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Abstract: The nonerosive reflux disease (NERD) is a common condition, the symptoms of which mainly
include heartburn, regurgitation, dysphagia and odynophagia. The conventional diagnosis of NERD
needs the endoscopic examination, biopsy of the lining of the esophagus (mucosa), and ambulatory pH
testing over 24 to 96 hours, which is complex and time-consuming. To address this problem, a computer-
aided diagnosis system for NERD (named NERD-CADS) has been proposed in our previous paper. The
NERD-CADS offers a more convenient and efficient approach to diagnosing NERD, which only requires
the input of endoscopic images into the computer to produce a nearly instant diagnostic result. The
NERD-CADS uses a convolutional neural network (CNN) as a classifier and can classify the endoscopic
images captured in the esophagus of both healthy people and NERD patients. This is, in fact, a classifica-
tion problem of two classes: non-NERD and NERD. We conduct ten-fold cross-validation to verify the
classification accuracy of the NERD-CADS. The experiment shows that the mean of ten-fold classifica-
tion accuracy of the NERD-CADS test reaches 77.8%. In this paper, we aim to improve the classifica-
tion accuracy of the NERD-CADS. We add the contrastive self-supervised learning as an additional com-
ponent to the NERD-CADS (named NERD-CADS-CSSL), and investigate whether it can learn the capa-
bility of extracting representations to improve the classification accuracy. This paper combines the con-
trastive self-supervised learning with transfer learning, which first employs massive public image data to
train the CNN by the contrastive self-supervised learning, and then uses the endoscopic images to fine-
tune the CNN. In this way, the capability of extracting representations (learned by the contrastive self-
supervised learning) can be transferred into the downstream task (NERD diagnosis). The experiment
shows that the NERD-CADS-CSSL can obtain a higher mean (80.6%) in tests than the NERD-CADS
(77.8%).
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1. Introduction

The nonerosive reflux disease (NERD) is a common condition. The symptoms of NERD mainly include heart-
burn, regurgitation, dysphagia and odynophagia, which bring about a significant negative impact on life quality. The
conventional diagnosis of NERD requires the endoscopic examination, the biopsy of the lining of the esophagus
(mucosa), and the gold-standard test to measure the amount of acid by using an ambulatory pH testing over 24 to 96
hours, and this diagnosis is complex and time-consuming [1—6]. In our previous research [7], we have proposed a
computer-aided diagnosis system for NERD (named NERD-CADS) that only requires clinicians to input the endo-
scopic images into the computer to produce a nearly instant diagnostic result. This is more convenient and efficient
than the conventional diagnosis.

Before us, the authors in [8] have proposed a computer-aided diagnosis system for gastroesophageal reflux dis-
ease (GERD) in 2015. The researchers have 1) separated the endoscopic image (training sample) into 4 x 4 equal-
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sized rectangle regions; 2) extracted the hierarchical heterogeneous feature representations from the rectangle regions;
and 3) used the extracted feature representations to train a support vector machine (SVM) classifier. After the train-
ing, the SVM classifier can classify the extracted feature representations. During the test phase, the endoscopic image
(test sample) is processed by the same procedure, and the feature representations are extracted into the SVM classi-
fier. Finally, the SVM classifier gives the classification results. In this way, the diagnosis system in [8] can determine
whether the endoscopic image is from a person suffering from GERD or not.

To the best of our knowledge, the diagnosis system in [&] is the first and the only computer-aided diagnosis sys-
tem based on endoscopic images for GERD. GERD contains two main categories: NERD [9, 3—4] and erosive
esophagitis [10]. We focus on the challenging part of GERD diagnosis (which is NERD diagnosis) due to the fact
that, the visible esophageal mucosal injuries shown in the endoscopic images are obvious to be diagnosed as erosive
esophagitis.

In the technical aspect, the diagnosis system in [8] has simply separated the endoscopic image into 4 x 4 equal-
sized rectangle regions. In this way, the rectangle regions may contain redundant information that is not relevant to
the classification. For improvement, a region of the interest (ROI)-extraction algorithm has been proposed as a com-
ponent of the NERD-CADS in [7]. The ROI-extraction algorithm can lead the NERD-CADS to focus on the impor-
tant region of the endoscopic image. The experiments in [7] have shown that the diagnosis system with the ROI-
extraction algorithm can obtain higher classification accuracy than the diagnosis system without the ROI-extraction
algorithm.

The NERD-CADS can classify the endoscopic images captured in the esophagus of healthy people and NERD
patients, and this is, in fact, a classification problem of two classes: non-NERD and NERD. The NERD-CADS con-
sists of the ROI-extraction algorithm, the patch-generating algorithm, the convolutional neural network (CNN), and
the majority voting method. The ROI-extraction algorithm is dedicated to extracting the ROI from an endoscopic
image. The ROI contains important information for classification. The patch-generating algorithm is devoted to gen-
erating image patches from the ROI. The image patches are suitable for training the CNN. The CNN is adopted to
classify the image patches. In summary, the majority voting method is used to determine the final classification result
by summarizing the classification results of the image patches. Figure 1 illustrates the workflow diagram of the
NERD-CADS. Figures 2—4 show the full-size endoscopic image, the ROI, and the image patches, respectively.
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Figure 1. Workflow diagram of the computer-aided diagnosis system for NERD (NERD-CADS). NERD stands for
the nonerosive reflux disease. CNN stands for the convolutional neural network, and ROI stands for the region of the

interest.
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Figure 2. Full-size endoscopic image.

Figure 3. Region of the interest (ROI).

Figure 4. Image patches.

When training the NERD-CADS, we firstly extract the ROIs from the full-size endoscopic images (training
samples) by the ROI-extraction algorithm. Then, we generate the image patches from the ROIs by the patch-generat-
ing algorithm. Next, we train the CNN using the image patches. After the training, the CNN can classify the image
patches. When testing the NERD-CADS, we use the same algorithms to obtain the image patches from the full-size
endoscopic images (test samples). Subsequently, we use the CNN to classify the image patches, and employ the
majority voting method to summarize the final classification result from the classification results of the image
patches. The experiment in our previous research [7] has shown that the classification accuracy of the NERD-CADS
reaches 77.8%.

In this paper, we aim to improve the classification accuracy of the NERD-CADS by adding contrastive self-
supervised learning as an additional component to the NERD-CADS (named NERD-CADS-CSSL). The contrastive
self-supervised learning can learn the capability of extracting representations from image data by reducing the dis-
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tance between the representations of two augmentations of the same image. This paper 1) combines the contrastive
self-supervised learning with transfer learning, which employs massive public image data to train the CNN by the
contrastive self-supervised learning; and 2) uses the endoscopic images to fine-tune the CNN. In this way, the capa-
bility of extracting representations (learned by the contrastive self-supervised learning) can be transferred to the
downstream task (NERD diagnosis), which is able to improve the classification accuracy of the NERD-CADS.

We compare the NERD-CADS-CSSL with the NERD-CADS by subject-dependent and subject-independent
experiments. In the subject-dependent experiment, the test images from the same group of subjects are used as the
training images, and the test images that come from the unseen group of subjects cannot be used as the training
images. Also, we perform the subject-independent experiment, where the images for training and test are from differ-
ent groups of subjects. In the subject-independent experiment, we can verify whether the diagnosis systems can be
generalized to the case where the test images are those from the unseen group of subjects. Moreover, we conduct ten-
fold cross-validation in both experiments to verify the classification accuracy of the diagnosis systems. The experi-
ment (to be presented in Section 4) will show that the NERD-CADS-CSSL can obtain a higher mean (80.6%) than
the mean (77.8%) obtained by NERD-CADS. The contributions of this paper are summarized as follows.

1) We add the contrastive self-supervised learning as an additional component to the NERD-CADS, and inves-
tigate whether it can improve the classification accuracy of the NERD-CADS. The experiments show that the classi-
fication accuracy is indeed improved.

2) We transfer the capability of extracting representations (learned by the contrastive self-supervised learning) to
the downstream task (NERD diagnosis), and investigate the transferability of the contrastive self-supervised learning.
The experiments show that the contrastive self-supervised learning has good transferability.

3) We conduct the subject-dependent and the subject-independent experiments to investigate whether the diag-
nosis systems can be generalized to the case where the test images are those from the unseen group of subjects. The
experiments show that the diagnosis systems have good generalization ability and consequently, it is practical to
apply such systems to assist clinical diagnosis of NERD.

The rest of this paper is organized as follows: The background theory is introduced in Section 2. Section 3
describes the developed method of this paper. The experiments and results are demonstrated in Section 4. Section 5
draws the conclusion.

2. Background Theory

In this section, we will introduce contrastive self-supervised learning and transfer learning, which will be used
to develop the method of this paper.

2.1. Contrastive Self-Supervised Learning

The contrastive self-supervised learning is a kind of self-supervised learning method. Using this method, a sys-
tem can learn the capability of extracting representations from unlabeled images by itself. In most contrastive self-
supervised learning methods [11—15], augmentations of the unlabeled images are generated first. The distances
between the representations of different augmentations of the same image (called positive pairs) are then reduced, and
the distances between the representations of augmentations of different images (called negative pairs) are finally
increased. In this way, the capability of extracting representations from the unlabeled images can be learned. The
experiments in [11—15] have shown that the capability of extracting representations learned by the contrastive self-
supervised learning can be used for downstream tasks to improve the classification accuracy.

However, computing the distances between the negative pairs needs large memory. For improvement, the
authors in [16] have proposed a contrastive self-supervised learning method, named bootstrap your own latent
(BYOL), which only needs to reduce the distance between the positive pairs and does not need to use the negative
pairs. The experiment in [16] has shown that BYOL can obtain higher classification accuracy than the contrastive self-
supervised learning methods which require the positive and the negative pairs.

During the training, BYOL iteratively performs the following steps as shown in Figure 5, where the encoder
f(U), the projector g(U) and the predictor ¢(U) have a set of weights and biases U, while the encoder f(V) and the
projector g(V) have a different set of weights and biases V.
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Figure 5. Architecture of bootstrap your own latent (BYOL).

At the first step, an unlabeled image X is randomly picked, and two augmentations A and A’ from the unla-
beled image X are then generated. The augmentation methods include random cropping and resizing, left-right flip,
color jittering, color dropping, Gaussian blurring and solarization. At the second step, the augmentations A and A’ are
fed, respectively, into the encoders f(U) and f(V). At the third step, representations y(U) and y’(V) are output,
respectively, from the encoders f(U), while f(V) is input into the projectors g(U) and g(V). The projectors g(U)
and g(V) are multi-layer perception (MLP) networks, and such networks consist of a fully connected layer followed
by batch normalization [17], rectified linear unit (ReLU) [18] and a fully connected layer. At the fourth step, the pro-
jectors g(U) and g(V), respectively, output projections z(U) and z’(V), and the projection z(U) is input into the pre-
dictor g(U) to produce the prediction p(U), where the structure of the predictor g(U) is the same as the projectors
g(U) and g(V). At the fifth step, the prediction p(U) and the projection z’(V) are 1.2-normalized by Equations (1) and
(2). At the sixth step, the loss L(U,V) is calculated by the loss function Equation (3). At the seventh step, the aug-
mentations A’ and A are output, respectively, into encoders f(U) and f(V), and the third to the sixth steps are
repeated to obtain the symmetrical loss L(U, V) (which is not described in Figure 5). Specifically, the prediction
P’ (U) and the projection z(V) are [ 2-normalized by Equations (4) and (5), and the symmetrical loss L(U, V) is calcu-
lated by the loss function Equation (6). At the eighth step, an optimizer is used to minimize Equation (7) with regard
to U (other than V) as described by “stop gradient” in Figure 5. At the ninth step, the exponential moving average
[19] of U Equation (8) is used to update V.
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LPYON (U, V) = L(U, V) + L(U, V). (7

Ve tV+(1-1)U, ®)

where 7 € [0, 1] is a decay rate.

After the training, BYOL only keeps the encoder f(U) which can be used for downstream tasks to output rep-
resentations of new images.

From the steps of BYOL described by Figure 5, it can be seen that the left network (f(U), g(U) and ¢(U))
extracts the representation of the augmentation of an image, and the right network (f(V) and g(V)) extracts the rep-
resentation of another augmentation of the same image. Then, the optimizer tries to minimize the loss function which
is the difference between the two representations. That is to say, BYOL tries to let the networks learn the capability of
outputting the same representation for different augmentations of the same image. In other words, BYOL tries to let
the networks learn the capability that, no matter what transformations are applied to the same image, the networks
will output the same representation. In this way, the networks can learn the image invariance in a set of image trans-
formations and consequently, output the representation that is not affected by the set of image transformations.

In the architecture of BYOL, it can be seen that there is an encoder followed by a projector to output the repre-
sentation. The experiments in [11, 13—14] have shown that in comparison with the only use of the representation out-
put from an encoder, higher classification accuracy can be obtained in the downstream task via the use of the repre-
sentation output from an encoder followed by a projector. We conjecture the reason is that when adding a projector,
the capability of extracting common features is learned by the encoder and the capability of extracting task-specific
features is learned by the projector. Then, the encoder is used for the downstream task that only needs the capability
of extracting common features exactly. Note that the capability of extracting task-specific features will be learned
using another neural network for the downstream task. The experiment in [11] has shown that when adding a projec-
tor, the output from the encoder has much more information than the output from the projector for distinguishing
whether image transformations are applied. This supports such a point of view.

Moreover, in the architecture of BYOL, it can be seen that a predictor follows the projector in the left network,
and the structure of the predictor is the same as the projector. Meanwhile, it can be seen that the weights and biases of
the right network are not updated by the gradients of the loss function, but by the exponential moving average [19] of
the weights and biases of the left network, which can prevent the networks from converging to a collapsed constant
solution [16]. However, the reason has not been explained thoroughly. Until now, the reason has still been an open
question [20, 21].

2.2. Transfer Learning

The transfer learning [22] is a common method for training the CNN by using a dataset A to train the CNN for
task A first. After the training, the CNN has learned the capability of extracting representations from the samples in
the dataset A . The representations contain common features and task-specific features, where the part for extracting
the common features is kept and the part for extracting the task-specific features is restrained by using another dataset
B for task B. In this way, the capability of extracting the common features (learned from the first training) can be
transferred to do task B, which can improve the performance of doing task B, especially when the dataset B does not
have a sufficient number of labeled training samples [22, 23].

3. Methods

This research aims to develop algorithms for automatic diagnosis of NERD in order to solve a classification
problem of two classes: non-NERD and NERD. Ethical approval has been granted by the NHS Health Research
Authority North West Research Ethics Committee (REC reference: 17/NW/0562) and informed consent has been
obtained. In our previous paper [7], we have proposed the NERD-CADS that can classify the endoscopic images
captured in the esophagus of both healthy people and NERD patients as introduced in Section 1. In this paper, we
aim to improve the classification accuracy of the NERD-CADS.

We suppose that the capability of the CNN for extracting representations from image data may influence the
classification accuracy. The conventional method trains the CNN to learn the capability of extracting representations
by using the images and labels, which is a supervised learning method. Different from the supervised learning, the
contrastive self-supervised learning can learn the capability of extracting representations by reducing the distance
between the representations of two augmentations of the same image as introduced in Subsection 2.1. This may be
more effective than the supervised learning. Therefore, we add the contrastive self-supervised learning as an addi-
tional component to the NERD-CADS, and investigate whether it can learn the capability of extracting representa-
tions better to improve the classification accuracy. This paper combines the contrastive self-supervised learning with
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the transfer learning, where massive public image data is employed to train the CNN (by the contrastive self-super-
vised learning) and the endoscopic images are used to fine-tune the CNN.

Before training the contrastive self-supervised learning algorithm, we first take the pretrained CNN (the pre-
trained Inception-ResNetV2 [24]) from our previous research [7]. We select the pretrained Inception-ResNetV?2 [24]
as the pretrained CNN because the pretrained Inception-ResNetV2 [24] obtains the highest classification accuracy in
our previous research [7]. The pretrained CNN is trained using the ImageNet dataset [25]. Then, we keep the convo-
lutional layers of the pretrained CNN only, which can be regarded as an encoder. Next, we conduct the following
improvement for the NERD-CADS by combining the contrastive self-supervised learning with the transfer learning.

The illustration of the improvement for the NERD-CADS is shown in Figure 6, where the convolutional layers
of the pretrained CNN f(U), the projector g(U) and the predictor ¢(U) have a set of weights and biases U; the con-
volutional layers of the pretrained CNN f(V) and the projector g(V) have a different set of weights and biases V;
and the neural network n(W) has a different set of weights and biases W. The method includes a contrastive self-
supervised training phase followed by a supervised training phase and a test phase.

An image X (from STL-10 dataset)

Augmentation

methods
Augmentation A Augmentation A’ An Image patch B
l Exponential l
Convolutional layers of ~ [MOVINE average| Convolutional layers of o An image patch T
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Figure 6. Illustration of the method.

During the contrastive self-supervised training phase, we iteratively perform the following steps. Firstly, we
randomly pick an image X from the STL-10 dataset [26], and then generate two augmentations A and A’ from the
image X. Each augmentation is generated by random cropping and resizing followed by a combination of randomly
applying left-right flip, color jittering, color dropping, and Gaussian blurring from the image X, which will be pre-
sented in Subsection 4.1 in detail [11, 16]. Secondly, we feed the augmentations A and A’, respectively, into the con-
volutional layers of the pretrained CNNs f(U) and f(V). Thirdly, representations y(U) and y’(V) output, respec-
tively, from the convolutional layers of the pretrained CNNs f(U) and f(V), and are later input into the projectors
g(U) and g(V). Fourthly, the projectors g(U) and g(V), respectively, output projections z(U) and z’(V). Then, the
projection z(U) is input into the predictor g(U) to produce the prediction p(U). Fifthly, the prediction p(U) and the
projection z’(V) are ?-normalized by Equations (1) and (2) in Subsection 2.1. Sixthly, we calculate the loss L(U, V)
by Equation (3) in Subsection 2.1. Seventhly, we input the augmentations A’ and A respectively into the convolu-
tional layers of the pretrained CNNs f(U) and f(V) and repeat the third to the sixth steps to obtain the symmetrical
loss L(U, V) (that is not described in Figure 6). Specifically, the prediction p’(U) and the projection z(V) are 7.2-nor-
malized by Equations (4) and (5) in Subsection 2.1, and the symmetrical loss L(U, V) is calculated by Equation (6) in
Subsection 2.1. Eighthly, we use an optimizer to minimize Equation (7) in Subsection 2.1 with regard to U only, but
not V, as described by “stop gradient” in Figure 6. Ninthly, we use the exponential moving average [19] of U (Equa-
tion (8) in Subsection 2.1) to update V. In this way, the networks can learn the image invariance in a set of image
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transformations and consequently, can output a representation that is not affected by the set of image transformations
(refer to Subsection 2.1). After the training, we only keep the convolutional layers of the pretrained CNN f(U) for
the following task.

During the supervised training phase, we firstly extract the ROIs from the full-size endoscopic images (training
samples) by the ROI-extraction algorithm [7] in Figure 1. Then, we generate the image patches from the ROIs by the
patch-generating algorithm [7] in Figure 1. Next, we iteratively perform the following steps. Firstly, we pick an image
patch B, and feed it into the convolutional layers of the pretrained CNN f(U). Secondly, the representation 7(U) (the
output from the convolutional layers of the pretrained CNN f(U)) is input into the neural network n(W). The neural
network n(W) consists of a fully connected layer followed by a softmax function. Thirdly, the neural network n(W)
outputs a predicted label j(U, W). The predicted label j(U, W) has two elements j,(U, W) and j,(U, W) that repre-
sent the possibility of the image patch B falling into non-NERD and NERD, respectively. The true label k = [k, k,]"
is encoded by one-hot. That is, if the true label k is non-NERD, then k; = 1 and &, = 0; if the true label k is NERD,
then k; = 0 and k, = 1. Then, we calculate the cross-entropy loss L°E(U, W) by Equation (9). Fourthly, we use an
optimizer to minimize Equation (9) with regard to U and W. In this way, the image invariance in a set of image
transformations learned by the convolutional layers of the pretrained CNN f(U) can be transferred to do the classifi-
cation of the image patches. After the training, we keep the convolutional layers of the pretrained CNN f(U) and the
neural network n(W) for the test.

LU, W) = —k; In j; (U, W) — ky In j, (U, W). )

During the test phase, we firstly extract the ROIs from the full-size endoscopic images (test samples) by the
ROI-extraction algorithm [7] in Figure 1. Then, we generate the image patches from the ROIs by the patch-generat-
ing algorithm [7] in Figure 1. Next, we iteratively perform the following steps. Firstly, we pick an image patch T, and
feed it into the convolutional layers of the pretrained CNN f(U). Secondly, a representation s(U) output from the
convolutional layers of the pretrained CNN f(U) is input into the neural network n(W). Thirdly, the neural network
n(W) outputs a predicted label m(U, W). Then, we record the predicted label m(U, W) of the image patch T for the
calculation of the classification accuracy. After all the image patches are predicted, we check all the predicted labels
with the corresponding true labels and calculate the classification accuracy on the image level. Next, we calculate the
predicted classes on the subject level by the majority voting [7] in Figure 1. The majority voting [7] is that, if more
than 50% of the image patches from a subject are predicted as one class, we predict this subject as this class. Then,
we check all the predicted classes of subjects with the corresponding true classes and calculate the classification accu-
racy on the subject level.

4. Experiments and Results

We compare the classification accuracy (defined as Equation (10)) of the NERD-CADS with that of the NERD-
CADS-CSSL by the subject-dependent and the subject-independent experiments as introduced in Section 1. Mean-
while, we conduct ten-fold cross-validation in both experiments to verify the classification accuracy. The same dataset
in our previous paper [7] is used for the experiments. In the subject-dependent experiment, we use 1394 full-size
endoscopic images from 50 subjects, where 554 full-size endoscopic images from 21 subjects are labeled as “positive”
(NERD patients), and 840 full-size endoscopic images from 29 subjects are labeled as “negative” (healthy people). In
the subject-independent experiment, we use 556 full-size endoscopic images from a different group of subjects (18
subjects), where 229 full-size endoscopic images from 6 subjects are labeled as “positive” (NERD patients), and 327
full-size endoscopic images from 12 subjects are labeled as “negative” (healthy people).

TP+TN
TP+TN+FP+FN’

Accuracy = (10)
where TP, FP, TN, and FN respectively denote the number of true-positive, false-positive, true-negative, and false-
negative classification results [27].

4.1. Implementation Details

Augmentation Methods

The augmentation policy consists of random cropping and resizing followed by a combination of randomly
applying left-right flip, color jittering, color dropping, and Gaussian blurring [11, 16]. The possibility of applying each
augmentation method is listed in Table 1. The details of the augmentation methods are given as follows:

» Random cropping and resizing: The image is randomly cropped by a window from 8% to 100% of the
original image size and from 3/4 to 4/3 of the original image aspect ratio. Then, the cropped image is resized
to 299 x 299 pixels by bilinear interpolation.
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* Left-right flip: The image is flipped in the left-right direction.

* Color jittering: The brightness, contrast, saturation, and hue of the image are changed to random extent
within a range. The range of the changed brightness is 20% to 180% of the original image brightness. The
range of the changed contrast is 20% to 180% of the original image contrast. The range of the changed satura-
tion is 20% to 180% of the original image saturation. The range of the changed hue is 80% to 120% of the
original image hue.

* Color dropping: The image is converted to grayscale. Given that the red, green, and blue channels of
the image are I,, I, and I}, then the grayscale image is G = 0.29891, + 0.58701, + 0.11401,.

* Gaussian blurring: The image is blurred by a Gaussian kernel with the standard deviation of 1.5, and
the kernel size is 30 % 30.

Table 1 The possibility of applying each augmentation method.

Augmentation Methods Possibility
Random Cropping and Resizing 1.0
Left-Right Flip 0.5
Color Jittering 0.8
Color Dropping 0.2
Gaussian Blurring 0.1

Parameters and Configurations
The parameters and configurations of the method in this paper are listed in Table 2, which are determined by
trial and error.

Table2 Parameters and configurations.

Contrastive Self-Supervised Training Phase ~ f(U), f(V)  Structure: Inception-ResNetV2 [24].
Input size: 299 x 299 x 3.

Output size: 1536.

g(0), g(V) Structure: a fully connected layer followed by batch normalization [17],
ReLU [18], and a fully connected layer.

The first fully connected layer: input size: 1536; output size: 4096.

The second fully connected layer: input size: 4096; output size: 256.

q(U) Structure: a fully connected layer followed by batch normalization [17],
ReLU [18], and a fully connected layer.

The first fully connected layer: input size: 256; output size: 4096.

The second fully connected layer: input size: 4096; output size: 256.

T 0.99.
Batch Size 128.

Optimizer Stochastic gradient descent with momentum.

Supervised Training Phase n(W) Structure: a fully connected layer followed by a softmax function.
Input size: 1536.

Output size: 2.

Batch Size 128.

Optimizer Stochastic gradient descent with momentum.

4.2. Subject-Dependent Experiment

In the subject-dependent experiment, we randomly divide the 1394 full-size endoscopic images from 50 sub-
jects into two parts. One part contains approximately 70% of the full-size endoscopic images that are used for the ten-
fold cross-validation, and another part contains approximately 30% of the full-size endoscopic images that are used
for the test. Then, the first part is divided into ten folds. Each fold contains approximately the same number of the
images. The scheme for dividing the images is illustrated in Figure 7. Each fold consists of 10% images of each sub-
ject. After the images are divided, we use the images of the fold i (i = 1,2,...,10) as the validation samples and the
images of the remaining nine folds as the training samples.
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Figure 7. Scheme of the division.

As the result of the experiment plan, each fold consists of a proportion of the images of each subject. Thus, it is
a subject-dependent classification. Consequently, we only perform the classification on the image level in the subject-
dependent experiment.

Tables 3 and 4 show the classification accuracy on the image level in the training and test of the NERD-CADS
(from our previous research [7]) and the NERD-CADS-CSSL in the subject-dependent experiment.

Table3 Classification accuracy on image level in training of the NERD-CADS and the NERD-CADS-CSSL in the

subject-dependent experiment.

Classification Accuracy on Image Level in Training
Fold

NERD-CADS NERD-CADS-CSSL

1 99.1% 99.3%

2 99.2% 99.3%

3 98.2% 99.2%

4 98.4% 99.7%

5 99.3% 99.7%

6 99.7% 99.4%

7 98.5% 99.2%

8 99.5% 99.3%

9 99.9% 99.9%
10 99.9% 100.0%
Mean 99.2% 99.5%
STD 0.6% 0.3%
Best 99.9% 100.0%
Worst 98.2% 99.2%

« Mean, STD, Best, and Worst respectively denote mean, standard deviation, the best, and the worst of classification accuracy from ten-fold cross-validation.
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Table4 Classification accuracy on image level in test of the NERD-CADS and the NERD-CADS-CSSL in the sub-
ject-dependent experiment.

Classification Accuracy on Image Level in Test

Fold
NERD-CADS NERD-CADS-CSSL

1 82.7% 91.3%
2 85.0% 89.0%
3 83.5% 88.6%
4 84.1% 94.1%
5 86.6% 91.8%
6 91.3% 96.3%
7 86.5% 95.1%
8 87.5% 93.5%
9 85.7% 91.3%
10 97.4% 93.8%
Mean 87.0% 92.5%
STD 4.1% 2.4%
Best 97.4% 96.3%
Worst 82.7% 88.6%

* Mean, STD, Best, and Worst respectively denote mean, standard deviation, the best, and the worst of classification accuracy from ten-fold cross-validation.

In Table 3, compared with the NERD-CADS, it can be seen that the NERD-CADS-CSSL obtains a higher
mean of ten-fold classification accuracy on the image level in training. The increase is 0.3% (99.5% — 99.2%). More-
over, compared with the NERD-CADS, it can be seen that the NERD-CADS-CSSL has a lower standard deviation
of ten-fold classification accuracy on the image level in training. The decrease is 0.3% (0.6% — 0.3%), which means
that the classification accuracy is more stable. In Table 4, compared with the NERD-CADS, it can be seen that the
NERD-CADS-CSSL obtains a higher mean of ten-fold classification accuracy on the image level in test. The increase
is 5.5% (92.5% — 87.0%). Moreover, compared with the NERD-CADS, it can be seen that the NERD-CADS-CSSL
has a lower standard deviation of ten-fold classification accuracy on the image level in test. The decrease is 1.7%
(4.1% — 2.4%), which means that the classification accuracy is more stable.

The results show that the capability of extracting the common features learned by the contrastive self-super-
vised learning can be transferred to the downstream task (NERD diagnosis). This improves the classification accu-
racy of the downstream task (NERD diagnosis), demonstrating that the contrastive self-supervised learning has good
transferability.

4.3. Subject-Independent Experiment

In the subject-independent experiment, we test the NERD-CADS and the NERD-CADS-CSSL that have been
trained from the subject-dependent experiment. We divide the 556 full-size endoscopic images from a different group
of subjects (18 subjects) by the subject. Then, we use the images as the test samples. Thus, the training and the test
samples are from different groups of subjects. Consequently, it is the subject-independent classification. We perform
the classification on the image level and subject level in the subject-independent experiment.

Tables 5 and 6 show the classification accuracy on the image level and subject level in test of the NERD-CADS
(from our previous research [7]) and the NERD-CADS-CSSL in the subject-independent experiment.

11
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Table 5 Classification accuracy on image level in test of the NERD-CADS and the NERD-CADS-CSSL in the sub-
ject-independent experiment.

Classification Accuracy on Image Level in Test

Fold
NERD-CADS NERD-CADS-CSSL

1 70.4% 75.0%
2 72.1% 73.4%
3 73.6% 74.1%
4 66.7% 74.6%
5 67.6% 72.3%
6 69.3% 71.9%
7 70.8% 72.2%
8 70.7% 75.3%
9 71.5% 73.7%
10 67.4% 76.5%
Mean 70.0% 73.9%
STD 2.1% 1.4%
Best 73.6% 76.5%
Worst 66.7% 71.9%

* Mean, STD, Best, and Worst respectively denote mean, standard deviation, the best, and the worst of classification accuracy from ten-fold cross-validation.

Table 6 Classification accuracy on subject level in test of the NERD-CADS and the NERD-CADS-CSSL in the
subject-independent experiment.

Classification Accuracy on Subject Level in Test

Fold
NERD-CADS NERD-CADS-CSSL

1 88.9% 88.9%
2 77.8% 88.9%
3 83.3% 77.8%
4 77.8% 77.8%
5 72.2% 83.3%
6 77.8% 88.9%
7 72.2% 83.3%
8 77.8% 72.2%
9 77.8% 66.7%
10 72.2% 77.8%
Mean 77.8% 80.6%
STD 5.0% 7.1%
Best 88.9% 88.9%
Worst 72.2% 66.7%

* Mean, STD, Best, and Worst respectively denote mean, standard deviation, the best, and the worst of classification accuracy from ten-fold cross-validation.

In Table 5, it can be seen that the NERD-CADS-CSSL obtains a higher mean of ten-fold classification accu-
racy on the image level in test than the NERD-CADS. The increase is 3.9% (73.9% — 70.0%). Moreover, it can be
seen that the NERD-CADS-CSSL has a lower standard deviation of ten-fold classification accuracy on the image
level in test than the NERD-CADS. The decrease is 0.7% (2.1% — 1.4%), which means that the classification accu-
racy is more stable. In Table 6, it can be seen that the NERD-CADS-CSSL obtains a higher mean of ten-fold classi-
fication accuracy on the subject level in test than the NERD-CADS. The increase is 2.8% (80.6% — 77.8%). How-
ever, it can be seen that the NERD-CADS-CSSL has a higher standard deviation of ten-fold classification accuracy
on subject level in test than the NERD-CADS. The increase is 2.1% (7.1% — 5.0%), which means the classification
accuracy is less stable.

The results show that the contrastive self-supervised learning can improve the classification accuracy of the
NERD-CADS. Moreover, the results demonstrate that the NERD-CADS and the NERD-CADS-CSSL can be gener-
alized to handle the test images that come from the unseen group of subjects.
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5. Conclusion

This paper has added the contrastive self-supervised learning as an additional component to the NERD-CADS
to investigate whether it can improve the classification accuracy of the NERD-CADS. We have combined the con-
trastive self-supervised learning with the transfer learning. This means that massive public image data has been
employed to train the CNN by the contrastive self-supervised learning first, and then the endoscopic images have
been used to fine-tune the CNN for the downstream task (NERD diagnosis). We have compared the NERD-CADS
with the NERD-CADS-CSSL in the subject-dependent and the subject-independent experiments. Moreover, we have
conducted ten-fold cross-validation in both experiments to verify the classification accuracy. The experiments have
shown that the contrastive self-supervised learning can improve the classification accuracy of the NERD-CADS.
Meanwhile, the experiments have shown that the capability of extracting the common features learned by the con-
trastive self-supervised learning can be transferred to the downstream task (NERD diagnosis). This has improved the
classification accuracy of the downstream task (NERD diagnosis), and demonstrated that the contrastive self-super-
vised learning has good transferability. Moreover, the experiments have shown that the NERD-CADS and the NERD-
CADS-CSSL can be generalized to handle the endoscopic images (test samples) that come from the unseen group of
subjects.
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