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Abstract: The deep learning methods achieve good results in the semantic segmentation and classifica-
tion of the 3D point clouds. The popular convolutional neural networks illustrate the importance of using
the neighboring information of the points. Searching the neighboring points is an important process that
can get the context information of each point. The K-nearest neighbor (KNN) search and ball query
methods are usually used to find the neighboring points, but a long time is required to construct the KD-
tree and calculate the Euclidean distance. In this work, we introduce a fast approach (called the voxel
search) to finding the neighbors, where the key is to use the voxel coordinates to search the neighbors
directly. However, it is difficult to apply this method directly to the general network structure such as the
U-net. In order to improve its applicability, the corresponding up-sampling and down-sampling methods
are proposed. Additionally, we propose a fast search structure network (FSS-net) which consists of the
feature extraction layer and the sampling layer. In order to demonstrate the effectiveness of the FSS-net,
we conduct experiments on a single object in both indoor and outdoor environments. The speed of the
voxel search approach is compared with that of the KNN and ball query. The experimental results show
that our method is faster and can be directly applied to any point-based deep learning networks.
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1. Introduction

Semantic segmentation of the environment has been one of the most fundamental tasks in autonomous robotic
systems, e.g. the mobile robots that sweep the floor, the humanoid robots that serve food in the restaurant, or the
quadcopters that map and inspect an industrial factory. 3D deep learning networks have received increasing attention
in these fields. In this paper, we aim to propose an approach to accelerating the network.

As for the 3D point clouds collected by the light detection and ranging (LiDAR), they are typically unordered,
unstructured, and irregularly sampled. The PointNet [1] is the pioneering work that used the per-point multi-layer
perception (MLP) to extract point features, and the symmetric function to extract the global feature, where the local
context modeling capability was not discussed. Several point-based methods have been proposed, see [1—14]. From
the perspective of traditional convolutional neural networks (CNNs), the shape information and semantic information
of points are affected by the information of the surrounding points, and it is important to exploit the local structure.
The above work was further extended to the PointNet++ [9]. For images, CNNs can easily obtain the neighboring
points through the pixel coordinates, while for the point clouds, the neighboring points are unordered, unsampled, and
unstructured. Therefore, it is impossible to directly apply CNNss to get local information (Figure 1).
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Figure 1. Fast search. We voxelize all points (blue) and search neighbors (green) of a center point (red). In our
method, we can quickly find neighboring points.
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The PointNet++ [9] uses the farthest point sampling (FPS) [15] method to sample points of the entire point
clouds. The principle of the FPS is to pick the points that maximize the distance to the selected points. Then, a radius-
based ball query method is used to find the neighboring points, and a hierarchical feature learning framework is used
to extract the features.

Note that calculating the Euclidean distance between points and sorting them according to the distance have the
computation cost of O(N?). Ref. [8,12,16] used the method of establishing a KD-tree to search for neighboring
points, which is more efficient than the method of calculating the Euclidean distance. The method of using the KD-
tree has the computation cost of O(NlogN). In order to reduce the time cost, the author in [12] compared the FPS
method with the inverse density importance sampling (IDIS) method, and proposed a random sampling method. In
the process of extracting local features, the KD-tree of all points is used to obtain a fixed number of neighboring
points around each down-sampling point. Inspired by image-based convolution, ref. [8] used a set of kernel points to
define the area where each kernel weight was applied. When extracting the local features, it is necessary to query the
neighboring points within a fixed range of the point. To search the neighbor, the KD-tree is also established for the
overall point clouds.

In this paper, we propose an effective method of searching the neighboring points, where there is no need to
construct the data structure, like the KD-tree. The key of our method is to create several index arrays to achieve effi-
cient search. However, it is not applicable to a large-scale environment. We analyze the reasons and propose an
improved method. In our method, we define the basic unit space and the sample space. For the basic unit space, we
establish the mapping relationship between points and grids, and then process the quick search with the help of the
coordinate information. A sample space is composed of 27 basic unit grids. To maintain the 3D geometric informa-
tion as much as possible, we adopt a uniform sampling method, which makes the number of input points to be vari-
able. Then, we design a complement strategy. Finally, we design the up-sampling strategy to adapt to the encoder-
decoder network structure. For the overall pipeline, we follow the network structure of the RandLA-net [12] and use
the feature extraction modules. In Section 3, the methods are introduced in detail.

To prove the efficiency of our proposed search method, we directly compare it with the ball query and KNN. It
can be seen that our search method has less time and memory costs. To prove the universality and ability of the FSS-
net, we conduct tests on three kinds of datasets: the single object, indoor environment, and outdoor environment. The
details of the experiment are introduced in Section 4.

Our main contributions are summarized as follows:

* We propose a fast method of searching neighboring points. In order to improve the universality of the
voxel search (VS), we design a new structure that can be embedded in any point-based method.

» We provide extensive experiments on the task of semantic segmentation and classification to prove the
ability of the FSS-net.

2. Related Work

2.1. Voxel-based Method

The early voxel-based method [17,18] converted the input points into voxels and applied vanilla 3D convolu-
tion. The OctNet [19] proposed a 3D deep convolutional network of high resolution, exploited the sparsity of the
point clouds, and built a new data structure. By using a set of unbalanced octrees where each leaf node stores a
pooled feature representation, the OctNet partitions the point clouds hierarchically and achieves the deeper networks
without compromising resolution. In order to adapt to input scenes of various scales, the work in [20] transformed the
scene into certain organized internal representation that can be processed via convolution. The VoxelNet [21] is a 3D
detection framework that learns to predict accurate 3D bounding boxes, where a voxel feature encoding (VFE) layer
was proposed to learn complex features for local 3D shape information. This work benefits both from the sparse point
structure and efficient parallel processing of the voxel grid. Instead of using the spherical of bird’s-eye-view projec-
tion, the PolarNet [22] proposed the polar representation which can balance the points in a polar coordinate system.
The PolarNet also designs a special CNN to convolve continuously on the polar grid. The work in [23] predicted the
significance of each local point feature based on the point context, and focused on the task-relevant feature when
aggregating local features. In detail, the local features were taken and an attention map was proposed that estimates a
weight for each point based on the contextual information. Based on the Minkowski engine [24], 2-S3Net [25] pre-
sented a novel multibranch attentive feature selection module where the feature map was re-weighted in the decoder.
The VoxSegNet [26] proposed a network that could extract discriminative features of encoding details from 3D voxel
data under limited resolution, and designed a spatial dense extraction (SDE) module and an attention feature aggrega-
tion (AFA) module for volumetric object semantic segmentation. Although efficient in data structuring, the voxel-
based methods are of low accuracy when resolution is reduced.
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2.2. Point-Based Method

The PointNet [1] is the first work to operate on points through the MLP network. Ref. [2—6, 9] learned to
extract the local features to enhance the segmentation results. CKConv [7] proposed a spatial attention module to pro-
vide comprehensive structure awareness within the local point set, where the representative features were produced.
KPConv [8] designed novel point convolution based on the spatial kernel which is more flexible than the fixed grid
convolution. In [10], the authors proposed a semantic-instance segmentation method that jointly performs the tasks
via a novel multi-task pointwise network and a multi-value conditional random field model. The RandLLA-Net [12]
used an efficient and lightweight neural architecture to recognize the point cloud faster. To overcome the problems
caused by random sampling, the local spatial encoding (LocSE) and attentive pooling (AP) were embedded into the
structure of the network to enhance the local features. For the point-based methods, the cost of data structuring
becomes the performance bottleneck of large-scale point clouds.

2.3. Fusion Method

Ref. [27,28] paid attention to the point-voxel interaction MLP, and aggregated features among neighboring
voxels and corresponding points. The RPVNet [29] proposed a range-point-voxel fusion framework, and designed an
efficient interaction mechanism by utilizing hash mapping. In the outdoor environment, the density is varying. Moti-
vated by this investigation, the work in [30] proposed a framework for the outdoor LiDAR segmentation, where
cylindrical partition and asymmetrical 3D convolution networks were designed to extract the 3D topology and geo-
metric relations. However, the above methods not only increase the memory, but also reduce efficiency.

2.4. Strategies for Searching Neighbors

Ref. [9,31-33] used FPS [15] to search the neighbors for each point. FPS picks the points that maximize the
distance to the selected points. This method has the computation cost of O(N?). Ref. [8,12,34] built the KD-tree to
search neighbors in the efficient data structure. This method has the computation cost of O(NlogN). RPS in [12] is
the fastest strategy to sample points, but cannot work without the help of the KD-tree. Our method can search the
neighbors with the computation cost of O(NV) and keep the distribution of points uniform.

In this paper, we propose a fast method of searching neighboring points and design a new structure that can be
embedded in any point-based method.

3. Methods

The point cloud, captured by LiDAR, is a set of points with irregular structures, unordered arrangement, and
sparse distributions. The input is the coordinate of each point € R¥*® and the corresponding features ¥ € RV*P,
where D is the dimension of the point feature. The standard convolution operation on an arbitrary point x can be for-
mulated as follows:

(F xg)(x) = q;vg(y,-—X)-f(yi) 1

where g is the kernel function, y; is the neighboring point of x, f (y;) is the feature of y;, *.” denotes the dot product,
and N, is the set of neighbor points of x.

Ne={yi e Pllly -l <r} 2

For the point cloud, the kernel function should be able to handle any points in the continuous space. Therefore,
the kernel function is designed to get the relationship between points. Generally, the MLP is employed for the kernel
function which takes the positions of neighbors (that center on x) as inputs.

Since the point cloud is unordered, it is difficult to find NV, of x. As it is shown in the previous work, there are
two main methods that can be used to obtain the neighbors. One method is to construct a KD-tree for the point
clouds, and the other method is to directly calculate and sort the distance between points. We propose a method to
speed up this process which has the computation cost of O(N). As the method of searching for neighboring points is
changed, we correspondingly propose new methods for up-sampling points and down-sampling points.

Similar to the network structure used in the existing work, our network structure includes the local feature
extraction layers and sampling layers.

3.1. Feature Extraction Layer

Algorithm 1 and Figure 2 show the process of searching neighbors. We aim to find k£ neighboring points for
each point. We set grid_size as the length of the grid that divides the point cloud. We define the space of length
grid_size as the basic unit space. There is, at most, one point in the basic unit space. The size of the sampling space
is set as grid_size = 3", where n represents the number of down-sampling. For the sake of clarity, we set n = 1. When
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we sample points, we hope to find, at most, one point in each non-empty sampling space.

Algorithm 1 Search Neighbors

Input: Coordinates P € RV

Output: Indexes of the neighbors index € RN
1: Initialize flag array,sample_array,ret_array;
2:forpe®P do

3:  Indexp « Equation_3(p);

4: Update flag array;

5: Indexs < Equation 4(p);

6: Update sample_array;

7: end for

8:forpeP do

9:  Indexs « Equation_4(p);

10:  ret_array(p) < sample_array(Indexs);
11: end for

12: for pe P do

13: if ret_array(p) < k then

14: Extend ret_array(p) Until to k;

15: endif

16: end for

17: Return ret array;

Search neighboring Randomly
grids expand points
=)
]
I
N“*D N*D

Figure 2. Search Neighbors (SN). On the left, the blue points are distributed around the central red point. The green
points which are in the same sampling space as the red point are picked as the neighbors. On the right, we randomly
pick the neighbors to supplement.

When the program is initialized, flag array is defined to mark whether there is a point in each grid. If there is
a point in this grid, we set the corresponding position in the flag array as 1; otherwise, we set it as 0.
sample_array is declared to store the distribution of points in the sample space. In the following processing, we
consider the unit grid in the sampling space as a local area and extract the local features of points. ret_array is the
return value, which is used to store the indexes of neighbors.

For the i" point, its coordinates are x;, y;, z;, and the index in the basic unit space is x;, y;, 7, which are defined
as follows:

Xp = X;/grid_size

Yy = yi/grid_size 3)
zp = z;/grid_size

We set the corresponding position in the flag array as 1 according to Equation (3). With the help of this array,
we can ensure that only one point in each grid is accessed. Then, we calculate the position of the point in the sam-
pling space, which is defined in Equation (4).

Xy =X;/ (grid_size * 3)
ys = yi/ (grid_sizex3) (4)
Zs = 2i/ (grid_size * 3)

We add the index of this point to the sample_array according to x;, y,, z;. Then, we calculate the position in
the sampling space for each point again, and set points in this position as the neighbors. Note that the number of
neighbors of each point is different, but fixed. We unify the neighbor numbers of all points. For each point, we regard
itself as a neighboring point. Therefore, every point has at least one neighbor. For points whose number of neighbors
does not meet k, we assume that the number of existing neighbors is x, and then randomly select k — x points from
the existing neighboring points.

Finally, we get ret_array which contains the neighbor indexes of each point. In the neural network, the neigh-
boring points corresponding to each point can be obtained directly with the help of ret_array.
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There is a very important part in this algorithm. We define many dynamic arrays to calculate ret_array. For the
arrays with large sizes, it takes a lot of time to initialize them. Different from the general initialization methods of
dynamic arrays, we only declare the starting address and the size of arrays in the program, which results in the ran-
domness of the initial data in the arrays. However, due to the characteristics of Algorithm 1, the randomness of the
data does not affect the accuracy of the algorithm. In addition, to improve the execution speed of the program, we use
the g++ compiler to generate a static library which can be found in Python.

We use two basic structures from the RandLA-Net: the local spatial encoding and attentive pooling structures.

1) Local Spatial Encoding (LSE): For the i” point and its k neighbors P,= {p}, p?--- p¥}, we encode the rela-
tive point position as follows:

= piepie (pi-ph) o|pi-pt @elhrl ©)

where p; and p¥ are the coordinates of points, & is the concatenation operation, and ||-|| calculates the Euclidean dis-
tance between the k™ neighbor and the center point. We add a negative exponential term of the distance from the
neighbors to the center point. Compared to distant neighbors, we expect to get richer information from close neigh-
bors.

For each neighbor p¥, we concatenate its encoded relative point position MLP(r¥) with its corresponding point
feature f¥ to obtain an augmented feature vector f,-k . For LSE, it outputs the neighboring point features
Ei={f', f2,--- f} of the center point p;.

2) Attentive Pooling (AP): Given the features from £, this module uses a function g() that consists of a shared
MLP followed by softmax, and is defined as follows:

sk=g(ff.w) (©6)

where w is the learnable weights, and sf is regarded as a soft mask which can select the important features. Then,
these features are summed as follows:

fi= kz () ™

At last, we use the residual block to connect these two modules and get the local features of the input points
from neighboring points.
3.2. Sampling Layer

The down-sampling process corresponds to Figure 3, and the up-sampling process corresponds to Figure 4.
Algorithm 2 includes both of them.

. . Randomly
Uniform sampling e
) =
]
—
M) Ne*1 N*1

Figure 3. Uniform Down-sampling(UD). We only randomly pick one point as the down-sampling point in a sample

space. Then we randomly expand down-sampling points to supplement.

Search neighboring Randomly pick an
grids up_sampling point

Figure 4. Up-Sampling(US). Similar to SN, the green points are the neighbors of the red point. We randomly select a
yellow point from green points as the up-sampling point.
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Algorithm 2 Down-sampling and Up-sampling
Input: Coordinates P € RV3

Output: Indexes of down-sampling and up-sampling
1: Initialize sub_index,ds neigh,up_index;
2:forpeP do

3: Indexs < Equation 4(p);

4: Update sample_array;

5. ifvisit(Indexg) is 0 then
6: sub_index(p) « Indexs;
7 Update visit(Indexs);

8: endif

9: end for

10: if sub_index <= N’ then

11: Extend sub_index Until to N’;

12: end if

13: for pe P do

14:  Indexs « Equation 4(p);

15:  up_index(p) < sample_array(Indexs);
16: end for

17: for p € sub_index do

18: Indexs < Equation_4(p);

19:  ds_neigh(p) <« sample _array(Indexs);
20: end for

21: Return sub index,ds neigh,up index;

For the process of down-sampling points, we expect to adopt an average sampling method so that the sampled
points cover all arecas. However, such a method will cause the number of down-sampling points to be variable.
Therefore, it is necessary to adaptively increase the existing points. In the up-sampling process, for each point, we
randomly select a point in the same sample space as the up-sampling point.

We set sub_index with length N’ to save the indexes of the down-sampling points. N’ is the preset number of
down-sampling points. We define ds_neigh of size N’ «k to save the neighbors of the down-sampling points, and
up_index of size N to save the indexes of the up-sampling points.

In Algorithm 2, for each point, we calculate its position in the sample space. If we visit this position for the first
time, we set this point as the down-sampling point of this position and update the access status of this position. Then,
we finish the uniform sampling process and put the indexes of down-sampling points into sub_index. If the size of
sub_index is smaller than N’, we randomly expand the indexes in sub_index until the size is equal to N’; Other-
wise, the input points cannot be uniformly sampled.

In Algorithm 1, we use its coordinates to calculate the position in the sampling space to obtain the neighboring
points of each point. We set all the points at this position as its neighbors. However, this method is not the best.

Similarly, we define the i point and its neighbors as Py= {p}, p?--- p¥}. In the process of searching neighbor-
ing points, we ignore the relative position between p; and P;, which means that p; may be anywhere, e.g. the corner,
edge, and center. This will reduce the ability of the kernel function to extract local features. Therefore, we change the
method of finding neighboring points.

We search the neighboring grids of each point. With the help of the sample array in Algorithm 1, we can get
the distribution of surrounding points. Then, we set the points centered at this point as the neighbors. This process is
shown in Figure 5.

Search neighboring Randomly
grids expand points
= -
i
N“*D N*D

Figure 5. Search Neighbors (SN). On the left, the blue points are distributed around the central red point. The green
points around the red point are picked as the neighbors. On the right, we randomly pick the neighbors to supplement,
where N*D represent the shape of point features.

3.3. Limitations of VS
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In VS, we define several search arrays based on the entire space, where arrays defined in C++ are limited in
size. Each array cannot be larger than Ox7fffffff bytes. This limits the size of the point cloud space. In the
SemanticKITTI dataset, points in the autonomous driving environment are sparsely distributed. We set the network
input point as 40960. If the space represented by these points is too large, our algorithm will overflow. Thus, we use a
hash table (instead of an array) to store each coordinate, which makes our method still effective in case of large
spaces.

In a sparse environment, sub_index in Algorithm 2 may be greater than N’. This indicates that the number of
the sampling spaces is larger than the preset sampling points and there are some redundant sampling spaces, which
leads to the failure of uniform sampling and up-sampling. Therefore, we divide the sampling space into two parts.
The first part consists of the pre-sampled points of size N’, which is defined as S 1. The second part consists of the
redundant points of size N’ — sub_sample, which is defined as S2. For each point in S 2, we find the closest point in
S 1. Then, we map the up-sampling points of this sampling space in S 2 to the point in S 1, see Figure 6.

Base space Sample space
g_’g 0
[ [
L L JC) 000
o®®
CHECC

Figure 6. The left figure is the basic unit space, and the right figure is the sampling space. Each sample grid contains
multiple basic grids. We perform uniform sampling in the base unit space. In the sampling space, the red points belong
to s1 and the black points belong to s2. For each point in $2, we find the nearest point in 1, and then the upsampled
points of the black point are mapped to s 1.

For the decoding part of the neural network, we concatenate the corresponding low-level features with high-
level features. The whole network structure is shown in Figure 7. The EL consists of the methods of searching neigh-
bors and uniform down-sampling, and the modules of the LSE and AP. The DL consists of the US method and con-
catenates the features from the EL.

T T Tt T TS T T < W |
1 1
\
=) ) =) =) S
Encoder  Sample Upsample  MLP
(a) Encoder layer (b) Decoder layer
L |
[ i 1
| 1 1 1
! 1 1 1 1
5 5 5 5 5 & 5 5 o

N*3 N*16 N*64 N*128 N*256 N*512 N*256 N*128 N*64 N*16 N*class

(c) Network structure

Figure 7. (a) is defined as the encoder layer (EL), (b) is defined as the decoder layer (DL), and (c) is the network
structure.

For the total objective of our method, we only use the weighted cross-entropy loss to supervise the training,
which can be formulated as

L(y,9)=-y-log(® /B ®)

where 8 is defined as the percentage of points in a certain category to the total points, ¥ is the predicted value by the
prediction model, and y is the true value.
For the objects with a small number of points, the loss function can draw higher attention through 3.

4. Experiments

In the experiment, we use three datasets, i.e. the ModelNet40, S3DIS, and SemanticKITTL
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The ModelNet40 contains 9843 train models and 2468 test models. We first sample 1024 points (from the orig-
inal 10000 points) as inputs and add normal information. We use voxel sampling [8,12] in the preprocessing sam-
pling and calculate the index of points without adding any complexity. For each point, the final input contains coor-
dinates, normal and indexes. For the indexes, they do not participate in the training process, and only play a role in
the process of searching neighbors.

The S3DIS dataset [35] consists of 271 rooms that belong to 6 large areas. Each point is annotated with one
semantic label from 13 classes. We follow the sampling strategy used in [12] to prepare the training data. The differ-
ence is that we add indexes information to each point which is represented by a 9D vector combining the XYZ, RGB,
and indexes.

The SemanticKITTI dataset [36] consists of 21 sequences and 28 categories of objects. We train the sequences
00~07 and 09~10, and validate the sequence 08. We sample the SemanticKITTTI like the S3DIS in the preprocessing
and add the indexes.

We divide the experiments into two parts, where the first part proves the efficiency of the search method and
the second part proves the ability of our network. Note that the method that exploits the search array is defined as
method A, and the method that uses the hash table is defined as method B. All experiments are conducted on an Intel
i7-10700F CPU and an NVIDIA RTX1070 GPU.

4.1. The Efficiency of Our Search Methods

We compare our search method with the ball query and KNN methods.

The time comparison results are shown in Figure 8. For the ball query method, we combine it with FPS. For the
KNN search, we combine it with the random sample. In method A, we use the SN in Figure 5, the US in Figure 4,
and the DS in Figure 3. Method B is similar to method A. The difference is that we use a hash table instead of a
search array. The up-sampling strategy is also replaced by the method described in Figure 6. For the test dataset, we
test on the ModelNet40. We take a different number of points as inputs and set the sampling ratio as 10. Since the
performance of the network is not considered in this experiment, the number of sampling layers is set as 1.

Method A

Method B

L KNN
—— Ball query

Time/s
S = N W A W N 0 0

0 10 20 30 40
Number of points/k

Figure 8. Time comparison experiment of the VS, ball query, and KNN on ModelNet40.

It can be seen that our method is 350 times faster than the ball query method and nearly 10 times faster than the
KNN method. The more input points, the more obvious the effect of our method. Method A and method B show
similar performance. In addition, the KNN method outperforms the ball query method, and has the same memory
consumption as our methods.

In order to test the efficiency of our search method on a large scale environment, we compare method B with
the KNN on SemanticKITTI. The result is shown in Table 1. We set the number of input points to be 40960, the
number of layer to be 4, and the sample ratio to be 4. It can be seen that method B is 3 times better than the KNN.
Here, we analyze the ball query method, KD-tree method and our proposed method. For the ball query method, it
calculates the Fuclidean distances between every two points in the whole point clouds, where the distances are sorted
by size and the computational complexity is O(N?). For the KD-tree, it is similar to a high dimensional binary search
tree. The time complexity of building a KD-tree is O(N * logN). In the worst case, the time complexity of searching
neighbors is O(logN). For our method, we encode the coordinates first, and then use the hash table for query neigh-
bors. The time complexity of the query is O(1). To sum up, our search method shows certain advantages in both the-
ory and experiment.

Table1 Time comparison experiment of method B and the KNN on SemanticKITTI
VS KNN

time consumption(s) 0.065 0.17

4.2. The Ability of FSS-Net
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In this section, we test the FSS-net on the ModelNet40, S3DIS, and SemanticKITTI. Due to the limited usage
scenarios of method A, we only insert method B into the FSS-net.

4.2.1. ModelNet40

The experiment based on the ModelNet40 is shown in Table 2, where the overall accuracy (OA, %) and mean
of class-wise accuracy (mAcc, %) are reported. We set the batch size to be 12 and the number of input points to be
5120. The point cloud is downsampled with a two-fold decimation ratio.

Table2 Object classification results on ModelNet40

Methods OA(%) mAcc(%)

SO-NET [16] 90.9 87.3
KCNet [37] 91.0 -

PointCNN [31] 92.2 88.1
PointNet [1] 89.2 86.2
PointNet++ [9] 91.9 -

CKConv [7] 93.2 90.4
PointNet++(without normal [9]) 90.7 -

Our sampling method + PointNet++ 89.5 85.9
FSS-Net 91.2 87.0
FSS-Net(without normal) 90.3 86.5

For the accuracy of the classification experience, our proposed method is not the best. We think the reason is
that, the number of neighboring points obtained by the ball query or KNN is sufficient, but the searching range of our
method is the closest grids. We cannot get enough neighbors when the distribution of points is sparse. Although we
use the method of randomly expanding the neighboring points, it still cannot compensate for the lack of neighbors.

Theoretically, VSd can be applied to any point-based deep learning network, and thus it is applied to the Point-
Net++. Although the accuracy is sacrificed, the efficiency is improved according to the experiment in Figure 6.

Based on ModelNet40, the effect of changing grid sizes on the search method is analyzed in Table 4 and
Figure 9. In Figure 9, we count the distribution of the number of neighbors with different grid sizes. The grid size is
defined as the size of voxel sampling used in preprocessing. The abscissa indicates the number of neighboring points.
The ordinate represents the percentage of points (with different numbers of neighbors) to the current point cloud. The
distribution of neighboring points will change with the grid size. Classification results on different grid sizes are
shown in Table 4. If the grid size is too small, then the number of neighboring points is not enough. If the grid size is
too large, information loss may occur. As such, it is necessary to choose an appropriate sampling size.
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Figure 9. We set the max number of neighbors as 20 and count the distribution of the number of neighbors with dif-
ferent grid sizes.

4.2.2.S3DIS

The results of semantic segmentation are shown in Table 3. The overall accuracy (OA, %) and mean of class-
wise accuracy (mAcc, %) are reported. We set the batch size to be 3, the number of input points to be 40960, and the
network layer to be 5. The point cloud is sampled at a 4-fold sampling ratio.
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Table3 Semantic segmentation results on S3DIS

Methods OA(%) mloU(%) ceil. floor wall beam col. wind. door chair table book. sofa board clut.
Pointnet [1] - 41.1 88.8 973 69.8 0.1 39 463 108 526 589 403 59 264 332

Segcloud [38] - 48.9 90.1 96.1 699 0 184 384 231 759 704 584 409 13 416
Eff-conv [39] - 48.9 90.1 96.1 699 0 184 384 231 759 704 584 409 13 416
pointCNN [31] 85.9 57.3 923 982 794 0 176 228 621 744 80.6 31.7 66.7 62.1 56.7
Pointweb [40] 87 60.3 92 985 794 0 21.1  59.7 348 763 883 469 693 649 525
Fpconv [41] 88.3 62.8 946 985 809 0 19.1 60.1 489 80.6 88 532 684 682 549
Kpconv [&] - 67.1 928 973 824 0 23.9 58 69 91 815 753 754 66.7 589
Ckconv [7] 89.5 67.1 94.1 986 841 0.1 356 586 643 797 892 608 705 812 557
FSS-Net 84.9 55.08 90.32 97.18 769 0 1524 5699 269 81.65 72 6503 30.8 57.81 452

Table4 Classification results on ModelNet40 with different grid sizes

Grid size OA(%) mAcc(%)
0.2%0.2%0.2 89.0 85.0
0.3*%0.3*%0.3 91.2 87.0
0.4*0.4*0.4 90.5 86.8

Based on S3DIS, we compare the methods of searching neighbors proposed in Figure 2 with the improved
method proposed in Figure 5, and the comparative results are shown in Table 5. The overall accuracy (OA, %) and
mean of instance-wise (mloU, %) are reported. It can be seen that the results of the improved method outperform that
of the searching method when the neighboring points are evenly distributed.

Table5 Semantic segmentation results on S3DIS with different methods of searching neighbors

Sampling method OA(%) mloU(%)
Figure 2 78.1 44.0
Figure 5 84.9 55.1

In the training process, we add weights to the loss to improve the classification results of objects with a small
number of points. The result is shown in Table 8. To highlight the efficiency of the local spatial encoding module, we
provide the results of the ablation study shown in Table 7. To simplify the representation, we define (p; — p¥) as pf‘
Different from the general local spatial module, we add a negative exponential term (of the distance from the neigh-
bors) to the center point. We expect the input value of the close points to be larger, and the value of the far points to
be smaller. This exponential term can satisfy the above requirements and can also ensure that the inputs are dis-
tributed in the 0-1 interval. Meanwhile, the exponential term does not affect the speed of convergence or cause the
data scale problem. It can be seen from the experimental results that the added exponential term is effective.

4.2.3. SemanticKITTI

We set the batch size to be 2, the number of input points to be 45056, and the network layer to be 4. The point
cloud is sampled at a 4-fold sampling ratio. The segmentation results are shown in Table 6. In the experiment, it can
be seen that our method has achieved relatively poor performance, where the performance of segmentation for each
category is poor. For the data of KITTI, it belongs to the large-scaled outdoor sparse point clouds. In the process of
obtaining local features, the coverage of searching neighbors is too small to extract rich local features. It is an impor-
tant factor that our approach is not suitable for such sparse point clouds. In future work, we will consider more effi-
cient local feature extraction methods.
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5. Limitations

In the domain of point-based semantic segmentation networks, we propose a novel approach to searching
neighboring points, which can achieve better searching performance than the KNN approach. However, as shown in
the above experiment, it is difficult to achieve better segmentation performance. The main reason is that the search-
ing coverage is too small which only covers the adjacent voxel grids, while for the KNN, its searching range is the
entire point cloud space, where richer local features can be extracted. Moreover, the number of input points at our
local feature extraction module is fixed. In our network, under the condition of insufficient neighboring points, we
simply copy the neighbors that have been found. The local feature extraction method mentioned in our paper may not
be the most efficient for such inputs. In the future work, we will look for more efficient feature extraction methods.

6. Conclusion

In this paper, the FSS-net has been proposed which includes a fast search method for 3D point clouds and the
corresponding up-sampling and down-sampling method. These methods take less time and less memory. Moreover,
they can be added to other point-based deep learning networks. We have added a new exponential term to the gen-
eral local space encoding module to improve the accuracy. In the experiment, we have used three datasets to conduct
experiments on search efficiency, classification, and semantic segmentation. From the experimental results, we have
seen that our network architecture does not achieve the most advanced performance.

Our feature extraction mainly uses the attention mechanism. In the future, we want to introduce more powerful
feature extraction modules, such as the transformer, to enhance network performance. In particular, the transformer
model, which uses self-attention layers, has shown remarkable performance in NLP tasks. By introducing the trans-
former architecture into our feature extraction module, we believe that we can further improve the network's ability to
capture complex patterns and relationships in the data. In addition to improving the feature extraction module, we
also plan to design a more effective loss function for the network. The loss function plays a crucial role in guiding the
network’s learning process and improving its performance. By designing a more effective loss function that is tai-
lored to the specific task and data, we can further enhance the network's learning and generalization ability.

Overall, we believe that by incorporating more powerful feature extraction modules and designing better loss
functions, we can continue to push the boundaries of our network and achieve even better performance in a wide
range of tasks.
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