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Abstract: Non-Gaussian randomness widely exists in complex dynamical systems, in which the tradi-
tional mean-variance index cannot fully reflect the systematic characteristics. To improve the perfor-
mance of control design subjected to non-Gaussian noises, stochastic distribution control (SDC) theory
was proposed in the 1990s, where the output probability density function (PDF) has been investigated as
an additional system variable. Following this framework, SDC has been extended to other research sub-
jects in control systems such as filter design, fault diagnosis, and so on. It shows that SDC supplies an
important solution to enhance the accuracy of system design, which is further beneficial to almost all the
topics subject to non-Gaussian randomness. Meanwhile, the theoretical results of the SDC have been
applied to several practical industrial applications. As data science raises based on the development of
industrial artificial intelligence, SDC has been further developed recently focusing on data-driven design
and multi-agent systems. To explore the new challenges with the evolution of SDC, e.g. unknown sys-
tem models, unknown noise distributions, strong non-stationary transient dynamics, stability analysis and
industrial applications, this survey summarises the most recent published results in the last 5 years of
SDC work in terms of modelling, control, filtering, fault diagnosis, and industrial applications. Based on
the technical analysis, potential future work is discussed in the end.
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1. Introduction

Stochastic systems theory is an essential topic in system science regarding modelling, control, approximation,
optimisation, and others. Traditionally, the Gaussian distribution is pre-assumed to simplify the formulation and it is
suitable for most of the practical cases due to the central-limit theory. As a result, most of the research work focused
on the mean-value and the variance control, where the two parameters are enough to characterise the Gaussian distri-
bution properly. However, the Gaussian distribution assumption will fail for the strong nonlinear systems as the non-
linearities will change the shape of the distribution into a non-Gaussian format. Nowadays, the non-Gaussian ran-
domness becomes visible in many processes due to the increase in systematic complexity. In this situation, the mean-
value and the variance are no longer capable to represent the full probabilistic information. To deal with the non-
Gaussian properties, it is significant to investigate non-Gaussian stochastic systems theory and its applications.

The stochastic distribution control was presented to address the non-Gaussian distribution regulation for
dynamic systems. In particular, the B-spline Neural Networks have been used to re-present the output probability
density function which means that the full probabilistic information of the system output can be described and then
adjusted driven by the designed control input. Following this framework, various types of neural networks have been
adopted to re-express the dynamics of the system variables and a series of results have been developed regarding
control, filter, fault diagnosis and industrial applications. Some of the milestones have been reviewed and sum-
marised in published survey reports [ 1, 2], which are omitted in this study.

Data science is becoming more relevant in computer science and engineering as a result of the development of
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machine learning. In other words, many engineering systems have been re-analysed from the point of the view of
data. It implies that the data-driven design strongly influences the stochastic systems theory including almost all the
aspects. At the same time, new challenges appear as the new design objectives of the stochastic systems, where the
results based on the original SDC framework would not be transformed to solve the new problems. In particular, the
main challenges can be summarised as follows.

1. The distribution of random noise is unknown. For some rigid-body motion mechanisms, accurate modelling
can be achieved. Thus, the real-time output probability density function can be formulated using the system model
and the noise distribution. Then, the control design and optimisation for the stochastic distribution are able to be
achieved. However, in practice, it is impossible to model the random noise separately. It means that the noise distri-
bution is unknown for most of the practical applications. To simplify the analysis, the Gaussian assumption is adopted
to be the initial condition of the noise distribution, but this assumption cannot always be satisfied for industrial pro-
cesses.

2. The system model is unknown. As mentioned above, the majority of real-world systems cannot be modelled
accurately. Some systems cannot even acquire the model from the first principles due to the increasing complexity of
system design. In such case, the output probability density function can only be numerically estimated by the col-
lected data, which leads to the function fitting error. It has been shown that the error would affect the performance of
the system design in terms of robustness. Even if the system model can be established by the data, the indirect proba-
bility density function control still suffers from the model fitting error. However, model fitting is out of the scope of
this survey.

3. The transient nonlinear dynamics is not a stationary process. The systems normally contain nonlinear dynam-
ics. Thus, the system probability density function will change within a short time if the system responses are rapid. In
this case, it is difficult to obtain a sufficient amount of data to re-establish the distribution. Alternatively, Monte Carlo
methods can be used to collect the simulated data in parallel. However, the computational workload will increase at
the same time, meanwhile, the accuracy of the system model cannot be guaranteed.

4. Stability analysis is still an open question for data-driven design. Regarding the unknown system model and
the strong transient dynamics, the theoretical stability analysis is a challenge. The existing SDC framework converts
the system dynamics and represents the dynamics using the transformed dynamics of probability density functions.
Thus, the control design is based on the obtained transformed model. In other words, stability is achievable if the
equivalence of the model transformation can be guaranteed. For the closed-loop output stability, it is necessary to
update the theoretical foundation.

5. Industrial applications would be affected by all the aforementioned factors. Basically, the cost and safety of
the system design would be considered as priority. SDC would increase the computational cost, while the modelling
and estimation fitting error would influence the performance of the practical processes. A simplified technical
approach would be beneficial for large-scale industrial applications if the performance guarantee is attainable.

Recently, a lot of scholars made great improvements to address the aforementioned challenges and some of the
results have achieved the design requirements while the problems were partly resolved. In this study, we summarise
the main research work regarding non-Gaussian stochastic systems in the last 5 years and the survey structure is given
in Figure 1. In particular, the stochastic distribution control problem is reviewed in Section 2. Section 3 summarises
the results of minimum entropy systems. In Section 4, non-Gaussian filtering has been considered including the esti-
mation, fault diagnosis, performance evaluation, performance enhancement, etc. And Section 5 indicates the advances
in industrial applications subjected to non-Gaussian randomness. Moreover, the algorithm complexity has been indi-
cated in Section 6. Based upon all these results, Section 7 discusses the potential directions for future work which

concludes this survey.
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Figure 1. Survey structure with the summarised sub-topics.
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2. Probability Density Function Control

SDC can be considered as a type of probability density function regulation problem, shown in Figure 2. Sup-
pose that the desired probability density function is time-invariant and known. Thus, the design objective is to adjust
the system probability density function to track the pre-specified one. It implies that the objective can be achieved
once the distance between the given PDF and the concerned variable’s actual PDF is minimised. Thus, the critical
formulation is to describe the distance as a cost function for controller design. The main challenge has been reflected
in the unknown model of the system and the noise distributions. Data-driven SDC can solve the unknown issues.
However, the estimation of PDF needs extra time, which will affect the stability and the accuracy if the process tran-
sient dynamics are strongly non-linear.

Desired PDF e u y
PDF controller — Investigated processes
PDF Obtain PDFs via data or

analytical model

Figure 2. Block diagram of general probability density function (PDF) control.

2.1. Full Probability Design using Kullback-Leibler (KL) Divergence

To present the difference between the desired PDF and the concerned variable’s PDF, KL divergence can be
selected as a cost function. Thus, the control signal can be evaluated to minimise the formulated KL divergence. Fol-
lowing this framework, Randa Herzallah and Yuyang Zhou have published a series of contributions in recent years.
In particular, the PDF tracking control has been investigated for stochastic systems with input delay in [3, 4]. To
extend this result, the PDF tracking has been achieved for stochastic systems with both input delay and state delay
in [5]. As another benefit of KL divergence, the model constraint has been further released where the multiplicative
noise systems were investigated following this framework [6, 7]. The framework is extended to message passing
algorithm for complex networked systems using the decentralised design [8, 9]. Furthermore, the message passing
control framework was proposed in [10] for a class of stochastic switching systems. For full probability design algo-
rithms, the results focus on the optimisation of the KL-divergence, the system stability and error convergence have
not been theoretically analysed.

2.2. PDF Control with Euclidean Distance

Although the cost function can be formed using KL divergence, it is not a standard metric as it is not symmetry.
Therefore, Euclidean distance can be adopted to characterise the PDFs’ differences directly. In particular, Liping Yin
has developed the PDF-based data-driven operational control framework using Euclidean distance [11]. Moreover,
the Pareto optimisation method was merged into the framework for optimal operational control in [12]. In these
results, the integral of the functions cannot be ignored. To reduce the computational complexity, Hong Wang and
Qichun Zhang present a series of alternative descriptions. For example, [13] presents a vector-based converted dis-
tance metric to achieve data-driven PDF tracking control. Similarly, the data-driven PID controller was obtained
based on the PDF vectorisation in [14]. To further simplify the expression of the distance, a histogram-based pseudo-
state description has been developed using the Monte-Carlo simulation [15]. All the results mentioned in this sub-sec-
tion are given with convergence analysis.

3. Minimum Entropy Optimisaiton

In practice, the desired PDF is not always available, and the main task of the control system is to attenuate the
randomness of the system. Therefore, we can consider the PDF regulation as an optimisation problem. Since a
sharper PDF shape typically equals less randomness, we specifically aim to alter the shape of the actual PDF as
sharply as we can. The conventional method used minimal variance to sharpen the PDF due to the Gaussian assump-
tion. As we previously stated, variance, however, is unable to describe the randomness of non-Gaussian distributions.
For non-Gaussian cases, entropy from information theory is employed as a measurement of randomness. As a result,
minimum entropy control was proposed to replace the minimum variance control for non-Gaussian systems and the

113



1JNDI, 2022, 1(1): 111-119. https:/doi.org/10.53941/ijndi0101010

general framework is shown in Figure 3. The main challenge is similar to the aforementioned challenge for SDC, as
entropy optimisation is an extension of the SDC framework.

Obtain entropy via data
or analytical model

Desired y .
Investigated processes

u

Figure 3. Block diagram of general minimum entropy control.

3.1. Minimum Entropy Control

Based on the kernel density estimation, the entropy of the investigated system variable can be approximated
using the collected data. [16] presents a novel data-driven approach to achieve the minimum entropy using cumulant-
generating function. Similarly, a data-driven minimum entropy control algorithm was brought up by Yunlong
Liu [17] using Taylor’s expansion of the performance criterion. Based on the system model, minimum entropy con-
trol can be achieved using disturbance observer [18]. In addition, the entropy index can be particularly replaced by
various types of entropies, such as (h, phi)-entropy [19], correntropy [20]. Motivated by the information theory, the
performance criterion can also be described by information potential, which can be estimated by data and equivalent
to entropy regarding the randomness attenuation, such as the survival information potential [21]. Technically, the
entropy metric cannot be solely used due to the entropy invariant property of PDF shifting. As a result, the mean-
value is always added to the entropy performance criterion. Using information potential to replace entropy is one of
the solutions to consider the influence of mean-values. Combining the information-theoretic learning technique, the
composite anti-disturbance control was given for non-Gaussian stochastic systems in [22], where the hybrid control
implementation is realised via the batch-to-batch mode through entropy optimisation and a disturbance observer. Note
that all the results mentioned in this sub-section are given with stability analysis.

3.2. Continuous-Time Non-Gaussian Stochastic Systems Design

Most of the existing results focused on the discrete-time model as the data can be collected and considered as a
random sequence, which simplified the controller design procedure. However, the discretisation would lose some
basic information of the investigated systems. In other words, the full information and the stochastic properties should
be described by the continuous-time system model, where the variables are treated as stochastic processes. So far,
only a few results have been developed. For example, [23] presented an output feedback stabilisation problem with
entropy optimisation for the Ito process model while the entropy assignment problem has been solved analytically for
a class of nonlinear continuous-time stochastic systems in [24]. So far, it is still an open question for solving the gen-
eral continuous-time stochastic differential equation and only some special types of equations have been investigated.

4. Filtering and Performance Enhancement

Based on the scheme of minimum entropy, a novel filter design strategy can be obtained by minimising the
entropy value of the estimation error, shown in Figure 4. Note that the error can be produced by both model-based
filter design, data-based filter design and hybrid approach. Once the non-Gaussian filtering is implemented for non-
Gaussian stochastic system, some related topics can be extended following the system monitoring and approximation,
such as fault diagnosis and tolerance, performance evaluation and enhancement. The main challenge of non-Gaus-
sian filtering has been summarised as the unknown noise distributions even if the model is obtained. Data-driven
hybrid mode can re-establish the unknown estimation error dynamics. Similarly, data-based estimation needs extra
time which also affects the stability and the accuracy of the filter design.
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Figure 4. Block diagram of general entropy-based filtering.

4.1. Non-Gaussian Filter Design

Motivated by the minimum entropy optimisation, Lei Guo and his team have developed a series of filtering
algorithms to deal with the estimation problem subjected to non-Gaussian noises. In particular, [25] presented a novel
filtering scheme combining the particle filter and minimum entropy metric. Similarly, combining robust particle fil-
tering, the non-Gaussian filter has been designed for a class of stochastic systems with time-varying model uncer-
tainty and inaccurate noise covariance matrix [26]. Xin Yin developed a neural network based non-Gaussian filtering
algorithm where the estimation error dynamics have been reconstructed for entropy value prediction [27]. In [28], the
state estimation problem was investigated using the backstepping design for continuous-time stochastic systems. In
practice, the Kalman filter is still applied as the most common design tool. Thus, [29] has proposed an approach to
upgrade the Kalman filtering framework with the minimum entropy criterion.

Maximum correntropy-type filtering is another widely used design approach. [30—31] presented a fractional-
order correntropy adaptive filter for a-stable signals. [32] investigated the large-scale integration architecture for frac-
tional-order correntropy adaptive filtering. Combining kernel estimation, the adaptive kernel size problem has been
solved for the Kalman filter with maximum correntropy criterion [33]. In addition, the maximum correntropy crite-
rion can be further generalised which leads to the new results using generalised maximum correntropy-type filtering
design. The generalised maximum correntropy criterion has been adopted to kernel algorithms in [34—35], which can
be potentially extended to data-driven non-Gaussian filtering. [36] further extended the kernel algorithms with vari-
able kernel width. Various constrained generalised maximum correntropy filtering algorithms have been developed
in [37-39]. Robustness as an important property for the filtering problem has been considered in [40—41] to enhance
the performance of generalised maximum correntropy filters. Moreover, generalised maximum correntropy is benefi-
cial to distributed estimation over networks [42].

The non-Gaussian filtering can also be achieved following the #-distribution model. For example, the recursive
estimation was obtained via the #-distribution-based design approach in [43] and the robust generalised ¢-distribution
based Kalman filter was proposed in [44], and the proposed approach can be further extended to multi-sensor sys-
tems with heavy-tailed noises [45]. As examples of the practical application, ¢-distribution based filtering has been
involved in autonomous underwater vehicles [46] and manned aircrafts [47]. Robust filter design can also be imple-
mented following variational Bayesian inference [48]. Noting the link between Bayesian inference and #-distribution,
the inference can be designed following Student-r Mixture Distributions [49].

In this sub-section, the convergence of the filtering algorithms has been considered. However, some of the
results focused on optimisation and recursive kernel algorithms. The analysis is about function convergence and the
analysis can be converted to error convergence for filtering problems.

4.2. Fault Diagnosis for Non-Gaussian Systems

For non-Gaussian stochastic systems, the monitoring can be implemented once the unmeasurable states are
obtained through the presented filtering schemes, and this leads to updates for fault diagnosis and tolerant control. In
particular, Lina Yao and her team consistently focus on this topic. Based on minimum entropy, [50] designed an
active fault tolerant control strategy for non-Gaussian stochastic distribution systems with mean constraints. [51] pre-
sented the non-Gaussian fault tolerant control (FTC) for singular stochastic distribution systems using TS fuzzy mod-
elling techniques. Furthermore, [52] investigated the fault diagnosis for non-Gaussian stochastic systems via entropy
optimisation. Other contributions were also impressive, while the adaptive minimum entropy hybrid compensation
method has been given for fault-tolerant design in [53]. In terms of sensor faults, the generalised correntropy filter has
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been applied to achieve fault diagnosis and tolerant control [54]. Regarding the system delay, fault detection and
diagnosis were implemented using output PDFs for the delay-range-dependent stochastic systems in [55]. The meth-
ods use filtering approach and PDF control framework which are inherited stable.

4.3. Performance Enhancement

As the randomness can be attenuated using the minimum entropy design, the performance of the closed-loop
control systems is able to be further enhanced following the optimisation strategy. Basically, rational entropy can be
used to assess the performance of various control designs for non-Gaussian stochastic systems [56]. [57] carried out
an EKF-based cooperation optimisation for stochastic nonlinear systems, where the system set-point can be dynami-
cally adjusted following the minimum entropy criterion. In [58] a probabilistic decoupling design was proposed to
enhance the multi-variable systems’ performance where the investigated nonlinear uncertain systems are subjected to
non-Gaussian noises. A neural network driven compensation scheme has been produced to enhance the closed-loop
system’s performance, where the additional information from the unmeasurable states can be re-involved in the con-
troller design [59]. With the designed compensators, the closed-loop performance has been enhanced with guaran-
teed error convergence.

5. Industrial Applications

This section is a response to Challenge 5 in Introduction. Using these recent theoretical results regarding non-
Gaussian stochastic systems, several industrial applications have been demonstrated in engineering fields. In this ses-
sion, outstanding practical implementations are given to illustrate the power of the developed strategies. In particular,
Jianhua Zhang has applied the minimum entropy algorithm to deal with the engineering challenges. For example, the
polymerisation process [60] has been controlled from the view of the distribution using the moment-generating func-
tion. [61] investigates the future grid using decentralised fully probabilistic designed algorithms. [62] and [63] faced
heavy industrial processes and applied PDF control algorithms to optimise the applications. In the refining
process [64], the fibre length stochastic distribution has been shaped using data-driven predictive PDF control. In
addition, the entropy-based iterative learning can be adopted for neuroscience, where the neural membrane mutual
coupling characterisation has been completed by identifying the coupling factors [65].

6. Algorithm Complexity

Although the aforementioned algorithms have been illustrated with stability and convergence analysis. The
complexity analysis is another key point for the system design topic, especially for the data-driven approach. For the
traditional model based design, the system model can be established before the real-time operation. In other words,
the control law can be calculated through the model without internal iteration and the complexity of the algorithm can
be considered as O(1). For the numerical solution searching approach, such as gradient optimisation, Riccati equa-
tion, etc., the complexity depends on the threshold and the step setting. For the recent data-driven approach, the esti-
mation or modelling process is involved in each time instant, which means that numerical iteration affects the com-
plexity in the loop. For example, the data-driven approach using kernel density estimation would be complex regard-
ing the kernel number. It can be denoted as O (n) with n kernel functions. In addition, some of the results contain a
system identification procedure as the data structuring will extract the information from the investigated process. For
system identification, the complexity depends on the number of system model parameters. For instance, [13] com-
bined the least-square method, kernel density estimation and gradient descent algorithm, where the complexity analy-
sis should be given separately and summed together in the end for the entire system design. Similarly, the neural net-
work based design would contain high-complexity as the iteration occurs in each layer. As a dual problem, the filter-
ing algorithm analysis is similar to the control design. Generally, the data-driven design will increase the algorithm
complexity compared with the model-based design.

7. Perspectives and Future Work

With the rapid developments of data science and networked systems, the non-Gaussian properties will be visi-
ble in many complex systems, which would affect the system-level performance. In other words, the non-Gaussian
stochastic systems theory will become more and more important along with the increase of the system's complexity.
The following systems would be the potential focal points both in theory and in applications:

1. Distributed Networked Systems: Distributed Networked Systems [66] contain complex system dynamics and
the interactions between sub-systems would bring unpredictive uncertainties into the transient dynamics. Therefore,
the non-Gaussian framework will be beneficial to enhance the performance of the systems to reduce the randomness.

2. Deep Randomised Neural Networks: Neural networks theory generates significant impacts now with the rise
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of machine learning, especially deep learning. However, the parametric optimisation for model training remains a
challenge for multi-layer structures. Thus, randomised learning [67] has been introduced into deep neural networks to
speed up the training progress. By combining with the non-Gaussian features, the present randomised neural network
learning theory could be expanded to improve modelling accuracy.

3. Robotics Teleoperation and Path Planning: Robotics systems have been widely used for many application
scenarios, such as intelligent manufacturing, extreme environment detection, rescue, etc. For safety propose, robotics
teleoperation [68] is necessary for practice. However, due to the communication and human-machine interaction, non-
Gaussian randomness always has an effect on real-time performance. To enhance the quality of the teleoperation, the
non-Gaussian stochastic system theory would attenuate the uncertainties in communication. In addition, the path
planning of the robot is another application for entropy design as the decision-making would rely on the principle of
entropy maximisation.

In summary, the non-Gaussian stochastic systems have been widely developed in many aspects, such as mod-
elling, control, filtering, fault diagnosis, performance enhancement, and so on in the last 5 years. Meanwhile, the non-
Gaussian stochastic systems have shown great potential in many important industrial processes and future work
would inspire more scholars to solve the aforementioned challenges.
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