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Abstract: The advancement in Internet of things and sensor technologies has enabled data to be continu-
ously generated with a high rate, i.e., data streams. It is practically infeasible to store streaming data in a
hard disk, and apply a traditional batch learning method to extract a relevant knowledge model from
these data. This paper studies online incremental learning with data streams, in which one sample is pro-
cessed at each time to update the existing model. For the learning target, the Bayesian classifier is
adopted which is a computationally economical model of easy deployment for online processing in edges
or devices. By using the individual new example, we first present an online learning algorithm to incre-
mentally update classifier parameters in a way equivalent to the offline learning counterpart. In order to
adapt to concept drifts in nonstationary environments, the proposed online learning algorithm is
improved to enable recent examples to be more impactful during the sequential learning procedure. Pre-
liminary simulation tests reveal that the improved online learning algorithm can lead to faster model
adaption than the unimproved online algorithm when the data drift occurs. In case of presumed station-
ary data streams without drifts, the improved online algorithm is proved to be competent by performing
at least as good as (sometimes, even better than) the unimproved algorithm.
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1. Introduction

The advancement in the Internet of things (IoT) and sensor technologies has enabled an exponential growth of
data which is generated and collected from a wide range of sources. Understanding big volumes of data [1] requires
cutting-edge tools and techniques to extract useful knowledge and information for decision support. Data being con-
tinuously generated at a high rate is referred to as the streaming data (or the data stream) and is of high interest [2].
Data streams are prevalent in many industrial domains such as manufacturing and automatic control systems. As
streaming data contains a huge number or even an unbounded sequence of samples, it is practically infeasible to store
the full volume of data on a hard disk, and access the data multiple times to extract relevant knowledge.

So far, the main stream of the machine learning methods has been focused on a batch-based and offline learn-
ing manner. A limitation of offline learning methods is that, with the arrival of a set of new examples, the learning
algorithm has to be re-executed using all training data available. Hence, it can lead to an inefficient learning process
without utilizing the knowledge learned previously. Particularly, offline learning is incapable of handling data streams
in an online environment, in which fresh data is generated continuously with open ends.

Incremental learning [3] is a promising technology to deal with online data streams, and aims to update an
existing knowledge model based on learning from new data rather than scratches. This basic idea shows analogy to
the cognitive behavior (of humans) which is used to acquire knowledge in an incremental fashion over time. One of
the earliest incremental learning algorithms was proposed in [4] to solve data clustering problems. According to the
definition given in [5], an incremental algorithm should be computationally efficient when incorporating the experi-
ence (training data) into models, and should not use any unreasonable space to store the already used experience. This
implies that training examples have to be discarded immediately after being processed, leading to rather low memory
demands during the learning procedure.

Th every fast decision tree (VFDT) algorithm [6, 7] was developed for incremental learning of a decision tree
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based on streaming data. The tree is learned by recursively replacing leaves with decision nodes. The Hoeffding
bounds are used in the VFDT to decide when to install a split-test at a leave. Later Rutkowski et al. [8] proposed a
technique to use the Gaussian approximation to select the best splitting attribute in a considered node. It is proved
that, by using this technique, the best selected attribute has a high probability to be identical to the attribute derived
from the whole data stream. However, no pruning strategies are addressed in the above mentioned papers to prune the
underlying tree and avoid over-fitting during the learning procedure.

Wang, Minku and Yao developed two online stream mining methods, i.e. the oversampling based online bag-
ging (OOB) and under-sampling based online bagging (UOB) [9], aiming to bias the learning to favor the minority
class. Note that the adaptability of varying the imbalance status is supported by the incremental estimation of the
occurrence probabilities of classes, and this provides basis to adjust the sampling rate in a dynamic process. A limita-
tion of the OOB and UOB methods is that they can only handle data streams of two classes.

Yavtukhovskyi et al. proposed an incremental learning method to construct fuzzy classification rules from data
streams [10]. This method not only generates new fuzzy rules to reflect information from new data, but also incre-
mentally updates confidence in the old rules. When the existing knowledge is applied to classify a new instance, the
low-confidence rules will not be used in the fuzzy rule based inference. Similar results were conducted using evolv-
ing fuzzy classifiers [11—15] that emerged as an own research line in recent years. However, both incremental and
evolving fuzzy classifiers treat training samples equally in model construction, regardless of their arrival time. Hence,
such classifiers are not well suitable for nonstationary environments, where recently generated data should weigh
more than those data generated from the long past.

Incremental learning is also exploited to increase the computational efficiency when learning from big data sets.
The work in [16, 17] split the large volume of training data into multiple subsets, with each corresponding to a learn-
ing episode. In each episode, the knowledge acquired from the preceding stage is updated and refined based on the
current data subset. Duda et al. [18] proposed a boosting based mini-batch training approach to accelerating the train-
ing process of deep neural networks. This approach differs from traditional learning methods in that 1) learning
examples are randomly taken from the original training set to form a continuous data stream; 2) and the mini-batch is
constituted by a group of recent elements from the stream for model update.

Online learning [19], as a closely related concept to incremental learning, represents a family of machine learn-
ing methods attempting to learn from a sequence of samples one by one at a time. The goal of online learners is to
optimize the performance for solving a sequence of prediction problems by utilizing known answers to previous
tasks. According to [20], incremental learning can work in either an online or a batch mode. In the online mode, only
one example is used to update the model each time, while in the batch mode, a batch of multiple examples is used for
model update at each time.

This paper focuses on incremental online learning of Bayesian classifiers which represent a class of computa-
tional cheap and probabilistic models for classification. Bayesian classifiers are appealing for employment in an
online setting due to the following reasons. 1) The Bayesian classifiers involve no specification and tuning of the
model architecture, which is yet common in many other machine learning models. Changing model architecture will
terminate the sequential update procedure and request model training anew. 2) Online learning is often executed in
edges or devices where the space capacity is limited. Fortunately, Bayesian classifiers are economic models with a
low number of parameters, making their deployment easy on the edge or device levels. Therefore, we adopt the
Bayesian classifier as the target model for online learning in this paper. We present an online learning algorithm that
uses one sample (along the stream) at a time to update the parameters of the existing Bayesian classifier. It is also
clearly shown that this online algorithm works equivalently to the offline learning counterpart that uses the entire data
stream as the training data for once.

Further, we consider nonstationary environments in which the data distribution and characteristics may evolve
with time, i.e., concept drifts. Learning to adapt to concept drifts is one of the grand challenges and is crucial for
many real-world applications [21]. To this end, we propose an improved online learning algorithm for Bayesian clas-
sifiers, which enables recent examples to be more impactful during the sequential learning procedure. Preliminary
simulation tests reveal that the improved online learning algorithm can lead to faster model adaption than the unim-
proved online algorithm when such a drift occurs in data. In case of presumed stationary data streams without con-
cept drifts, this improved online algorithm is still competent by performing at least as good as (sometimes, even bet-
ter than) the unimproved algorithm.

In summary, the novel contribution of this paper is highlighted from the following aspects.

1) We investigate online learning with Bayesian classifiers that are economic to be implemented in edge
devices.

2) We propose the online learning algorithm (Algorithm 1), which is shown equivalent to the offline learning
counterpart that uses the whole data stream for once.
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3) We further propose the improved online learning algorithm (Algorithm 2), which enables faster model adap-
tation in nonstationary environments.

The remainder of the paper is organized as follows. Section 2 presents the basic principle of the naive Bayesian
classifier. The online learning algorithms for Bayesian classifiers are elaborated in Section 3. Section 4 gives the pre-
liminary results of simulation tests to evaluate the proposed learning algorithm. Finally, concluding remarks are given
in Section 5.

2. Naive Bayesian Classifier

Naive Bayesian classifiers are simple probabilistic models which can be used to solve many classification prob-
lems. The basic idea is to consider the posterior probability for each probable class Hy (k=1...K) when attempting to
classify a new instance, which is represented by the feature vector (x;, X,, ***, X,). According to the Bayes theorem,
this posterior probability is expressed by

P(H;) P(x1, %2, , X, | Hy)

P H 9’ ’...’ n = 1
(Hilx1, %2, , %) P 1) (D

Assuming that all features are independent of each other, Equation (1) can be further written as:

P(Hylxy 10, 1 3y) = L P (x;lf(f;?i ff{lﬁi -)--P(xn|Hk> o

The rationale of this independence assumption of features can be found in [22].
Since the denominator in Equation (2) is a constant given the feature values, we can decide the class y* that
maximizes the numerator, i.e.,

Y :arginaxp(Hk)P(xlIHk)P(x2|Hk)'"P(xn|Hk) 3)

The likelihood P (x lek) in Equation (3) needs to be derived from a predefined probability density function
provided that feature x; takes continuous values. This paper uses the Gaussian function as the density function to
express the distribution of a feature under a given class. It was explained in [23] that the Gaussian function is able to
approximate a wide range of distributions such as Gamma, Binnominal and Poisson distributions. Thereby, the likeli-
hood P (x jICk) required by Equation (3) is computed as

P H) = 1 1<xj—mjk)2 4
(xj| k)_\/2_T0'jkexp 3 Tjk “)

where m . and o stand for the mean and standard deviation of the Gaussian function, respectively.

Let the training data set be formulated as 7D = U,’le (X (),Hli=1,---,m} with X, (i) representing the
feature vector of the ith training example of class H. n; denotes the number of training examples of class H. xj (i)
refers to the jth element (the value of feature x;) in the feature vector X (i). The prior probability P (Hy) of class H;
and the mean and standard deviation of feature x; (j=1 - - -n) under class H; can be obtained from the training data set,
which are formulated as follows:

_ T
P(Hy) = SE )
1 T
mj = ;kzizlxjk (@) (6)
1 ny
0'?1( = ;kzi:l(xjk(i)_mjk)z @)

which are considered as the parameters of the Bayesian classifier.

3. Online Learning Algorithms

This section discusses incremental online learning for Bayesian classifiers. In Subsection 3.1, we present the
online learning algorithm that weighs all the samples in the streams equally. This algorithm is then improved in Sub-
section 3.2 to deal with the concept drift of nonstationary data streams in time-varying environments.

3.1. Online Learning with Stationary Data Stream
Online learning is performed to update the Bayesian classifier with each new training example. First, let’s con-
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sider stationary data streams in which the data characteristics and distribution remain unchanged with time.
Hence, it is required to realize incremental calculation of the classifier parameters defined by Equations
(5)—(7). This means that, given a new training example, the old classifier parameters have to be updated to
new values which are the same as those obtained using all the old and new training samples together.

Let P(Hy,i) be the prior probability of class H, after incorporating the first i training samples. With the arrival
of the next sample E;,, the class probability is updated by

P+ = “PIDES iy iy s P, ®)
i+1 i+1

where s = (class(E;;1) = Hy) is a logic variable returning 1 when E, is of class H;, and 0 otherwise.

Likewise, the mean of a feature under a class can be incrementally updated using examples of that class. Let
m (i) be the mean of feature x; under class H,, which is estimated based on the first i samples of that class. Now,
suppose that the next example of class H, is available and its value on the jth feature is denoted by xj (i +1). We
have the new estimate of the mean parameter by updating the old one as follows:

i-m () +x (i + 1)
i+1

. 1 . .

my (i+1)= m (i) + —— T [xjk(l'f'l)_mjk(l)} Q)
Relying on the relation in Equation (9), we further have Equation (10) concerning the update of the standard devia-
tion of features under a class.

i (0 N (i D =mu )

2.'+]:
TR+ =75 (i+1)?

=D+ i+1

i . . .
L,H(xjk(z+1)—mjk(l))2—a§k(z)} (10)
The standard deviation feature under class is

S -mu ) =3

2
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Therefore, we have

1 i+
it =3 () =my i+ D)’ = )+ (e G+ 1) = ()

i
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Based on Equations (8)—(10) and the recursive calculation of the Bayesian classifier parameters, the
online BC learning algorithm is presented as follows:

Algorithm 1: Online BC learning



1JNDI, 2023, 2(3), 100009. https:/doi.org/10.53941/ijndi.2023.100009

Inputs: Number of classes K; number of features n
Data stream of labelled examples, stream(-)
Output: Set of Bayesian classifier parameters:

P(Hk),m,k,aﬁk,k: 1---K,j=1---n

1: for £=1to K do
2: P(H) =0
Count (k) =0
3 forj=1tondo
4
Mmijp = 0; O’?k =0
5 end for
6: end for
7 t=0
8 while (strteam(t + 1) # @) do
9 E = stream(t+1)
10: fork=1to Kdo
11 s = (Hy = class(E))
P(Hy) « P(Hy) + 77 [s = P(Hp)]
12: end for
13: k = index (class(E))
14: for j=1 to n do
1 1 C (k)
5 > ount N2 o }
Tk T T Count (k) +1 [Count(k) 1 (s =ma) =
Tk I it )+ 1 (=)
//x;: the jth feature value of sample E
16: end for
Count (k) « Count (k) + 1
17: tet+1
18: end while

The outcomes of Algorithm 1 are the prior probabilities P (H,) of the class, the mean mj and the standard
deviation o-?k of class features. These parameters of the Bayesian classifier can be used in Equations (3) and (4) for
online classification of new instances, and are continuously updated during the execution of the algorithm.

3.2. Adapting to Concept Drifts

The online BC learning algorithm presented in Subsection 3.1 is based on the recursive calculation of the class
probabilities, and the mean and standard deviation of features under classes. For the sake of preserving the knowl-
edge learned in the past, all historical samples are weighed equally when the total learning process is completed.
Nonetheless, in a dynamic environment where data distributions evolve with time, the data that arrives recently is of
more importance than the data that arrives long before. In order to adapt to concept drifts, a challenging issue is how
to learn from more recent data. This subsection tackles this issue by proposing the improved online BC learning algo-
rithm.

Revisiting Equations (8)—(10), it can be seen that the inverse of (i+1) is an important coefficient to decide
the step size, where the old parameters of the Bayesian classifier are updated by a new example and i+1 is the num-
ber of examples that have been received so far. Obviously, the step size diminishes quickly with the increase of i,
which results in the declining influence of new samples along with time. This is, unfortunately, contradictory to our
expectation of learning with drifting data streams that, more recent samples should gain more importance in the
learning procedure in order to not only dilute outdated knowledge, but also adapt to the concept drift. Under this con-

sideration, we replace 1 by a constant coefficient @ (0 < a < 1), which is termed as the learning rate in Equa-
l

tions (8)—(10). This leads to the new online incremental learning rules for the Bayesian classifier parameters
given below:

P(Hy,i+1)=P(H,i)+als—P(H,i)] an

mjk(i+1)=mjk(i)+a[x‘,-k(i+l)—mjk(i)} (12)
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i+ D=0 D+a [(1=a) (xu+D=mu () -0 ()] (13)

The advantage of this revision is that, with the time-independent learning rate, the influence of training exam-
ples (that arrive later) will not decrease with time. We have the opportunity of defining a suitable value for « to
achieve timely reactions (of the model) to the streaming drift. In principle, the value of « is related to the speed of the
data evolution. The faster the data evolves, the larger @ has to be. On the other hand, the learning rate must not be too
large in order to avoid quickly forgetting previously acquired useful knowledge, i.e. the risk of catastrophic forgetting
[23]. Based upon the new learning rules of Equations (12)—(14) , the improved online BC learning algorithm is
given in Algorithm 2.

Algorithm 2: Improved online BC learning

Inputs: Number of classes K; number of features n
Data stream of labelled examples, stream(-)Learning rate «
Output: Set of Bayesian classifier parameters:

P(Hk),mjk,()'?k,k= 1K, j=1-n

1: for k=1to K do
2: P(H) =0
3: forj=1tondo
4 mjk=0;0'§k=0
S: end for
6: end for
7: t=0
8: while (strteam(t +1) # @) do
9: E = stream(t +1)
10: for k=1to K do
11 s = (Hy =class(E))
P(Hy) « P(Hi) +a[s— P(Hy)]
12: end for
13: k = index(class(E))
14: for j=1ton do
15:
(T?k — o'?k +a|(l1-a) (xj —mjk)z —o'?k]
mj e mjx+a (x;—mj
//x;: the jth feature value of sample E
16: end for
17: t=c t+l1
18: end while

4. Results and Evaluation

This section presents the simulation tests conducted on some benchmark data sets, and evaluates the efficacy of
the online learning algorithms. Subsection 4.1 briefly introduces the experimental setup. Subsequently, the results of
simulation tests are given and discussed in Subsection 4.2.

4.1. Experimental Setup

Eight benchmark datasets from the UCI machine learning repository [24] are used for simulation tests in this
paper. All these data sets are used for classification, see Table 1. Each data set is treated as a data stream in the simu-
lation tests. This means that each training example is processed once and then discarded during the execution of the
online learning algorithms.
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Table1 Summary of the eight benchmark data sets.

Dataset name Attribute number Class number Sample number
Monk-2 6 2 432
Sonar 60 2 208
Wine 13 3 178
Titanic 3 2 220
Heart 13 2 270
Pirma 8 2 768
Balance 4 3 625
Australian 14 2 690

The K-fold cross-validation method [25] is used in the evaluation to make a fair assessment of the generaliza-
tion ability of the learning algorithms. The concrete value of K is set to be 10 in the experiments. Hence, each data set
is divided into 10 equal parts with one part being used as test data, and the other nine parts together being used as the
training data (in each of the 10 trials). The final classification accuracy is the mean of the accuracy based on the test
data of the 10 trials. Additionally, the learning rate @ for the improved online algorithm is set to be 0.01 when learn-
ing with all the data sets.

4.2. Results and Discussions

We apply the traditional Bayesian classifier (offline BC learning) and the two online learning algorithms (online
BC learning and improved online BC learning) to the eight benchmark data sets. The mean and variance of accuracy
obtained by the three algorithms in the 10-fold cross-validation are shown in Table 2. It can be seen from the table
that the online BC learning algorithm always has the same results as the offline BC learning algorithm on all the eight
data sets. This is fully consistent with our theoretic recognition that, the online BC learning algorithm is equivalent to
the offline learning counterpart which uses the entire data stream for once. In the comparison of the two online algo-
rithms, we find that the improved online BC learning algorithm performs similarly as well as the online BC learning
algorithm and, on the Australian data set, performs even slightly better. This is an interesting observation given that
the used data sets are static containing no drifts inside. This indicates that, although proposed for nonstationary
streams, the improved online BC learning algorithm can work well in stationary environments. The reason is that, if
the data stream is time invariant, the new samples will still follow the current data distribution that has been learned
so far. Therefore, increasing the influence of recent samples, as implemented in the improved online BC algorithm,
will not lead to significant changes in the learning outcomes.

Table2 Test accuracy in 10-fold cross validations.

Datasets Offline BC learning Online BC learning Improved online BC learning

Mean Variance Mean Variance Mean Variance
Monk-2 0.6668 0.0056 0.6668 0.0056 0.6529 0.0065
Sonar 0.6824 0.0175 0.6824 0.0175 0.6343 0.013
Wine 0.9722 0.0014 0.9722 0.0014 0.9611 0.0013
Titanic 0.7733 0.0006 0.7733 0.0006 0.7733 0.0006
Heart 0.8333 0.0061 0.8333 0.0061 0.8222 0.0063
Pima 0.7579 0.0013 0.7579 0.0013 0.7488 0.0015
Balance 0.9072 0.0006 0.9072 0.0006 0.8912 0.0011
Australian 0.7928 0.0027 0.7928 0.0027 0.7986 0.0026

It is also worthy to note that the Bayesian classifier parameters are always available when our online learning
algorithm is applied to a data stream. This implies that the classifier can be applied to classify new instances while
being updated in the online learning process. Definitely, the model performance in classification will evolve with time
when more and more training examples arrive. When the online BC learning algorithm is executed, Figure 1 shows
how the performance (accuracy on test data) of the Bayesian classifier changes with the proportion of processed
training samples. We can see from the figure that the model accuracy generally has a trend to increase when more
examples are incorporated into the model.
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Figure 1. Evolution of test accuracy on Monk-2 data set with online BC learning

To evaluate the performance of the improved online learning algorithm in nonstationary environments, we cre-
ate partially synthetic data by twisting data from the Pirma data set. More concretely, we reverse the labels of exam-
ples in the second half of the training streams to make a sharp concept drift. At the same time, we obtain the twisted
test data by reversing the labels of examples of the original test data. The twisted test data is used to examine the
accuracy of a model after the occurrence of the concept drift.

We apply both the online BC learning and improved online BC learning algorithms to the twisted training data
streams, and also compare the resultant models on the test data. The original test data is used when learning is per-
formed with the first half of the training streams, and the twisted test data is used when the learning has progressed
with more than half of the training streams. The evolving performance of both models (from online BC learning and
improved online BC learning algorithms) is shown in Figure 2 for comparison. We can see from the figure that both
models have sharp degradation in test accuracy after the drift occurs in the data stream, and the model from the
improved online BC learning manages to recover more quickly. This is attributed to the introduction of the learning
rate to the improved online learning rules, and such rules put more effects on the recent samples in model update so
that the model is able to adapt faster to the concept drift.
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Figure 2. Comparing two online learning algorithms in concept drift

5. Conclusion

Data in continuous flow makes the traditional offline and batch learning modes infeasible. This paper has inves-
tigated new online learning methods to learn Bayesian classifiers with data streams in an online setting. The main
contribution of our work has been highlighted in two-folds. First, we have presented the online learning algorithm for
recursive Bayesian classifiers which have equivalent implementation procedures with the offline learning counterpart.
This means that, after executing the online learning algorithm with full streams, we obtain the same model parame-
ters as those of the offline learning counterpart. In an online incremental case, this is beneficial to offer the opportu-
nity of solving big data learning problems to achieve higher computation and space efficiency. Second, we have pro-
posed an improved online learning algorithm to tackle possible concept drifts in data streams. Interestingly, this
improved algorithm not only contributes to faster model adaptation in nonstationary environments, but also works
well in situations where no obvious drifts are observed from streams.

The proposed work has strong relevance to intelligent agents that interact with the environment of a “learning
and prediction” cycle. Whenever a piece of new experience is obtained, our online learning algorithm can be applied
to update the Bayesian classifier parameters by using the collected experience as the training example. Subsequently,
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the updated classifier has been used to predict the class of the next new instance with augmented knowledge. As to
the potential applications, we envision an autonomous vehicle that needs to learn to predict the intention of other traf-
fic entities in the surroundings. When movement observations of traffic entities are continuously acquired with time,
this paper has provided a new method to build and update the Bayesian classifier (as the prediction model) in a life-
long learning manner.
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