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Abstract: Diabetes retinopathy (DR) is a universal eye disease, which brings irreversible blindness risks
to patients in severe cases. Due to the scarcity of professional ophthalmologists, it has become increas-
ingly important to develop computer-aided diagnostic systems for DR grading diagnosis. However, the
current mainstream deep learning methods face challenges in accurately classifying the severity of DR,
making it difficult for them to provide a reliable reference for clinicians. To tackle this problem, we pro-
pose two novel modules to improve the accuracy of DR classification. Specifically, we design a multi-
scale feature extraction module to capture tiny lesions in fundus images and differentiate similar lesions
simultaneously. In addition, we develop a class attention module to alleviate the adverse impact of intra-
class similarity on DR grading. Experimental results show that our proposed modules attain significant
performance improvement on the APTOS2019 blind detection dataset, with accuracy and quadratic
weighted Kappa metrics achieving 95.98% and 97.12%, respectively.
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1. Introduction

Diabetes retinopathy (DR) is a complication caused by diabetes and is one of the main causes of visual impair-
ment in adults worldwide [1]. Since the beginning of the new millennium, the prevalence rate and blindness rate of
diabetes retinopathy have risen rapidly. According to the prediction of the World Health Organization (WHO), the
number of DR patients will grow to 552 million by 2030, and DR will become the main cause of blindness among
people of working age [2].

According to the 2003 international clinical DR classification system [3], the severity of DR can be divided into
the following stages: no DR, non-proliferative DR (NPDR), and proliferative DR (PDR), among which NPDR can be
further separated into mild, moderate, and severe DR. The main means of DR diagnosis is to 1) screen patients' color
fundus images by professional doctors; 2) identify abnormal lesions in color fundus images (such as microaneurysms,
bleeding, exudate, and neovascularization); and 3) judge the severity of DR where each severity has corresponding
special lesions and diagnostic criteria. Figure 1(a) and Figure 1(b) show, respectively, the schematic diagrams of fun-
dus images and the morphology of abnormal lesions in the images of five types of DR. In the no DR stage, patients
have no obvious lesions. In the pathological stage, the severity increases in a progressive manner. In the mild stage of
DR, patients only exhibit microaneurysms caused by leakage from retinal microvessels. Without intervention, mild
DR will further progress to moderate DR characterized by a small amount of bleeding (dot and blot haemorrhages) in
the fundus images. This progress may also be accompanied by hard exudates (HE), resulting from the aggregation of
lipids, proteins, and lipoproteins. Severe DR is the most serious stage of NPDR, and there will be much more
microaneurysms and bleeding in the eyes at this stage than at the mild and moderate DR stages. Moreover, such a
stage may be accompanied by white or gray soft exudate. PDR is the most severe stage among the five categories of
DR, and its most obvious lesion is the appearance of neovascularization generated by vitreous contraction in the fun-
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dus image. At this stage, patients usually experience acute visual loss until complete blindness. In clinical practice,
timely identification of abnormal lesions from fundus images, accurate classification of the severity of DR, and tar-
geted treatment of DR are the keys to avoiding blindness in patients. However, due to the time-consuming and labo-
rious process of DR screening, experienced doctors are required to carefully assess fundus images. Limited by medi-
cal conditions, most DR patients are unable to receive prompt treatment, which increases the probability of blindness.

No DR Mild NPDR  Moderate NPDR Servere NPDR
(a)

Microaneurysm  Hard exudate Soft exudate Neovascularlzatlon Hemorrhage

(b)

Figure 1. Examples of fundus images at different stages of diabetes retinopathy(DR) and their
pathological morphology.

In the past twenty years, research on computer-aided diagnosis (CAD) systems has developed rapidly for
improving the process of DR screening [4, 5]. This helps to decrease the burden on doctors, provide a second objec-
tive opinion, and reduce subjectivity in diagnosis [6, 7]. Early researchers have tried to design models by manually
extracting features. For example, Saleh et al. [8] have chosen to use a fuzzy random forest and domain-based rough
set balanced rule ensemble to extract features from fundus images and estimate the risk of developing DR. Mahen-
dran et al. [9] have used a neighbourhood-based segmentation technique to detect lesion from the low contrast
images, and proposed the probabilistic neural network and support vector machine (SVM) to assess the severity of
the disease, ultimately achieving good results. However, manual feature extraction relies heavily on prior knowledge
and is not effective in handling complex situations that arise in images. This limits the performance of CAD systems.

The development of convolutional neural networks (CNNs) has enabled to design more efficient CAD systems
[10, 11]. The convolutional kernel in CNNs can effectively extract features from images without depending on prior
knowledge, which has gained increasing attention. For instance, Xu et al. [ 12] have used eight convolutional layers to
calculate the image, sequentially obtained low-level and high-level features in the image, and finally performed a five-
class DR grading through a fully connected layer, achieving the accuracy of 94.5% on private datasets. In order to
further improve the performance and efficiency of the model, Li et al. [13] have combined the transfer learning tech-
nology, loaded the pre-trained weights on the large-scale dataset into CNNs, and carried out fine-tuning training on
the fundus image dataset, finally reaching excellent classification accuracy.

Although the CNN-based CAD system has attained impressive outcomes in DR grading, it remains challeng-
ing in clinical practice because of the numerous types of lesions and complex diagnostic criteria. Firstly, in fundus
images with higher DR severity, despite there are lesions different from those lesions in images with lower DR
severity, there are also similar lesions affecting the DR grading task by intra-class similarity. This eventually leads to
poor performance. Secondly, some lesions (e.g. microaneurysms) are overly tiny in the fundus image, some of which
are only a few pixels in size in the image, making it difficult for the model to detect them. Once missed, it may result
in incorrect DR severity classification. Finally, there is the visual similarity in shape and color among some lesions or
between lesions and normal tissues (such as punctate bleeding and microaneurysms, neovascularization, and com-
mon blood vessels), and the model is very likely to be confused during feature extraction, leading to false diagnosis.

Based on the aforementioned issues, we design a novel network model for five classes of DR grading. Inspired
by the process (of zooming in/out the image to observe the lesions carefully) used by clinicians for DR diagnosis, we
propose a multi-scale feature extraction module (MFEM). The MFEM uses the dilated convolutions with different
sizes to extract additional features on the basis of the backbone network, and fuses the extracted features on feature
maps of different sizes. We believe that multi-scale features can help the model identify tiny lesions in fundus images
and reduce the impact of visual similarity between lesions. At the top of the model, we design a novel class attention
module (CAM) that effectively solves the first issue mentioned above. We first split the feature maps of the last layer
of the model into filters with the same number of categories. Then, we separately enhance each filter with self-atten-
tion and constrain them by introducing triplet loss to make the features within each filter closer. At the same time, it
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can also increase the differences between them. Finally, the feature map is subject to the cross-attention like similar-
ity calculation at each filter, and the calculation results are re-weighted onto the filters. The filters are flattened
through global average pooling (GAP) and fully connected (FC) layers to obtain the outcomes of DR grading. A pre-
liminary paper has been presented in the proceedings of UIC 2023 [14].

The contributions of this article are summarized as follows.

1) We propose a novel CAM that separates feature maps into learnable filters and introduces triplet loss con-
straints. This module can effectively solve the problem of difficult classification of certain categories in DR grading
tasks caused by intra-class similarity.

2) Inspired by the habit of clinicians who scale images to examine lesions during diagnosis, we design an addi-
tional MFEM in the model to alleviate ignorance of tiny lesions as well as the adverse grading effects caused by
visual similarity between lesions.

3) Extensive experiments conducted on the publicly available APTOS 2019 blindness detection dataset show
that our method obtains satisfactory results and the state-of-the-art performance in DR grading with five categories.

2. Related Work

In this section, we mainly review the closely related technologies and introduce the previous work on DR grad-
ing tasks.

2.1. Multi-scale Architecture

In the development process of CNNs, researchers have gradually explored the three elements that effectively
improve the performance of network models, namely depth, width, and resolution. The multi-scale architecture is an
improved structure of the model based on resolution. Zhang et al. [15] have proposed a multi-scale input network,
whose main characteristic is to input images of different resolution into different subnetworks and fuse the outputs of
each subnetwork in a cascaded manner, thereby obtaining results with multi-scale information. In addition, multi-
scale ideas can also be implemented within the model, with the most influential architecture being the inception mod-
ule designed by Szegedy et al. [16]. The inception module uses three convolutional layers with different kernel sizes
and a 3 x 3 maximum pooling layer is used for feature extraction in parallel. Then, the features extracted from these
four branches are fused as inputs for the next layer, thereby achieving multi-scale information within the model.
Moreover, researchers find that multi-scale information can also be fused in the model prediction phase. Based on
this, Liu et al. [17] have built a multi-scale feature prediction fusion network, which uses VGG as the backbone net-
work. After each convolution layer, a classifier is added to get the prediction outcomes under different scale feature
maps, and then the final prediction value is acquired by adopting a fast non-maximum suppression algorithm. The
advantage lies in reaching a balance between the efficiency and performance of the model.

2.2. Attention Mechanism in Deep Learning

In recent years, attention mechanisms have become progressively important in deep learning, as their essence is
to enable models to process more important information when computing resources are restricted [18]. In 2017, the
transform model has been proposed by Vaswani et al. [19] to solve machine translation tasks. Later, Wang et al. [20]
have combined the attention mechanism with convolution and designed a non-local convolution module to overcome
the shortcomings of traditional CNNs which can only perform local operations in feature extraction. Such a module
achieves impressive performance in the field of image and video processing. Although this type of attention mecha-
nism further enhances the performance of the model, it brings about excessive computational complexity. To tackle
this issue, researchers have designed numerous variants of attention mechanisms [21—23] to find a balance between
the computational speed and the model performance. Additionally, Hu et al. [24] have found a unique path by mod-
elling channel relationships in feature maps to automatically obtain the importance of each channel, highlight useful
features for the task and suppress useless features. This method is simple and effective, achieving outstanding effects
in solving image processing tasks. Also, this method inspires further development of variant attention mechanisms
[25-28].

2.3. DR Grading

Due to the vigorous development of deep learning, especially CNNS, a large number of CAD systems for DR
screening have been developed to provide strong support for DR grading tasks. Krause et al. [29] have used incep-
tion V4 to automatically detect lesions in fundus images and predict the severity of DR. However, accounting for the
complexity of DR grading tasks, the performance of solely using CNN models for prediction is not ideal. Therefore,
researchers have applied many different methods to improve the model to adapt to DR classification. For example,
Sugeno et al. [30] have employed a Laplacian filter with a core size of 5 on the fundus image, filtered the blurred
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image and deleted it by calculating the standard deviation output by the Laplace operator. The clear fundus image is
used as a dataset in the EfficientNet model for DR grading. Compared with previous work, this method significantly
improves the performance of the model. Bellemo et al. [31] have combined the idea of ensemble learning and used
two different models (VGG and ResNet) to perform DR classification and prediction on fundus images. The final
prediction result is determined by averaging the prediction scores of the two models, which leads to better outcomes
than the single CNN model on a private dataset with 76370 fundus images. Notwithstanding the method of integrat-
ing multiple models can improve the prediction accuracy, it may lead to excessive parameters of the overall model.
To tackle this issue, Tymchenko et al. [32] have proposed different methods. Specifically, a single model is used as
the feature extractor, and three classifiers are added at the top of the model to conduct supervised learning by differ-
ent loss functions. Finally, the predicted values of different classifiers are integrated to gain classification results. This
method effectively alleviates the drawbacks brought by multiple models, while achieving similar performance. The
above research indicates that the method based on CNNs works well for DR classification, but the accuracy of the
model still cannot meet the needs of clinical diagnosis practice. With that in mind, He et al. [33] and Li et al. [34]
both have designed special attention mechanisms for DR grading tasks, and improved the accuracy of the model in
DR grading to a new level. Recently, Wu et al. [35] and Jian et al. [36] have divided the DR grading task into differ-
ent subtasks, and screened the severity of DR from coarse to fine. This novel method is more in line with the clinical
diagnosis process of experts in reality.

The above work makes outstanding contributions to solving the DR grading task, but most of them fail to
achieve high-precision results. In this article, we 1) present a novel category attention module for intra-class similar-
ity in DR grading; and 2) propose an MFEM for extremely tiny and similar lesions in fundus images to improve the
accuracy of DR grading and provide more reliable references for clinical diagnosis in reality.

3. Methodology

We first provide an overall overview of the proposed model, which integrates MFEM and CAM to effectively
improve the performance of DR grading. Then, we furnish detailed explanations for each module in the model.

3.1. Overview of Model

As shown in Figure 2, our model takes fundus images as the input, uses pre-trained ResNet50 as the backbone,
and additionally designs a multi-scale architecture to extract features simultaneously with the backbone. Then, the
feature map F',_scq. 1S acquired which combines high-level semantic features and multi-scale features. Among them,
the multi-scale architecture consists of five diffusion convolution layers (DCLs) and is responsible for feature extrac-
tion of images of different resolution. Next, F,, ... Will enter the CAM for attention calculation to better alleviate
the adverse effects of intra-class similarity and obtain the output feature map F,,. Finally, we apply the GAP layer
and FC layer to perform classification tasks and predict the labels for each fundus image.
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Figure 2. Overview of the proposed models. The stem and stage 1 to 4 in backbone are both basic structures in
ResNet50, where the stem contains a 7 x 7 convolution. Stage 1 to 4 use two 1x1 convolution kernels and a 3 x 3

convolution as the basic architecture, and is constructed in a ratio of 3: 4:6:3.
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3.2. Multi-Scale Feature Extraction Module (MFEM)

Based on observations, we find that clinicians usually conduct scaling operations on fundus images during the
diagnosis of DR to observe small lesions and distinguish similar lesions. We design a multi-scale feature extraction
module (MFEM) to simulate this process. Specifically, the MFEM contains five DCLs, and the internal structure of
the DCL is shown in Figure 3. The MFEM will further extract multi-scale features from feature maps Fs,, Fs», Fs3,
Fy,, Fys of different resolution which are output by the stem and stages 1 to 4, respectively.

Output

!

3x3 Conv

f

Cat

3x3 Conv 3x3 Conv  3x3 Conv 3x3 Conv
1x1 Conv rate=3 rate=5 rate=7 rate=9

Input

Figure 3. The structure of diffusion convolution layer.
To start with, the Fg; from the stem is used as the input of the first DCL, and multi-scale feature extraction is

carried out through 1 x 1 convolution and 3 x 3 convolution with different dilation rates (different receptive fields).
Then, feature maps F, F3, Fs, F7, Fy are obtained at different scales. The formula is expressed as follows:

F3,i=3
F5,i=5
fi(Fs1) = . > (1)
7,l=7
Fg,i=9
F]:fle(FS]), (2)

where f; represents 3 x 3 convolution with different rates, and fi,; denotes 1x1 convolution.
Next, we concatenate Fy, F3, Fs, F3, and Fy according to channel dimensions, and use 3 x 3 convolution to

reduce the number of channels to the same number as Fg;, thus obtaining a feature map Fpcy; with multi-scale
information:

Fperi = 0 (BN (f3x3 ([F1;3 F3; Fs53F75 Fo)))), 3)

where f3x3 denotes a 3 x 3 convolution, o is ReLU activation function, and BN represents batch normalization.

Based on Equations (1)-(3), we execute multi-scale feature extraction on feature maps of different resolution to
get Fpcro, Fpers, Fpcrs and Fpeps. Finally, we integrate multi-scale information from each DCL and fuse the
information with Fs extracted by the backbone with high-level features, namely:

g (Fperint) = fxr (MaxPool (Fipey 1)) 4)
Fpepi = [g (F;)CLi—l) §FDCLi] w.rt Fpery = Fpers (5)
Fm—smle = FSS ®fl><1 (FIDCLS) ’ (6)

where F},,; is the result of two adjacent DCLs' with concatenated feature maps, and 7>1. @ denotes element-wise
summation.

We obtain the final output F,,_s.. of the MFEM, which contains rich multi-scale information and will be used
as the input for attention calculation in CAM.

3.3. CAM
To address the negative impact of intra-class similarity on DR grading, we develop a novel CAM as shown in
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Figure 4, with the aim to alleviate the problem of category confusion in the classification process.
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Figure 4. The structure of the class attention module (CAM).

Firstly, we decrease the number of channels in multi-scale feature map F,,_scqe € R¥"*C to K x C’ by using
convolution with a kernel size of 1, resulting in F, € R®>"*KC" K and C’ are two hyperparameters representing the
number of categories and the number of channels allocated for each category. Then, split F. into K filters L = {lk} ,
where k € {1,2,3,4,5}, and each IF € R"*"*C" represents one of the categories.

Next, we perform inter-class attention calculations on each /¥ to make the features in each filter more compact
by obtaining contextual information. Taking {' as an example, we only use two convolution layers with kernel size 1
and obtain the context matrix M € R¥"*AW through softmax activation:

M = Sofmax (£, (e £ (1Y) M

where f/,, and f/7, denote two different 1 x 1 convolution layers.
The fusion matrix M and /' are used to gain a feature dense filter /' :

I'=l'e(l'eM), ®)

where @ represents element-wise summation, and ® denotes matrix multiplication.

The calculation process of /2, I*, [* and P’ is the same as that in Equations (7) and (8), and the final result is
L={F}.

To compensate for the potential loss of key features caused by channel reduction on Fp_scq1e , WE US€ Fiyscale aS
the key and L = {27‘} as the query for attention calculation, and remap the outcomes to the filters to obtain L= {f"} .

Taking / as an example, the formula is as follows:
'=I's (Softmax (il ®F,,,_,m”,)) . )

According to Equation (9), we will further obtain P, 73, F, and B. Finally, average each 7 by the channel
dimension and concatenate them to acquire category attention feature maps F,,, € R7>WV*K:

Fur = gt Pt Do Do B (10)

avg® Yavg> tavg tavg tavg

where X is the channel-wise average of the k-th filter.

avg

4. Experiment

We first introduce the composition of the dataset and the selection of evaluation indicators. Then, we compare
the experimental results with other most advanced models, and verify the progressiveness of the proposed model.
Finally, we conduct a series of ablation studies to demonstrate the effectiveness of each module.

4.1. Dataset

We use the publicly accessible Kaggle competitive dataset, i.e. the APTOS 2019 blindness detection dataset
[37], to train and test the proposed model. This database has two parts: a training set and a testing set. This training
set includes 3662 fundus images, all of which are jointly labelled by multiple professionals.

Ulteriorly, we remove the blurred images from the dataset, and use 3545 images for the experiment. These
images are marked as five levels in the database (i.e. no DR, mild DR, moderate DR, severe DR, PDR). Table 1 lists
the tangible divisions of the data samples.
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Table1 Dataset Sample Partitioning

No DR Mild Moderate Severe PDR
Train 1354 278 750 145 222
Test 451 70 180 40 55

4.2. Evaluation Metrics

For the five-class DR grading, we adopt accuracy (ACC) and quadratic weighted Kappa metrics (QWK) to
evaluate the validity of the designed models which are further compared with other typical models. ACC and QWK
are defined as follows:

TP+TN
acc=—t — (11)
(TP+TN+FP+FN)
i @iiPij
QWK:l—Z;Li%i, (12)
> @ijPi;
(i—j>
wrtw;;= m, (13)

where TP and TN denote the number of correctly classified positive samples and correctly classified negative sam-
ples, respectively. FP and FN are, respectively, the number of negative samples wrongly classified as positive and
the number of positive samples wrongly classified as negative. P;; and P;; are the observed and expected probabili-
ties.C denotes the total number of categories. i and j represent certain classes.

4.3. Implementation Details

In this work, we use ResNet50 [38] without the classifier as the backbone, and the size of the input image is
adjusted to 448 x 448.

During the training phase, we use the Adam optimizer, while the batch size is set to 16. The initial learning rate
is adjusted to le-3 and dynamically decreased. Our framework is implemented based on Python 3.8 and PyTorch
1.10.0. All experiments are conducted on two NVIDIA RTX 3090, 24G GPUs.

4.4. Experimental Results

We validate the performance of the model on the APTOS 2019 dataset and present the results in Figure 5. As
shown in Figure 5, our model achieves results comparable to those of clinicians in the five classes of DR grading.
Among them, excellent differentiation has been achieved for easily confused categories such as no DR/mild DR, mild
DR/moderate DR, and moderate DR/severe DR.

’ 3 0 0 l o

350
1- 1 64 4 0 1 300
©
2 - 250
52- 0 5 170 5 0
2 - 200
=
3- o 0 5 33 2 - 150
- 100
4- 0 1 6 0 48 - 50
I ! | ! | -0
0 1 2 3
Predict label

Figure 5. Confusion matrix of diabetes retinopathy(DR) grading outcomes.

Moreover, we compare the proposed model with other representative methods for further evaluation. These
methods include Inception-V4, ConvNext, EfficientNet, CBANet, Triple-DRNet, etc.

As shown in Table 2, our devised network achieves the best results in terms of ACC and QWK metrics.
ResNext and EfficientNet both have excellent feature extraction capabilities, but due to the complexity of lesions in
fundus images, they cannot accurately classify different lesions. ConvNext is another advanced CNN model which
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outperforms transformer-style models in terms of performance. However, due to its use of depthwise convolution to
decrease the number of parameters, the feature representation ability is weakened, resulting in poor performance in
DR grading. Both SE-ResNet and CBANet introduce attention mechanisms to improve the performance of the back-
bone, but fundamentally, they do not pay better attention to tiny lesions, making it difficult to further improve DR
grading performance. Inception-V4 can better capture tiny lesions in images by extracting multi-scale features, but in
DR classification tasks, it does not address the impact of intra-class similarity. Triple-DRNet divides five types of DR
into multiple independent subtasks and categorizes severity from coarse to fine. This alleviates the effect of intra-class
similarity in some categories, but cannot be extended to all categories. The proposed model not only relieves the
adverse influence of intra-class similarity in all categories, but also extracts more tiny lesions in fundus images to
reduce the possibility of confusing similar lesions, thereby improving classification performance.

Table 2 Comparison results with other representative methods

Metric
Models

ACC QWK
Inception-V4 0.7626 0.7880
ResNext [39] 0.8681 0.9024
EfficientNet [40] 0.8819 0.9081
SE-ResNet [41] 0.8178 0.8620
ConvNext [42] 0.8379 0.8727
Simple-method 0.8480 0.9013
CBANet 0.8869 0.9282
Triple-DRNet 0.9208 0.9362
Ours 0.9598 0.9712

4.5. Ablation Study

To evaluate the effectiveness of the MFEM and CAM, we conducted a series of ablation studies where
ResNet50 is used as the backbone. The research results are shown in Table 3.

Table3 Ablation studies of the impact of different modules on model performance

Metric
Backbone Method
ACC QWK
baseline 0.8631 0.9075
baseline + MFEM 0.8867 0.9212
ResNet50
baseline + CAM 0.9373 0.9416
baseline + CAM + MFEM 0.9598 0.9712

As we can observe from Table 3, both modules can gradually improve the performance of the model. Wherein,
after adding CAM, the results of DR classification are improved significantly. This indicates that our designed CAM
greatly alleviates the adverse impact of intra-class similarity on the model, making the differentiation between cate-
gories more pronounced. The MFEM module provides the model with the ability to identify tiny lesions and reduce
the possibility of confusing similar lesions, further improving the performance of DR grading.

5. Conclusion

In this article, we have proposed a model with two novel modules, the MFEM and CAM. This model uses
ResNet50 as the backbone to extract features from the image. At the same time, the MFEM will further obtain multi-
scale information in the image, allowing the model to 1) capture tiny lesions more accurately in the fundus and 2)
avoid confusing similar lesions. In addition, we have designed the CAM at the top of the model to alleviate the
adverse effect of intra-class similarity on DR grading. Experiments conducted on the APTOS 2019 dataset have
shown that the proposed model is superior to other mainstream models in terms of ACC and QWK. The effective-
ness of the MFEM and CAM has been verified through ablation studies.

In future research, we plan to develop a lightweight multi-scale feature extraction model that can be more con-
veniently applied to clinical diagnosis.
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