Mathematical Model

2.1. Description of the Problem
Compared with conventional flexible job-shop scheduling issues, LSFJSPs are more prone to interruption from
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new order insertion due to larger scales, more production resources, and higher volumes of workpieces. The ambigu-
ity of working hours is one of the most frequent factors that reduces the actual output. Several variables, such as the
arrival time of materials, the rate at which fixtures must be replaced, the modifications of industry parameters, the
equipment breakdown or repair, the operator skill level, and the fatigue, all contribute to the unpredictable nature of
the processing time. It can be seen that the new job arrival and time uncertainty are common disturbances in actual
production, and in a production execution process, the two disturbances may exist simultaneously. Therefore, a large-
scale flexible job shop dynamic scheduling mathematical model is established based on the expected completion
time.

Based on the new job arrival and stochastic processing time, the large-scale dynamic scheduling problem of the
flexible job shop needs to allocate B initial workpieces (Y = {Y,|Y1,Y>,---,Yp,x=1,2,---,B}), and D workpieces
T=({T,T1,T2,---,Tp,d=1,2,---,D}) to the machine tool according to the process route of the workpiece to
achieve the optimization of the scheduling goal. The set of J workpieces to be processed consists of the initial set of
workpieces and the set of inserted workpieces, where each workpiece has Pi processing procedures. All processes in
the initial workpiece set can be processed at time zero, as illustrated in Figure 1, and all processes are defined by nor-
mally distributed random variables for their working times. However, the inserted workpiece cannot be treated until it
reaches time point Ai.

Large-scale
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Figure 1. Schematic diagram of large-scale flexible job shop scheduling problem-based on new job arrival and
stochastic processing time.

The LSFJSP model should be established with the following constraints since it is expanded from the static
scheduling problem of the large-scale flexible job shop by considering two uncertain interference factors (i.e. the new
job arrival and stochastic processing time).

1) The processing preparation time is not considered separately in the processing time.

2) The initial workpieces set can be processed at zero time, and the start time of all processes in the inserted
workpieces set shall not be earlier than the arrival time of the new job.

3) The working hours of the process are random variables subject to normal distributions.

4) Each machine tool can only run one process at a certain time. Once each process starts, it shall not be inter-
rupted.

5) The next process of the workpiece can only be processed after the completion of the previous process.

6) At the same time, each process of the workpiece is processed by one machine only.

7) The machine tool can be started at zero time, and the workpiece can be processed at zero time.

8) The processes of different workpieces do not have sequential constraints.

9) The product of the number of pieces and the number of machines shall not be less than 1000.
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2.2. Mathematical Model

Aiming at the static scheduling problem of large-scale flexible job shops, the minimum completion time is
taken as the optimization objective. The relevant variables are defined in Table | to establish a mathematical model.
Based on the above assumptions, the static scheduling mathematical model can be obtained as follows. Optimization
objectives:

f=min(max{C;|i= 12, ,n}) D
Constraint conditions:
Sijx=0,1; 4 =0 ()
ZXi,j,k =1 3)
k=1
Si,j,k +ti,j,k ZS,W’J'/J(/ or S,‘r,jr +t,'r’jr,k ZS,',L](I.’ C {1,2,' .- ,I’l},j’ - {1,2, ,Pl’} (4)
Z S Xi ik = (S ijork+tijork) Xij-1k 5)
k=1
m=n> 1000 6)

(7

X = {I,ProcessOw— is processed on the k™ equipment
bk = 0, Otherwise

Here, Equation (1) represents the minimum maximum completion time; Equation (2) indicates that the start time and
the processing time of each process on the kth machine are non-negative; Equation (3) means that each process can
only be processed on one machine; Equation (4) means that each machine can only run one process at the same time;
Equation (5) indicates that the next process can be processed only after the previous process is completed; Equation
(6) is the large-scale qualification condition; and Equation (7) is the value range of the decision variable.

Table 1 Table of symbols and definitions

Symbol Description

J Set of workpieces to be processed

n Number of workpieces to be processed

M Machine set

m Number of machines

P; The number of processes of the i workpiece

i Workpiece index (i = {1, 2, -, n})

J Workpiece process index (j = {1, 2, -*-, P;})

k Machine index (k= {1, 2, ---, m})

Oijk The j* process of the i workpiece

li jk The processing time of process O; ; on the machine My

Sijk The start processing time of process O;,; on the machine My

C; The completion time of the job i

Xijk The decision variable determines whether the process is processed on My

Based on the static scheduling problem, a large-scale flexible job shop dynamic scheduling model is created
with the same optimization objective of minimizing the expected completion time. The start time and the end time of
the procedure are also random variables because the processing time is a random variable. We simulate the expected
completion time through the Monte Carlo sampling method, and the expected completion time can be expressed as
the following equation.

z

1
min(E(Cuy)) =min | = max C; ®)
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Here, C,,, represents the maximum completion time; Z is the Monte Carlo sampling frequency; and z is the Monte
Carlo sampling frequency index. Although the processing time and the completion time in a dynamic scheduling
problem are uncertain, the processing method for each workpiece is known. The limitations between the process and
the machine tool should be satisfied, and the following constraints must be met.

1) In Equation (2), the start time and processing time of each process on machine k are non-negative.

2) Each process can only be processed on one machine in Equation (3).

3) Each machine can only process one process at the same time in Equation (4).

4) In Equation (5), the next process can only start processing after the previous process is completed. These
constraint models are also valid in this problem.

5) The large-scale qualification conditions of Equation (6) and the value range of decision variables of Equa-
tion (7) must also be considered during modeling.

In addition, since the insertion of a new workpiece is considered at the same time, the new workpiece can only
be processed after its arrival. Hence, the new constraints are shown in Equation (9) to ensure that the workpiece is
processed after the arrival time.

Sd,l,kZAi’dz172"”’D’k=1729”'7m (9)

3. N-DDQN Algorithm for LSFJSDSP

3.1. Framework of Scheduling

3.1.1. Selection of Rescheduling Strategy

The three main dynamic scheduling methods in use are full reactive scheduling, pre-reactive scheduling, and
robust scheduling. Full reactive scheduling may plan the scheduling process over a lengthy period and access global
data from higher system layers, such as the delivery date. The fact that this scheduling method is based on the current
workshop information and equipment status allows it to quickly respond to dynamic real-time situations. The full
reactive scheduling method is suitable for use in production contexts because of its high level of uncertainties and
regular occurrence of dynamic events. Additionally, this method has the benefits of strong practicability, quick
responses, and straightforward implementation.

When solving the LSFISDSP, the arrival of new workpieces and the stochastic processing time represent two
dynamic aspects that must be taken into account. The fully reactive scheduling mode is selected as the processing
mode of dynamic scheduling based on the assumption that the production shop can obtain real-time disturbance
information and production resource status. This ensures that when the interference occurs, it can respond quickly by
taking use of the shop information and the resource state to realize real-time scheduling optimization.

3.1.2. Scheduling Framework Design

As shown in Figure 2, in order to solve the untimely dynamic response problem and the difficult real-time
scheduling optimization problem, the real-time scheduling framework in this paper is designed based on the N-
DDOQN algorithm. This resolves the dynamic scheduling problem for flexible job shops with arbitrary time and new
job arrival. The framework includes three parts: the scheduling environment, off-line training and real-time schedul-
ing.
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Figure 2. N-DDQN framework solving large-scale flexible job shop dynamic scheduling problem.

Here, s, represents the state of the decision moment point; r, represents the instantaneous reward for moving
from the previous state to the current state; A represents the set of actions; S represents the set of states; and R repre-
sents the reward function. Once the action is performed, the environment state changes to another environment state
S.+1, and a bonus 7, is obtained. # and X are the online network parameters. #~ and X~ denote the target network
parameters. € represents a zero uniform noise vector, and © represents multiplication by element.

1) Scheduling environment. It is an abstraction of the shop environment, which requires the initial set of arti-
facts Y ={Y1,Y,,---,Yp}. The inserted artifact set T =T,,T,,---,Tp} is distributed on m machine tools in the
workshop according to the process route of the workpieces. The working hour of each process is not determined but
follows the normal distribution. When all the machine tools in the scheduling environment are in idle states, the
scheduling agent chooses the appropriate compound scheduling rules to arrange the workpiece processing by the state
characteristics of the scheduling environment at the starting moment point. After that, the scheduling environment
moves on to the next state when the machine tool completes a task or a fresh workpiece is delivered. After all of the
workpieces that need to be processed are scheduled, the scheduling environment achieves a terminated state.

2) Off-line training. In the offline training process, there are two networks including the target and the online.
The network input is the state feature S¢ extracted from the scheduling environment, and the network output is the O
value of the corresponding action. To replace the traditional greedy strategy, noise parameters are introduced that can
be trained together with neural network weights, forming a noise network called noisynet. According to the designed
noisynet, the action corresponding to the maximum Q value is directly selected. The scheduling agent selects the
workpiece and machine processing according to the action, and the workshop enters the next production state. The
scheduling environment rewards the scheduling agent rf according to the state change, and the training is terminated
until the optimal scheduling decision model is output.

3) Real-time scheduling. The verification and application process of the scheduling decision model is obtained
by off-line training. When the actual production order comes, the trained scheduling decision model can be called to
obtain a scheduling scheme stably and quickly, and the scheduling decision model can respond quickly to decide the
appropriate compound scheduling rules at the moment point of the disturbance after the dynamic disturbance occurs.
Although the acquisition of the scheduling decision model consumes a certain amount of time in the training process,
it does not need to conduct the iterative search in the practical application of the scheduling decision model. In case of
dynamic interference, our proposed method is a very effective method to solve the slow response speed problem of
production lines and realize real-time optimization of large-scale dynamic scheduling.

3.2. Core Algorithm

The DQN [18] introduces a memory replay mechanism to break the correlation between data, thereby solving
the problem that deep reinforcement learning cannot be trained. However, since the maximum value is used to deter-
mine the action selection and the target O value estimation, the DQN often leads to the overestimation of the algo-
rithm. For this reason, Hasselt et al. [19] proposed the DDQN algorithm to avoid the overestimation problem of the
DOQN algorithm by separating the selection action from the evaluation action. The DDQN first evaluates the action
selection in the online network to select the action, and then estimates the target O value through the target network.
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Nevertheless, like the DQN algorithm, the DDQN algorithm also needs to balance between exploration and utiliza-
tion by using the e-greedy algorithm in the process of learning. As such, the DQN algorithm can lead to the stability
of the model solution and the unsatisfactory scheduling strategy when solving the LSDSP with high model complex-
ity and large action and state spaces.

Meire et al. [20] proposed an N-DQN algorithm to solve the problem of balancing exploration and utilization.
In this algorithm, a parameterized noise is introduced based on the DQN algorithm which is able to be learned
together with the weight in the network through gradient descent. Hence, the agent could decide which proportion to
use for introducing the weight into the uncertainty and realizing automatic exploration.

In deep reinforcement learning, network weights often follow certain probability distribution, which describes
the uncertainty of weights and can be used to estimate the uncertainty in prediction [21]. In the implementation pro-
cess of the noisynet, a noise parameter is added at each step, and the uncertain disturbance is randomly obtained from
the noise distribution. The variance of the disturbance can be regarded as an energy input of the input noise. These
variance parameters are learned together with other parameters of the agent by using the gradient of the reinforce-
ment learning loss function. Finally, the perturbation of network weights learned by the noisynet can be directly used
to drive the exploration process. A noise network is a kind of neural networks whose weight and bias are disturbed by
noise parameter functions. These parameters are adjusted by the gradient descent method. There are two main char-
acteristics in the execution process of the noise network: 1) the noise is sampled before interacting with the environ-
ment in the no-hungry round, and 2) the noise remains unchanged in a round to ensure that the agent can take the
same action when given the same state.

Referring to the method of noise parameter setting in Ref. [20], the noisynet is added into the network of the
DDOQN algorithm to replace the traditional e-greedy and form an N-DDQN algorithm according to the principle of
the N-DQN in this paper. Since a set of learnable noise parameters is added to the network, the action of the N-
DDON algorithm interacting with the environment is the action corresponding to the maximum state-action value
function output by the network. This makes the algorithm more stable than the traditional DDQN algorithm. The Q
value calculation formula is shown in Equation (10).

yDoubleDQN = Rt + 7Q (S/»argmax(S,7a; 9) 79,) (10)

Here, y represents the discount factor; a and S’ represent the best action and its corresponding state in the next state,
respectively; 6’ represents target network parameters; and 6 represents the online network parameters.
Adding the noise parameters of Equation (11) to the DDQN, the Q value calculation formula of the noisynet-
DDQN is shown in Equation (12).
0=u+X(e (11)

def
YNoisynetDDON = Rl + ‘}/Q (S’,argmax(S’,a;u, 2) 5 I/ll, 2,> (12)
a

3.3. Scheduling Problem Transformation

3.3.1. Design of State Feature

In the deep reinforcement learning algorithm, the reasonable design of state features directly affects the algo-
rithm performance and follows the following principles. 1) The extracted state features should enable the scheduling
agent to get feedbacks in a short time so that the scheduling agent can quickly select scheduling tasks for processing.
2) The state characteristics should be able to cover all the information of the whole scheduling environment. 3) The
state characteristics should be closely related to scheduling objectives and action sets to avoid feature redundancy.

It is difficult to extract state features for LSFJISDSPs, and the sensitivity of state features to decision-making
problems will affect algorithm accuracy. As shown in Table 2, by analyzing the scheduling problem and its opti-
mization objectives, this paper extracts 10 state features as network inputs according to the designed reward function
and the feedback state features of action sets.
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Table2 Design table of state feature

Feature Design consideration Description

f1 Schedule completion Job completion rate

2 The standard deviation of job completion

13 Reward function Average machine utilization

14 Earliest completion time The standard deviation of average machine utilization

S Action set Normalization of maximum remaining hours

16 The maximum number of remaining processes is normalized
17 Minimum machine load normalization

18 Normalization of minimum processing time

Vis The minimum completion time of available machine tools is normalized
f10 Normalization of the earliest arrival time of the workpiece

3.3.2. Design of Action Set

When scheduling rules are used as the action space of deep reinforcement learning, the performance of
scheduling rules directly affects the performance of deep reinforcement learning algorithms. Considering that the
LSFJSDSP has two sub-actions: machine selection and job selection, the composite scheduling rules of both are
designed as the action set in this paper. Panwalkar et al. [22] summarized 113 different scheduling rules. In this paper,
the first-come, first-processing (FIFO) rule is selected as a work-piece selection rule to avoid too long waiting time
according to the dynamic factor of the arrival of new workpieces in LSFJSDSPs. Then, with the minimum comple-
tion time as the optimization objective, two workpiece selection rules (WMKR, MONPR) and three kinds of machine
selection rules (SPT, EF, LMKL) with high sensitivity to completion time are selected. Finally, three kinds of the
workpiece and machine selection rules are arranged and combined to get the design table of action sets, as shown in
Table 3. The nine composite scheduling rules are shown as a set of actions.

Table3 Design table of action set.

No.  Composite scheduling rules Description

1 WMKR + SPT(DR1) The workpiece with the longest remaining processing time is processed preferentially and the

machine with the shortest processing time is selected.

2 MONPR + SPT(DR2) The workpiece with the most remaining process is preferentially selected and the machine with

the shortest processing time is preferentially selected.

3 WMKR + EF(DR3) The workpiece with the longest remaining processing time is processed preferentially and the

earliest available machine is selected.

4 MONPR + EF(DR4)

The work with the remaining work is selected first and the earliest available machine is selected.

5 WMKR + LMKL(DRS) The workpiece with the longest remaining processing time is processed preferentially and the
machine load is selected preferentially.

6 MONPR + LMKL(DR6) The workpieces with the most remaining processes are selected first and the machine load is
selected least first.

7 FIFO + SPT(DR7) The first arrived workpiece is selected by the first principle, and the machine with the shortest
processing time is selected principle.

8 FIFO + EF(DRS) The first arrived work is selected and the first available machine is selected.

9 FIFO + LMKL(DR9) The first arrived work is selected by the first principle and the machine load is selected by the

least first principle.

3.3.3. Design of the Reward Function

In this dynamic scheduling problem, for the dynamic factor of random man-hours, the mean of the processing
time matrix samples is calculated as the expected makespan of all jobs by Monte Carlo sampling. The scheduling
agent is given a round reward value according to Equation (13) when each matrix sample is scheduled. Since the
higher the utilization rate of the machine is, the earlier the completion time is, we give the scheduling agent an instant
reward so to avoid sparse rewards in the execution process of training according to Equation (14). Using the design
described above, the scheduling agent is given bigger rewards and punishments than the immediate rewards at the
end of the round, with the reward and penalty values set at plus or minus 10, as shown in Equation (14).

17 Uave(t—l)<UL,w(f)
= 0,0.95Uave([—l)<U (1) (13)

ave

-1 s Uave([— 1H=<U,.(1)
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Where U, (f) represents average machine utilization at time ¢.

—10,makespan(t— 1) < makespan (t)
r, = 0,makespan (t— 1) = makespan (t) (14)
10, makespan (t — 1) > makespan (t)

Here, makespan(f) denotes the completion time of the current round.

3.4. Offline Training Process

3.4.1. Monte Carlo Simulation

Considering that the processing time obeys normal distributions, the optimization objective of this paper is to
minimize the expected completion time. In this paper, the Monte Carlo simulation is taken to calculate the expected
completion time. The pseudocode for calculating the expected makespan by the Monte Carlo simulation is shown in
Table 4.

Table4 Pseudo-code for Monte Carlo sampling calculating the expected completion time

Algorithm 1: Monte Carlo sampling to calculate expected makespan pseudocode

1: Input: Z processing time matrices corresponding to the workpiece to be processed
2 Output: The expected completion time of all the workpieces to be processed
3:forz=1to Z do:

4: Z processing time matrices are obtained

5: Calculate the makespan for each processing time matrix z

6: Calculate the expected makespan for Z processing time matrices

7: End for

3.4.2. Offline Training with Noisynet-DDQN Algorithm

The whole offline training process is that the scheduling agent continuously interacts with the dynamic environ-
ment with random working hours and new job arrivals. Through continuous interactions, the scheduling agent learns
the optimal scheduling policy, and stores these optimal policies in the form of neural network parameters. It can be
seen that in the whole real-time scheduling framework based on the N-DDQN algorithm, offline training is the most
important part of the whole real-time scheduling framework, and it is the key to determine whether the whole
scheduling framework can achieve real-time scheduling optimization. The pseudocode of offline training is shown in
Table 5 based on the real-time scheduling framework of the N-DDQN algorithm.
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Table 5 Offline training pseudo-code based on N-DDQN algorithm real-time scheduling framework

Al

gorithm 2: Pseudocode for the N-DDQN algorithm

1:

O 0 9 AN W AW N

11:
12:
13:
14:

15:

16

Initialize D, M, Z, «, vy, batchsize;

Initialize C, textitu, X, u~.

: for episode = 1 to M:

: Z processing time matrices are randomly generated

: or sample=1 to Z:

: The error is initialized to 0

: Clear the scheduling scheme and reset the scheduling scheme
: The state is reset to So

: Each sample process is assumed to be ni

:fort=1to n; do:

10:

Sampling noise variable €
Choose action at based on argnaxQ(S,a;u,X)
Act, observe r; and 14

Store (S, a, 11, r'1+1) in memory pool D

{ rj,Process scheduling is completed
yji=

: Use the loss function (y; — Q(S j,aj;u,X))* to perform gradient descent
17:
18:
19:
20:

End for
End for
End for

Randomly sample (S j, a;, rj, r1+1) from D and compute the target Q value y;

r +yQ’ (S j+1,argmaxQ(S j+1,a;u,X);u”,27), Otherwise *

Update the target network parameters every C step: 4~ =u, X~ =X

4.

Experiment and Results

4.1. Example Design

Ref. [23], which could be 1, 2, or 3 for producing varying degrees of random disturbance.

As mentioned above, the large-scale flexible job-shop dynamic model established in this paper considers two
dynamic factors: the new job arrival and random working hours. However, there is no standard verification data set
based on this model in the existing research. According to certain design standards, this paper generates verification
examples based on the workshop environment parameters as shown in Table 6. In addition, the arrival time of new
jobs is controlled by random numbers. The standard deviation of the processing hours in the table is set according to

Table 6 Configuration table of workshop environment parameters based on the new job arrival and stochastic pro-

cessing time.
No. Parameter Description Value
1 Noia The initial number of workpieces {50,100, 140}
2 M The number of machines {20,30, 50}
3 Nuew The number of new artifacts reached 50
5 Di.jk Mean processing time Unif [1, 50]
6 o2 The standard deviation of processing time {1,2, 3}
7 L jk Processing time tijk ~ [p,;j,k,az]
8 / The number of machine tools per process can be selected Unif [5, 15]
9 / Number of processing steps per workpiece Unif [5, 10]

4.2. Experimental Design

To verify the effectiveness of the proposed algorithm framework, the experiment is configured as Intel(R)
Core(TM) 15-9400 CPU @ 2.90 GHz 2.90 GHz, 8 GB of RAM, Python language, and TensorFlow version 1.4. The
proposed N-DDQN algorithm is compared with the traditional DDQN algorithm and the composite scheduling rules
designed by the action set. Considering that the adopted N-DDQN algorithm avoids setting the exploration parameter
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values of the DDQN algorithm, the parameters of the N-DDQN algorithm are set as shown in Table 7. According to
Ref. [24], a neural network with one input layer, four hidden layers and one output layer is constructed, where the
number of nodes in the input layer is the number of the designed state features, the number of nodes in the hidden
layer is 30, and the number of nodes in the output layer is the number of the action sets designed above. In addition,
the parameterized noise shown in Equation (11) is introduced into the neural network to make the network realize the
adaptive search function.

Table7 Parameter table of N-DDQN algorithm

No. Parameter Description Value
1 a Learning rate 0.0001
2 D The capacity of the memory pool 2000
3 batchsize Size of sample 64
4 C Update frequency of target network 200
5 Max_episode Iteration times 5000
6 V4 Time matrix samples of sample processing 1000

4.3. Results Analysis

The offline training results directly affect the final scheduling results. The effectiveness of the offline training
framework is illustrated by outputting the convergence curve of the expected completion time in the offline training
process, the reward, and the punishment record of the scheduling agent. In this paper, according to the workshop
environment parameters in 5, a flexible production workshop with 20 machines is taken as an example to simulate
certain training data for training. The effectiveness of the designed training framework is evaluated on randomly gen-
erated instances of 50 x 20, 100 x 20, 140 x 20.

From the convergence curve of the expected completion time during training (as shown in Figure 3) and the
reward change graph obtained by the scheduling agent during training (as shown in Figure 4), it can be seen that the
reward and punishment record graph and the convergence curve of the expected completion time show two opposite
trends: 1) the makespan decreases with the increase of the number of training steps, and 2) the reward function
increases with the increase of the number of training steps. However, when the reward function tends to be stable, the
convergence curve of the expected makespan becomes stable, which indicates that the scheduling agent can select the
appropriate scheduling rule according to the state characteristics of the decision time at each scheduling time point.
Therefore, the effectiveness of the training framework, the rationality of the designed state space, the action space,
and the reward function are all verified.
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Figure 3. Iteration curve of training phase completion time.
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Figure 4. Training phase scheduling agent reward and punishment record diagram.


https://doi.org/10.53941/ijndi.2023.100015

1JNDI, 2023, 2(4), 100015. https:/doi.org/10.53941/ijndi.2023.100015

To verify the effectiveness of the proposed real-time scheduling framework based on the N-DDQN algorithm,
the obtained results are compared with the composite scheduling rules designed by the action set and the DDQN
algorithm. According to Table 4, the instances are randomly generated at certain random seed. The number of initial
workpieces (V,;,), the number of newly arrived workpieces (&,,,), and the number of machines M all prove the gen-
erality of the algorithm. Tables 8—10 record the solution results of the six composite scheduling rules (DR1, DR2,
DR3, DR4, DR7, DR8) with better performance in the action set, where the solution results of the N-DDQN algo-

rithm shown for the time variances 1, 2, 3. The reference source is not found. The solution results of the DDQN

algorithm and the real-time scheduling framework are recorded based on the N-DDQN algorithm. Table 11 records

the solution results of the DDQN algorithm and the solution results of the real-time scheduling framework based on

the N-DDQN algorithm.

Table8 Comparison table of composite scheduling rules (o = 1)

Example parameters

Average expected completion time of algorithms

Noew Now M N-DDQN DR1 DR2 DR3 DR4 DR7 DRS

50 50 20 2361.45 3385.43 3353.29 5513.81 4267.82 3473.57 3186.55
30 1682.06 2503.17 2464.21 4118.17 3308.43 2740.45 2420.25

50 1215.87 1817.48 1776.43 2934.61 2402.53 2166.88 1788.96

100 20 4162.83 5067.55 5043.19 7590.95 5714.21 5448.52 5236.54

30 2903.29 3771.37 3735.61 5623.99 4352.87 3890.84 3630.95

50 1945.47 2759.89 2721.16 3883.26 3126.84 3090.10 2752.08

140 20 5360.79 7226.84 7197.59 9593.89 7152.10 7704.74 7205.90

30 3644.02 5531.12 5496.52 7078.02 5429.77 6052.25 5841.68

50 2357.86 4196.42 4152.38 4842.63 3797.73 4996.33 4687.84

Table9 Comparison table of composite scheduling rules (o2 =2)
Example parameters Average expected completion time of algorithms
Nyew Ny M N-DDQN DR1 DR2 DR3 DR4 DR7 DRS8

50 50 20 2361.45 3385.43 3353.29 5513.81 4267.82 3473.57 3186.55
30 1682.06 2503.17 2464.21 4118.17 3308.43 2740.45 2420.25

50 1215.87 1817.48 1776.43 2934.61 2402.53 2166.88 1788.96

100 20 4162.83 5067.55 5043.19 7590.95 5714.21 5448.52 5236.54

30 2903.29 3771.37 3735.61 5623.99 4352.87 3890.84 3630.95

50 1945.47 2759.89 2721.16 3883.26 3126.84 3090.10 2752.08

140 20 5360.79 7226.84 7197.59 9593.89 7152.10 7704.74 7205.90

30 3644.02 5531.12 5496.52 7078.02 5429.77 6052.25 5841.68

50 2357.86 4196.42 4152.38 4842.63 3797.73 4996.33 4687.84

Table 10 Comparison table of composite scheduling rules (o =3)
Example parameters Average expected completion time of algorithms

50 50 20 2883.24 3886.87 3854.11 5517.40 4244.50 3883.54 3623.64
30 2171.60 3003.02 2965.50 4136.66 3332.51 3171.60 2866.95

50 1624.02 2317.78 2276.30 2923.58 2403.41 2624.02 2253.35

100 20 4145.50 5568.83 5539.39 7567.38 5648.95 5347.30 5604.74

30 2884.88 4272.07 4238.89 5609.90 4331.00 4345.34 4069.05

50 1792.40 3261.43 3223.35 3878.63 3088.44 3590.82 2703.36

140 20 5345.34 7727.42 7699.73 9595.77 7122.94 7200.33 7108.55

30 3655.36 6031.77 5998.54 7097.76 5448.58 5917.77 5754.51

50 2353.95 4697.19 4653.34 4837.53 3809.45 4995.48 4132.15

12
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Table 11 Comparison table of DDQN algorithm

Example parameters o2=1 o2=2 o?=3
Noew Noa M N-DDQN DDQN N-DDQN DDQN N-DDQN DDQN
50 50 20 2361.45 2899.55 3072.15 3309.14 2883.24 3076.06
30 1682.06 2012.53 2113.08 2430.96 2171.60 2119.10
50 1215.87 1344.67 1362.40 1748.45 1624.02 1363.92
100 20 4162.83 426891 4144.73 4207.39 4145.50 4281.55
30 2903.29 2990.11 2818.20 3079.04 2884.88 2827.20
50 1945.47 1944.57 1824.56 2221.51 1792.40 1823.03
140 20 5360.79 6376.08 5371.85 6409.87 5345.34 6887.19
30 3644.02 4728.27 3640.09 4769.29 3655.36 5236.30
50 2357.86 3398.77 2364.19 3405.82 2353.95 3843.44

The results show that the performance of the real-time scheduling framework based on the N-DDQN algorithm
is better than the performance of the composite scheduling framework. At the same time, the performance of 98% of
the examples is better than that of the DDQN algorithm, and the real-time scheduling framework based on the N-
DDOQN algorithm has better performance as the instance scale becomes larger. The results also show that the perfor-
mance of the algorithm is affected by the number of inserted jobs and machines. The more the number of machines,
the smaller the expected makespan. The more jobs that are inserted, the longer the expected makespan is, and the
more likely the job will not be completed within its due date.

4.4. Stability Analysis of Algorithms

To verify the stability of the real-time scheduling framework based on the N-DDQN algorithm, the variances of
the processing time are set to 1, 2, and 3, respectively, according to Table 6 in order to simulate different degrees of
random interference. Then, the model under offline training is saved to solve each instance under different interfer-
ence. The best composite scheduling rule in the action set is the DDQN algorithm, and the real-time scheduling
framework based on the N-DDQN algorithm is used to process the solution results of the three examples. The pro-
cessed value is the solution deviation GAP (GAP = (C — Cpesr ) / Chresr 100%), where C is the current target value,
and Cp,, is the best target value in this set of data).

According to the calculated GAP data, the box plot of Figure 5—7 is drawn, where the solid line and dashed line
inside the box plot represent the median and mean of the group of data, respectively. The upper and lower edges of
the rectangular box represent the upper and lower quartiles of the group of data, and the solid line outside the rectan-
gular box represents the maximum value of the group of data. N1, N2 and N3 on the abscissa represent the variances
(1, 2, 3) of processing hours that obey normal distributions. Some conclusions can be drawn as follows according to
the calculated GAP data and the box plot of Figure 5—7.
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Figure 5. Results of each algorithm under different variance distributions.(50-20-50).
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1) The vertical length of the rectangular box of the real-time scheduling framework based on the N-DDQN
algorithm is smaller than that of the DDQN algorithm, which indicates that the results of the real-time scheduling
framework based on the N-DDQN algorithm are more stable than that of the DDQN algorithm.

2) In the real-time scheduling framework based on the N-DDQN algorithm, the position of the black dotted line
in the rectangular box is lower than that of the DDQN algorithm, which indicates that the deviation value of the solu-
tion data of the real-time scheduling framework is smaller based on the N-DDQN algorithm and the dispersion is
lower.

3) The vertical length of the rectangular box of each algorithm becomes longer with the increase of the scale.
This is because (A) the increase of the scale will lead to the expansion of the solution space; and (B) the impact of the
uncertain man-hour on the scheduling results will also increase.

4) In the same scale, as the variance increases, the vertical length of the rectangular box becomes larger. The
larger the variance is, the larger the interference is, and the higher the stability requirement of the algorithm is.

5) The solution accuracy of the proposed algorithm framework is higher than that of the best rule, and the solu-
tion accuracy of 50-20-50,100-20-50 and 140-20-50 instances under different variance disturbances is 36.8%, 46.1%
and 54.1% higher on average, respectively.

Because the key problem of the production workshop of the enterprise is the untimely response to dynamic dis-
turbance, it is difficult to realize real-time scheduling optimization, especially in large-scale production. Production
resources are abundant and the production environment is complex and dynamic. If the dynamic disturbance is not
handled in time, the production efficiency of the enterprise may be greatly affected. In LSFJISDSPs, in addition to the
effectiveness and stability of the algorithm, it is necessary to verify the efficiency of the algorithm.

Table 12 records the average solution times of ten operations for the real-time scheduling framework based on
the N-DDQN algorithm, the DDQN algorithm, and the six composite scheduling rules with better performance in the
action set, respectively. It can be seen that the solution time of the real-time scheduling framework based on the N-
DDON algorithm is slightly higher than that of the DDQN algorithm, but only by a few seconds. This is because the
addition of noise parameters increases the computational complexity of the network structure, which consumes
slightly longer computing time than the DDQN algorithm. However, it can be seen from Table 11 that the solution
accuracy of the real-time scheduling framework based on the N-DDQN algorithm is higher than that of the DDQN
algorithm, and the solution accuracy of the three scale examples of 50-20-50,100-20-50 and 140-20-50 under differ-
ent variance disturbances is 15.3%, 19.7% and 36.9% higher on average, respectively.
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Table 12 Comparison table of solving time of algorithms

Example parameters The average solution time of each algorithm
Noew Nota M NDDQN DR1 DR2 DR3 DR4 DR7 DRS8 DDQN
50 50 20 95.21 47.01 52.34 46.21 57.83 49.21 56.24 87.97
30 95.92 48.45 55.92 48.90 56.80 48.39 58.48 89.15
50 98.64 50.22 63.94 50.76 62.48 51.02 62.52 92.63
100 20 175.60 93.76 103.03 94.25 109.29 93.97 100.05 153.24
30 179.51 95.23 106.25 95.98 111.84 95.77 103.57 158.36
50 183.84 97.22 107.91 98.64 113.47 96.07 104.29 162.01
140 20 222.98 133.32 147.25 134.12 153.21 133.06 150.24 213.86
30 224.60 136.00 149.36 137.21 153.94 133.83 151.64 218.08
50 229.33 135.87 154.04 136.95 155.87 135.85 154.26 220.00

5. Conclusion and Perspectives

This paper has proposed a large-scale flexible job-shop dynamic scheduling model based on the N-DDQN by
considering two dynamic factors: the new job arrival and random man-hours. Compared with the traditional DDQN
model, the solution accuracy of the proposed algorithm in solving LSFISDSPs is higher than that of the DDQN algo-
rithm. Specifically, the solution accuracy of 50-20-50,100-20-50 and 140-20-50 instances with different variances (1,
2 and 3, respectively) is, respectively, 15.3%, 19.7% and 36.9% higher on average than that of the other three size
examples with different variances. The superiority of the proposed real-time scheduling framework has been verified,
which is the supply of solutions to LSFJISDSPs under dynamic disturbance factors. Although the algorithm perfor-
mance has been improved, the present research has not accounted for the transit time, but has focused solely on
decreasing the maximum completion time. In actual production, energy consumption, production costs, machine load,
and other goals are also extremely important business indicators. Therefore, the proposed method will be expanded in
the subsequent study. The first extension is the LSFJS problem, and the second extension is the study of the large-
scale multi-objective production scheduling problem by taking into account the transportation time.
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