
1

SUPPORTING INFORMATION

Collaborative AI Enhances Image Understanding in Materials Science

Ruoyan Avery Yin,1 Zhichu Ren,2 Zongyou Yin,3 Zhen Zhang,2 So Yeon Kim,2 Chia-Wei Hsu,2 Ju Li2

1Department of Computing Science, National University of Singapore, Singapore
2Department of Nuclear Science and Engineering and Department of Materials Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA, USA
3Research School of Chemistry, The Australian National University, Canberra, Australian Capital
Territory, 2601 Australia

*Corresponding author. Email: zc_ren@mit.edu, liju@mit.edu

EXPERIMENT I: IDENTIFYING SPECIFIC MATERIAL PHASES

Figure S1. Picture of sample with regions labelled.

Figure S2. Picture of sample with regions labelled.

Figure S3. Example outputs of script

2

Here is the result for ChatGPT and Gemini:

 ChatGPT Gemini
Total iterations ran: 31 16
Total iterations with
correct ROI indicated:

6 4

Percentage of
correct iterations:

19.4% 25%

Average number of
functions called:

8.2 6

Table S1. Comparison of ChatGPT and Gemini Performance

A. OPTIMISATION

As we realized that the runtime is rather long, we experimented with cutting down the number of debates
rounds from 5 to 2. This change did not decrease the level of accuracy, hence we decided to use 2 rounds
of debate eventually.

B. TEAMWORK EXAMPLES

Teamwork Example 1 (80% accuracy)

Figure S4. Example 1 output

Image Is the ROI

identified
correct?

Yes

Yes

3

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Table S2. Results of teamwork - Example 1

4

Teamwork Example 2 (60% accuracy)

Figure S5. Example 2 output

Image Is the ROI
identified
correct?

Yes

Yes

Yes

No

No

5

No (They did
not give
result)

Yes

No (They did
not give
result)

Yes

Yes

Table S3. Results of teamwork – Example 2

1

EXPERIMENT II: COUNTING PARTICLES

Image 1

 Text / Code / Image Answer
ChatG
PT’s
First
Respo
nse

import cv2
import numpy as np
import matplotlib.pyplot as plt

6

2

Load the image
image_path = '/mnt/data/01.png'
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Preprocessing: Threshold the image to isolate white particles
_, thresholded_image = cv2.threshold(image, 200, 255,
cv2.THRESH_BINARY)

Remove the scale bar area from the image for accurate measurements
height, width = thresholded_image.shape
Define the scale bar region (manually based on visual inspection,
typically at the bottom)
scale_bar_region = height - 50 # Approximate region to remove the scale
bar
thresholded_image_no_bar = thresholded_image[:scale_bar_region, :]

Detect contours
contours, _ = cv2.findContours(thresholded_image_no_bar,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Use the scale bar for pixel to micrometer conversion
Scale bar shows 300 micrometers (300 um)
scale_bar_length_um = 300 # Length in micrometers
scale_bar_length_px = 300 # Pixel length of the scale bar (based on scale
bar width in image)

Calculate pixel to micrometer conversion
pixel_to_um_ratio = scale_bar_length_um / scale_bar_length_px

Filter out particles smaller than 10 micrometers
min_size_um = 10
min_size_px = min_size_um / pixel_to_um_ratio

Filter the contours based on the size (area) threshold
large_particles_contours = [cnt for cnt in contours if
cv2.contourArea(cnt) >= min_size_px**2]

Annotate the large particles on the image
annotated_image = cv2.cvtColor(image[:scale_bar_region, :],
cv2.COLOR_GRAY2BGR)
for cnt in large_particles_contours:
cv2.drawContours(annotated_image, [cnt], -1, (0, 0, 255), 2) # Red color
for large particles

Count the number of large particles

3

num_large_particles = len(large_particles_contours)

Display the annotated image
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f'Particles Larger Than 10 Micrometers: {num_large_particles}')
plt.axis('off')
plt.show()

num_large_particles

Gemin
i’s
Feedb
ack

Great work on your particle counting solution! To make it even better,
could you experiment with the following:

Adaptive thresholding: Instead of using a fixed threshold, try adaptive
thresholding techniques like Otsu's method to handle images with uneven
illumination. This can help to more accurately segment the particles from
the background.

Noise reduction: If the image contains noise (e.g., salt-and-pepper noise),
consider applying noise reduction techniques before thresholding. This
can improve the accuracy of contour detection and reduce the number of
false positives.

Aspect ratio filtering: In addition to filtering based on area, consider
filtering based on aspect ratio. This can help to capture elongated
particles that might be missed by area-based filtering alone.

User input for scale bar length: Instead of assuming the scale bar length in
pixels, allow the user to define it through click-drag or by entering a
value. This will make the solution more flexible and adaptable to
different images.

4

ChatG
PT’s
Impro
ved
Respo
nse

Redefine the image path and parameters to avoid issues
image_path = '/mnt/data/01.png'

Reload the image for processing
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Apply median blur to reduce noise (salt-and-pepper noise reduction)
denoised_image = cv2.medianBlur(image, 5)

Adaptive thresholding using Otsu's method
_, otsu_thresholded = cv2.threshold(denoised_image, 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Remove the scale bar area from the image for accurate measurements
scale_bar_region = image.shape[0] - 50 # Approximate region to remove
the scale bar
thresholded_no_bar = otsu_thresholded[:scale_bar_region, :]

Detect contours
contours, _ = cv2.findContours(thresholded_no_bar,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Allow the user to define scale bar length (for this example, we'll assume
it's 300px)
user_scale_bar_length_px = 300 # Can be adjusted by user input
scale_bar_length_um = 300 # Known length in micrometers
pixel_to_um_ratio = scale_bar_length_um / user_scale_bar_length_px

Filter based on area and aspect ratio
min_size_um = 10

5

5

min_size_px = min_size_um / pixel_to_um_ratio

Aspect ratio filtering (considering elongated particles with an aspect
ratio > 2)
aspect_ratio_threshold = 2

Filter contours based on area and aspect ratio
large_particles_contours = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area >= min_size_px**2:
Calculate the bounding rectangle of the contour
x, y, w, h = cv2.boundingRect(cnt)
aspect_ratio = max(w, h) / min(w, h) # Calculate aspect ratio
if aspect_ratio >= aspect_ratio_threshold:
large_particles_contours.append(cnt)

Annotate the large particles on the image
annotated_image_adaptive = cv2.cvtColor(image[:scale_bar_region, :],
cv2.COLOR_GRAY2BGR)
for cnt in large_particles_contours:
cv2.drawContours(annotated_image_adaptive, [cnt], -1, (0, 255, 0), 2) #
Green color for large particles

Count the number of large particles
num_large_particles_adaptive = len(large_particles_contours)

Display the annotated image
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image_adaptive)
plt.title(f'Particles Larger Than 10 Micrometers (with Aspect Ratio
Filtering): {num_large_particles_adaptive}')
plt.axis('off')
plt.show()

num_large_particles_adaptive

6

Image 2

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

253

7

Load the image
image_path = '/mnt/data/02.png'
image = cv2.imread(image_path)

Convert image to grayscale for thresholding
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply thresholding to isolate the white particles (brightest regions)
_, thresholded = cv2.threshold(gray, 200, 255,
cv2.THRESH_BINARY)

Perform contour detection to identify particles
contours, _ = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Now, convert pixel-to-micrometer using the scale bar
scale_bar_length_px = 300 # Based on the scale bar indicating 300
um
scale_bar_length_um = 300 # 300 micrometers according to the
scale bar
pixel_to_micrometer_ratio = scale_bar_length_um /
scale_bar_length_px

Initialize list to hold detected particle sizes and filter contours
based on size
min_particle_size_um = 10 # Particles larger than 10 micrometers
min_particle_size_px = min_particle_size_um /
pixel_to_micrometer_ratio

filtered_contours = []
for contour in contours:
area = cv2.contourArea(contour)
if area >= min_particle_size_px: # Filter based on the size threshold
filtered_contours.append(contour)

Draw contours on the original image
annotated_image = image.copy()
cv2.drawContours(annotated_image, filtered_contours, -1, (0, 255,
0), 2)

Count the number of particles
num_particles = len(filtered_contours)

Display the annotated image with contours and the number of
particles
plt.figure(figsize=(10, 10))

8

plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f"Number of particles larger than 10 micrometers:
{num_particles}")
plt.axis('off')
plt.show()

Save the annotated image
output_image_path = "/mnt/data/annotated_particles.png"
cv2.imwrite(output_image_path, annotated_image)

num_particles

Gemini’s
Feedback

The response by ChatGPT looks good! It seems to have a well-
structured approach to tackle this problem. Here's a breakdown of the
steps and some potential improvements we can discuss:

Steps:

Load the image.
Convert the image to grayscale for thresholding.
Apply thresholding to isolate white particles.
Perform contour detection to identify particle regions.
Convert pixels to micrometers using the scale bar information.
Filter contours based on minimum particle size (10 micrometers).
Draw the contours of the filtered particles on a copy of the original
image.
Count the number of filtered particles (considered larger than 10
micrometers).
Display and save the annotated image.
Improvements:

Thresholding: While a threshold of 200 seems reasonable, it might be
beneficial to try Otsu's thresholding which is an automatic method to
determine the optimal threshold.
Noise Reduction: Consider adding noise reduction techniques before
thresholding, especially if the background seems uneven.
Aspect Ratio Consideration: The code currently filters based on area.
If the particles are not circular, you might want to consider filtering
based on aspect ratio as well.
Calibration: Ideally, for better accuracy, we would want to perform
calibration on a separate image with a known reference object of
similar size to the particles.
Overall, ChatGPT's response provides a solid foundation for counting
particles larger than 10 micrometers. By incorporating the suggested
improvements, we can potentially achieve more robust and accurate
particle identification.

9

ChatGPT’s
Improved
Response

Re-load the image and apply the original approach with some
adjustments based on feedback.
image = cv2.imread(image_path)

Convert image to grayscale for thresholding
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply slightly lower thresholding to capture more particles while
still ignoring noise
_, thresholded = cv2.threshold(gray, 195, 255,
cv2.THRESH_BINARY) # Lowered threshold a bit from original
200

Perform contour detection to identify particles
contours, _ = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Convert pixel-to-micrometer using the scale bar
scale_bar_length_px = 300 # Based on the scale bar indicating 300
um
scale_bar_length_um = 300 # 300 micrometers according to the
scale bar
pixel_to_micrometer_ratio = scale_bar_length_um /
scale_bar_length_px

Initialize list to hold detected particle sizes and filter contours
based on size
min_particle_size_um = 10 # Particles larger than 10 micrometers
min_particle_size_px = min_particle_size_um /

271

10

pixel_to_micrometer_ratio

filtered_contours = []
for contour in contours:
area = cv2.contourArea(contour)
if area >= min_particle_size_px: # Filter based on the size threshold
filtered_contours.append(contour)

Draw contours on the original image
annotated_image = image.copy()
cv2.drawContours(annotated_image, filtered_contours, -1, (0, 255,
0), 2)

Count the number of particles
num_particles = len(filtered_contours)

Display the annotated image with contours and the number of
particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f"Number of particles larger than 10 micrometers:
{num_particles}")
plt.axis('off')
plt.show()

Save the annotated image
output_image_path = "/mnt/data/annotated_particles_updated.png"
cv2.imwrite(output_image_path, annotated_image)

num_particles, output_image_path

11

Image 3

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image

1

12

image_path = '/mnt/data/03.png'
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Crop the scale bar to avoid it affecting calculations
cropped_image = image[:-50, :]

Define pixel to micrometer conversion from the scale bar
scale_bar_length_micrometers = 300 # From the image scale bar
scale_bar_length_pixels = 646 # Measured manually from the image
pixel_to_micrometer = scale_bar_length_micrometers /
scale_bar_length_pixels

Thresholding to isolate the white particles
_, thresholded_image = cv2.threshold(cropped_image, 200, 255,
cv2.THRESH_BINARY)

Finding contours of the white particles
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Filter particles larger than 10 micrometers
min_particle_size_micrometers = 10
min_particle_size_pixels = min_particle_size_micrometers /
pixel_to_micrometer

filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
(np.pi * (min_particle_size_pixels / 2)**2)]

Annotate image
annotated_image = cv2.cvtColor(cropped_image,
cv2.COLOR_GRAY2BGR)
for cnt in filtered_contours:
cv2.drawContours(annotated_image, [cnt], -1, (0, 255, 0), 2)

Display annotated image and the number of particles
num_particles = len(filtered_contours)

Displaying the annotated image
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f'Particles larger than 10 micrometers: {num_particles}')
plt.axis('off')
plt.show()

num_particles

13

Gemini’s
Feedback

The response by ChatGPT looks good! It seems to have addressed all
the key points mentioned in the prompt. Here's a breakdown of the
steps involved and some additional points to consider for
improvement:

Strengths:

Grayscale conversion: Converting the image to grayscale is a good
initial step for particle segmentation as it reduces complexity.
Scale bar handling: Cropping the image to exclude the scale bar
ensures accurate pixel-to-micrometer conversion.
Thresholding: Thresholding helps isolate the white particles from the
background.
Contour detection: Finding contours helps identify individual
particles.
Particle size filtering: The code correctly calculates the minimum
pixel area based on the user-provided micrometer threshold and filters
particles accordingly.
Image annotation: Highlighting the identified particles visually
confirms the results.
Possible Improvements:

Thresholding: You might want to consider adaptive thresholding
techniques to account for uneven illumination across the image. This
can improve particle segmentation, especially for particles with
varying intensities.
Noise reduction: Depending on the image quality, there might be
noise affecting particle detection. Techniques like erosion and
dilation can be explored to reduce noise.
Morphology: Morphological operations like opening (erosion
followed by dilation) can help remove small objects and improve the
shapes of the detected particl

14

ChatGPT’s
Improved
Response

Let's refine the approach with the following improvements:
1. Apply adaptive thresholding for better segmentation.
2. Use morphological operations (opening) to reduce noise and
improve particle shape.

Reload the image in grayscale for clean processing
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Crop the image to exclude the scale bar
cropped_image = image[:-50, :]

Convert the image to remove noise by applying GaussianBlur
blurred_image = cv2.GaussianBlur(cropped_image, (5, 5), 0)

Adaptive thresholding for better handling of uneven illumination
adaptive_thresh = cv2.adaptiveThreshold(blurred_image, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)

Morphological opening to remove small noise
kernel = np.ones((3, 3), np.uint8)
opened_image = cv2.morphologyEx(adaptive_thresh,
cv2.MORPH_OPEN, kernel)

Finding contours of the particles
contours, _ = cv2.findContours(opened_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Recalculate minimum particle size in pixels based on 10
micrometers

338

15

min_particle_size_pixels = min_particle_size_micrometers /
pixel_to_micrometer

Filter particles larger than the minimum particle size (10
micrometers)
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
(np.pi * (min_particle_size_pixels / 2)**2)]

Annotate image with the detected particles
annotated_image = cv2.cvtColor(cropped_image,
cv2.COLOR_GRAY2BGR)
for cnt in filtered_contours:
cv2.drawContours(annotated_image, [cnt], -1, (0, 255, 0), 2)

Display the result with the number of particles
num_particles = len(filtered_contours)

Displaying the annotated image with the count of particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f'Particles larger than 10 micrometers: {num_particles}')
plt.axis('off')
plt.show()

num_particles

16

Image 4

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
from matplotlib import pyplot as plt

Load the image
image_path = "/mnt/data/04.png"

4

17

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Thresholding to isolate the bright particles
_, thresholded = cv2.threshold(image, 200, 255,
cv2.THRESH_BINARY)

Find contours of the thresholded image
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

Calculate pixel to micrometer conversion using the scale bar
(assuming the scale bar is 300 micrometers)
scale_bar_length_micrometers = 300
scale_bar_length_pixels = 400 # This is a rough estimate based on the
image, can be updated if necessary
pixel_to_micrometer = scale_bar_length_micrometers /
scale_bar_length_pixels

Filter contours based on size, ignoring small ones (convert area to
micrometer units)
particles_larger_than_10_micrometers = []
for contour in contours:
area = cv2.contourArea(contour)
Convert contour area to micrometers
area_micrometers = area * (pixel_to_micrometer ** 2)
Only include particles larger than 10 micrometers in size
if area_micrometers > (10 ** 2): # 10 micrometer threshold area
particles_larger_than_10_micrometers.append(contour)

Annotate the original image with identified large particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image,
particles_larger_than_10_micrometers, -1, (0, 255, 0), 2)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f"Identified Particles > 10 micrometers:
{len(particles_larger_than_10_micrometers)}")
plt.axis('off')
plt.show()

Save annotated image to display
annotated_image_path = "/mnt/data/annotated_image.png"
cv2.imwrite(annotated_image_path, annotated_image)

18

Number of large particles detected
len(particles_larger_than_10_micrometers)

Gemini’s
Feedback

The response by ChatGPT looks good! It covers the essential steps to
count particles larger than 10 micrometers and provides clear
explanations for each step. Here are some minor improvements that
could be made:

Threshold value selection: While providing a threshold value (200) is
helpful, mentioning how the user can determine the optimal threshold
in case their image has different lighting conditions could be
beneficial. You can suggest using Otsu's thresholding which is an
automatic method for threshold selection.

Noise Reduction (Optional): The code currently doesn't include noise
reduction steps. Depending on the image quality, there might be
speckles or small, unwanted white areas that could be filtered out using
techniques like morphological operations (erosion and dilation) before
contour detection.

Consider aspect ratio (Optional): An additional step to filter particles
based on their aspect ratio could be useful if the particles are expected
to be roughly circular or elongated in a certain way. This can be
achieved by calculating the aspect ratio of each contour and discarding
those outside the expected range.

Overall, ChatGPT's response effectively addresses the prompt and
provides a working solution. The suggested improvements can further
enhance the solution's robustness for various image conditions.

ChatGPT’s
Improved
Response

Re-approaching the task based on feedback

16

19

import cv2
import numpy as np
from matplotlib import pyplot as plt

Load the image
image_path = "/mnt/data/04.png"
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Apply Otsu's thresholding for automatic threshold selection
_, thresholded_otsu = cv2.threshold(image, 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Apply noise reduction using morphological operations (optional step
to improve particle detection)
First, use erosion to remove small noise, then dilation to restore the
shape
kernel = np.ones((3, 3), np.uint8)
thresholded_cleaned = cv2.morphologyEx(thresholded_otsu,
cv2.MORPH_OPEN, kernel)

Find contours of the cleaned thresholded image
contours, _ = cv2.findContours(thresholded_cleaned,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Calculate pixel to micrometer conversion using the scale bar
(assuming the scale bar is 300 micrometers)
scale_bar_length_micrometers = 300
scale_bar_length_pixels = 400 # This is a rough estimate based on the
image, can be updated if necessary
pixel_to_micrometer = scale_bar_length_micrometers /
scale_bar_length_pixels

Filter contours based on size, ignoring small ones (convert area to
micrometer units)
particles_larger_than_10_micrometers = []
for contour in contours:
Get the bounding rectangle to calculate aspect ratio (optional filtering
based on shape)
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = float(w) / h

Filter based on aspect ratio (optional) - assuming roughly circular or
elongated
if 0.5 < aspect_ratio < 2.0: # Filtering out extreme aspect ratios
area = cv2.contourArea(contour)

20

Convert contour area to micrometers
area_micrometers = area * (pixel_to_micrometer ** 2)
Only include particles larger than 10 micrometers in size
if area_micrometers > (10 ** 2): # 10 micrometer threshold area
particles_larger_than_10_micrometers.append(contour)

Annotate the original image with identified large particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image,
particles_larger_than_10_micrometers, -1, (0, 255, 0), 2)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f"Identified Particles > 10 micrometers:
{len(particles_larger_than_10_micrometers)}")
plt.axis('off')
plt.show()

Save annotated image to display
annotated_image_path = "/mnt/data/annotated_image_otsu.png"
cv2.imwrite(annotated_image_path, annotated_image)

Number of large particles detected
len(particles_larger_than_10_micrometers)

21

Image 5

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the uploaded image

17

22

image_path = '/mnt/data/05.png'
image = cv2.imread(image_path)

Convert image to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Thresholding to isolate white particles (bright spots)
_, thresholded_image = cv2.threshold(gray_image, 200, 255,
cv2.THRESH_BINARY)

Find contours of the white particles
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Calculate pixel to micrometer conversion using the scale bar (300
micrometers for 300 pixels)
Assuming the scale bar at the bottom is 300 pixels corresponding to
300 micrometers
scale_bar_length_pixels = 300 # This is a rough estimate
scale_bar_length_micrometers = 300 # As shown in the scale bar
pixel_to_micrometer_ratio = scale_bar_length_micrometers /
scale_bar_length_pixels

Filter contours by size (ignoring particles smaller than 10
micrometers)
particles_larger_than_10_micrometers = []
for contour in contours:
area = cv2.contourArea(contour)
if area * pixel_to_micrometer_ratio**2 >= 10**2: # Filter by particle
size in square micrometers
particles_larger_than_10_micrometers.append(contour)

Draw contours on the original image
annotated_image = image.copy()
cv2.drawContours(annotated_image,
particles_larger_than_10_micrometers, -1, (0, 255, 0), 2)

Display the number of particles larger than 10 micrometers
num_large_particles = len(particles_larger_than_10_micrometers)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB))
plt.title(f'Particles larger than 10 micrometers: {num_large_particles}')
plt.axis('off')
plt.show()

23

num_large_particles

Gemini’s
Feedback

The response you created for chatGPT looks good! It covers all the
essential steps to count the large particles in the image including:

Grayscale conversion
Thresholding to isolate white particles
Contour detection to find individual particles
Size filtering based on the scale bar information
Highlighting the particles on the original image
Counting the number of large particles
Here are some minor improvements you can suggest to chatGPT:

Mention potential limitations: It can be helpful to mention that the
accuracy of the particle count can be affected by factors like uneven
illumination or overlapping particles.
Alternative thresholding methods: You can mention that while
thresholding is used here, other image segmentation techniques like
Otsu's thresholding might be explored for better particle separation in
certain image conditions.
Scale bar calibration check: Adding a line suggesting that the user can
verify the scale bar calibration by measuring a known feature in the
image (if available) would be a good addition.
Overall, the response effectively addresses the prompt and provides a
valuable solution.

ChatGPT’s
Improved
Response

Improving the analysis with additional suggestions

Apply Otsu's thresholding for better particle separation
_, otsu_thresholded = cv2.threshold(gray_image, 0, 255,

31

24

cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Find contours of the white particles with Otsu's thresholding
otsu_contours, _ = cv2.findContours(otsu_thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Re-filter contours by size using Otsu's thresholding
particles_larger_than_10_micrometers_otsu = []
for contour in otsu_contours:
area = cv2.contourArea(contour)
if area * pixel_to_micrometer_ratio**2 >= 10**2: # Filter by particle
size in square micrometers
particles_larger_than_10_micrometers_otsu.append(contour)

Draw contours on the original image for Otsu's method
annotated_image_otsu = image.copy()
cv2.drawContours(annotated_image_otsu,
particles_larger_than_10_micrometers_otsu, -1, (255, 0, 0), 2)

Display the number of particles larger than 10 micrometers using
Otsu's method
num_large_particles_otsu =
len(particles_larger_than_10_micrometers_otsu)

Show the updated annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image_otsu,
cv2.COLOR_BGR2RGB))
plt.title(f'Otsu method - Particles larger than 10 micrometers:
{num_large_particles_otsu}')
plt.axis('off')
plt.show()

num_large_particles_otsu

25

Image 6

 Text / Code / Image Answ

er
ChatGP
T’s First
Respons
e

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image_path = '/mnt/data/06.png'
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Crop out the scale bar and other annotations at the bottom of the image

0

26

cropped_image = image[:900, :]

Thresholding to isolate white particles
_, thresholded_image = cv2.threshold(cropped_image, 200, 255,
cv2.THRESH_BINARY)

Detect contours of the white particles
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Measure the scale bar at the bottom to determine pixel-to-micrometer
conversion
The scale bar shows 300 µm, let's measure how many pixels this
corresponds to
scale_bar_width_pixels = 640 # Manually estimated width of the scale
bar in pixels
scale_bar_width_micrometers = 300 # The scale bar represents 300 µm

Calculate pixel-to-micrometer ratio
pixel_to_micrometer_ratio = scale_bar_width_micrometers /
scale_bar_width_pixels

Filter out small particles by calculating their area in micrometers
particles_larger_than_10_micrometers = []
for contour in contours:
area = cv2.contourArea(contour)
if area * pixel_to_micrometer_ratio**2 > 10**2: # Filtering particles
larger than 10 µm²
particles_larger_than_10_micrometers.append(contour)

Draw contours on the original image for visualization
annotated_image = cv2.cvtColor(cropped_image,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image,
particles_larger_than_10_micrometers, -1, (0, 255, 0), 2)

Count the number of particles
num_particles = len(particles_larger_than_10_micrometers)

Display the annotated image with identified particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f'Particles larger than 10 µm: {num_particles}')
plt.axis('off')
plt.show()

27

Return the number of particles larger than 10 µm
num_particles

Gemini’
s
Feedbac
k

Feedback for ChatGPT's Response:
ChatGPT's response provides a good solution to the prompt. Here's a
breakdown of its strengths and suggestions for improvement:

Strengths:

Complete and well-structured code: The code covers all the steps
mentioned in the prompt, including image loading, pre-processing,
thresholding, contour detection, particle filtering, annotation, and
counting.
Clear variable naming: The code uses descriptive variable names, making
it easy to understand.
Correct filtering logic: The particle filtering correctly considers the area
in micrometers based on the pixel-to-micrometer ratio.
Suggestions for Improvement:

Thresholding value selection: The threshold value of 200 might be
specific to this image and may not generalize well to other images.
Consider adding a step to automatically determine an optimal threshold
based on image properties (e.g., Otsu's thresholding).
Scale bar measurement: Manually estimating the scale bar width in pixels
can introduce errors. If the scale bar information is available in the image
metadata, it can be directly extracted for better accuracy.
Error handling: The code assumes the image path is correct and doesn't
handle potential errors during image loading. It would be good practice
to include error handling (e.g., try-except blocks) for robustness.
Overall, ChatGPT's response is a great starting point. Incorporating the
suggestions above can make the solution more generic and robust to
handle variations in images.

ChatGP
T’s
Improve
d
Respons
e

Let's improve the analysis based on the feedback
1. Automatic thresholding using Otsu's method
2. Use precise scale measurement, manually measured earlier for now

3

28

3. Include error handling for image loading

Load the image with error handling
try:
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
if image is None:
raise ValueError("Image not found or unable to load.")
except Exception as e:
print(f"Error loading image: {e}")

Crop out the scale bar and other annotations at the bottom of the image
cropped_image = image[:900, :]

Automatically determine an optimal threshold using Otsu's method
_, thresholded_image = cv2.threshold(cropped_image, 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Detect contours of the white particles
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Recalculate pixel-to-micrometer ratio using manual scale bar
measurement
scale_bar_width_pixels = 640 # From earlier estimation
scale_bar_width_micrometers = 300 # As per the image scale

Pixel-to-micrometer conversion factor
pixel_to_micrometer_ratio = scale_bar_width_micrometers /
scale_bar_width_pixels

Filter out small particles by calculating their area in micrometers
particles_larger_than_10_micrometers = []
for contour in contours:
area = cv2.contourArea(contour)
if area * pixel_to_micrometer_ratio**2 > 10**2: # Filtering particles
larger than 10 µm²
particles_larger_than_10_micrometers.append(contour)

Draw contours on the original image for visualization
annotated_image = cv2.cvtColor(cropped_image,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image,
particles_larger_than_10_micrometers, -1, (0, 255, 0), 2)

Count the number of particles
num_particles = len(particles_larger_than_10_micrometers)

29

Display the annotated image with identified particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f'Particles larger than 10 µm: {num_particles}')
plt.axis('off')
plt.show()

Return the number of particles larger than 10 µm
num_particles

30

Image 7

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image_path = '/mnt/data/07.png'

4

31

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Define the scale bar size: 300 μm is equal to a certain pixel length
in the scale bar
scale_bar_length_microns = 300

Crop the scale bar region to exclude it from the analysis
Adjusting based on where scale bar typically is (bottom of the
image)
scale_bar_crop = image[:-50, :] # Cropping the bottom 50 pixels
(approximate scale bar area)

Apply a threshold to isolate the white particles
_, thresholded_image = cv2.threshold(scale_bar_crop, 200, 255,
cv2.THRESH_BINARY)

Find contours of the white regions
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Calculate the conversion factor from pixels to microns
Using the bottom cropped part of the image to calculate the scale
bar length
scale_bar_region = image[-50:, :]
_, scale_bar_thresh = cv2.threshold(scale_bar_region, 200, 255,
cv2.THRESH_BINARY)
scale_bar_contours, _ = cv2.findContours(scale_bar_thresh,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Find the longest contour in the scale bar region (this should be the
scale bar)
scale_bar_contour = max(scale_bar_contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(scale_bar_contour)

Calculate pixel-to-micron ratio
pixel_to_micron_ratio = scale_bar_length_microns / w

Initialize the list to hold the particles larger than 10 microns
large_particles = []

Analyze the detected particles
for contour in contours:
area = cv2.contourArea(contour)
if area > 0:
Calculate equivalent diameter (for roundish objects)
diameter = np.sqrt(4 * area / np.pi)

32

diameter_microns = diameter * pixel_to_micron_ratio

If the particle is larger than 10 microns, keep it
if diameter_microns > 10:
large_particles.append(contour)

Draw contours on the original image to highlight the particles
annotated_image = cv2.cvtColor(scale_bar_crop,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image, large_particles, -1, (0, 255, 0),
2) # Draw in green

Display the number of large particles and show the annotated
image
num_large_particles = len(large_particles)

Plot the annotated image
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f'Identified Particles Larger Than 10 Microns:
{num_large_particles}')
plt.axis('off')
plt.show()

Return the number of large particles
num_large_particles

Gemini’s
Feedback

ChatGPT's response looks good! It provides a well thought-out
approach to counting particles larger than 10 micrometers in the
image using image processing techniques with OpenCV and libraries
like NumPy. Here are some minor improvements that could be made:

Error handling: The code currently assumes the image can be loaded
successfully from the path. It would be good to add error handling to
gracefully handle cases where the image cannot be found or loaded.

Adapting to different scale bar locations: The code assumes the scale
bar is located at the bottom of the image and crops accordingly. If the
scale bar location can vary in different images, the code might need
to be adjusted to find the scale bar region dynamically.

Alternative for diameter calculation: The code calculates the diameter
assuming the particles are roundish objects. If the particles are not
round, an alternative method might be needed to determine their size.

Overall, ChatGPT's response effectively addresses the prompt and
provides a solution to count large particles. With the suggested

33

improvements, the code can be more robust and handle image
variations.

ChatGPT’s
Improved
Response

Enhancing the code based on the feedback provided:

1. Add error handling for loading the image.
2. Adapt the code to handle different scale bar locations.
3. Provide an alternative method for diameter calculation if
particles are not round (using bounding boxes).

def load_image(image_path):
try:
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
if image is None:
raise FileNotFoundError(f"Image not found or unable to load:
{image_path}")
return image
except Exception as e:
print(f"Error loading image: {e}")
return None

Enhanced version of particle counting with bounding box method
for irregular shapes
def analyze_particles(image):
Assuming scale bar length in microns
scale_bar_length_microns = 300

Apply a threshold to isolate white particles
_, thresholded_image = cv2.threshold(image, 200, 255,
cv2.THRESH_BINARY)

67

34

Find contours of the white regions
contours, _ = cv2.findContours(thresholded_image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Search for the scale bar by locating the longest contour (presumed
to be the scale bar)
scale_bar_contours, _ = cv2.findContours(thresholded_image[-50:,
:], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if scale_bar_contours:
Find the longest contour in the scale bar region
scale_bar_contour = max(scale_bar_contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(scale_bar_contour)

Calculate pixel-to-micron ratio using the width of the scale bar
pixel_to_micron_ratio = scale_bar_length_microns / w
else:
raise ValueError("Scale bar not found. Ensure that the image contains
a visible scale bar.")

Initialize the list to hold the particles larger than 10 microns
large_particles = []

Alternative size calculation: using bounding boxes to consider non-
round shapes
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if w > 0 and h > 0:
Calculate the equivalent size based on the bounding box
dimensions
particle_size_microns = max(w, h) * pixel_to_micron_ratio
if particle_size_microns > 10:
large_particles.append(contour)

Draw contours on the original image to highlight the particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated_image, large_particles, -1, (0, 255, 0),
2) # Draw in green

Return the number of large particles and the annotated image
num_large_particles = len(large_particles)
return num_large_particles, annotated_image

Load the image and perform the analysis
image = load_image(image_path)
if image is not None:

35

num_large_particles, annotated_image = analyze_particles(image)

Display the result
plt.figure(figsize=(10, 10))
plt.imshow(annotated_image)
plt.title(f'Identified Particles Larger Than 10 Microns:
{num_large_particles}')
plt.axis('off')
plt.show()

num_large_particles

36

Image 8

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image_path = '/mnt/data/08.png'
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

1

37

Get the dimensions of the image
height, width = image.shape

Crop out the scale bar region (manually estimate the area)
Assume the scale bar region is the bottom 10% of the image
scale_bar_region = int(height * 0.9)
image_cropped = image[:scale_bar_region, :]

Apply a threshold to isolate white particles (the bright areas)
_, thresholded = cv2.threshold(image_cropped, 200, 255,
cv2.THRESH_BINARY)

Detect contours of the white particles
contours, _ = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Now let's process the contours and filter those larger than 10
micrometers
We'll first calculate the pixel to micrometer ratio using the scale bar
Scale bar is 300 micrometers long, we will find its pixel length by
manual measurement

scale_bar_length_microns = 300 # from the image label
scale_bar_length_pixels = 605 # manually measured from the image
pixel_to_micron_ratio = scale_bar_length_microns /
scale_bar_length_pixels

Filter contours based on size (10 microns or more)
filtered_contours = []
particle_areas = []
for contour in contours:
area = cv2.contourArea(contour) * (pixel_to_micron_ratio ** 2) #
Convert area from pixels to micrometers
if area >= (10 ** 2): # Only consider particles with an area
equivalent to 10 microns or larger
filtered_contours.append(contour)
particle_areas.append(area)

Draw contours on the original cropped image for visualization
image_annotated = cv2.cvtColor(image_cropped,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(image_annotated, filtered_contours, -1, (0, 255,
0), 2)

Count the number of particles

38

num_particles = len(filtered_contours)

Display the annotated image
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image_annotated,
cv2.COLOR_BGR2RGB))
plt.title(f'Annotated Image with Particles Larger Than 10
Micrometers (Count: {num_particles})')
plt.axis('off')
plt.show()

num_particles

Gemini’s
Feedback

Strengths:

ChatGPT's response provides a well-structured Python code that
accomplishes the task of counting particles larger than 10
micrometers.
It incorporates essential steps like image loading, scaling calibration
using the scale bar, thresholding, contour detection, and area filtering
based on the size threshold.
It visualizes the results using an annotated image highlighting the
identified particles.
Areas for Improvement:

Thresholding: While thresholding is a good approach to isolate
particles, the threshold value (200) might need adjustments based on
the image's lighting conditions.
Suggest including a step to explore different thresholds and their
impact on the results.
Contour filtering: The assumption of a circular particle for area
calculation (using area * pi) might not be accurate for all particle
shapes.
Consider mentioning this as a limitation and explore alternative
approaches for non-circular particles, such as using the bounding
rectangle area or equivalent diameter.
Manual Measurement: Manually measuring the scale bar length in
pixels can introduce errors.
If possible, suggest incorporating a semi-automatic approach where
the user can define a fixed length region on the scale bar, and the
code calculates the pixel length within that region.
Overall, ChatGPT's response demonstrates a good understanding of
image processing techniques for particle analysis. The suggested
improvements can enhance the robustness and generalizability of the
solution.

39

ChatGPT’s
Improved
Response

Let's improve the previous analysis based on the feedback:
- Add a function to explore different threshold values and select the
best one.
- Improve the particle size filtering by considering bounding boxes
or equivalent diameters for non-circular particles.
- Automate the scale bar detection to avoid manual measurement
errors.

Reload the image and define an automatic threshold exploration
method
def auto_threshold(image, lower_threshold=150,
upper_threshold=255):
"""Apply a range of thresholds and return the best one for detecting
bright particles."""
best_threshold = None
max_contours = 0
for threshold in range(lower_threshold, upper_threshold, 5):
_, temp_thresh = cv2.threshold(image, threshold, 255,
cv2.THRESH_BINARY)
temp_contours, _ = cv2.findContours(temp_thresh,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(temp_contours) > max_contours:
max_contours = len(temp_contours)
best_threshold = threshold
return best_threshold

Apply the auto threshold method to find the best threshold value
best_threshold_value = auto_threshold(image_cropped)

Apply the best threshold found
_, thresholded_auto = cv2.threshold(image_cropped,
best_threshold_value, 255, cv2.THRESH_BINARY)

16

40

Detect contours of the white particles using the improved threshold
contours_auto, _ = cv2.findContours(thresholded_auto,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Filter particles by bounding box size or equivalent diameter (for
non-circular shapes)
filtered_contours_auto = []
for contour in contours_auto:
Calculate the bounding box area or equivalent diameter to account
for non-circular particles
x, y, w, h = cv2.boundingRect(contour)
bounding_box_area = w * h
bounding_box_area_microns = bounding_box_area *
(pixel_to_micron_ratio ** 2)

Filter based on area or a minimum dimension threshold (e.g., at
least one dimension should be >= 10 microns)
if bounding_box_area_microns >= (10 ** 2) or w *
pixel_to_micron_ratio >= 10 or h * pixel_to_micron_ratio >= 10:
filtered_contours_auto.append(contour)

Draw contours on the original cropped image for visualization
image_annotated_auto = cv2.cvtColor(image_cropped,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(image_annotated_auto, filtered_contours_auto, -1,
(0, 255, 0), 2)

Count the number of particles
num_particles_auto = len(filtered_contours_auto)

Display the updated annotated image with improved thresholding
and particle filtering
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image_annotated_auto,
cv2.COLOR_BGR2RGB))
plt.title(f'Improved Annotated Image with Particles Larger Than 10
Micrometers (Count: {num_particles_auto})')
plt.axis('off')
plt.show()

num_particles_auto

41

Image 9

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image_path = "/mnt/data/09.png"

0

42

image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Set the scale bar details
scale_bar_length_micrometers = 300 # From the scale bar in
micrometers
scale_bar_pixel_length = 1084 # Measured manually from the image
for the scale bar in pixels

Compute the pixel to micrometer conversion factor
micrometers_per_pixel = scale_bar_length_micrometers /
scale_bar_pixel_length

Apply thresholding to isolate white particles
_, thresholded = cv2.threshold(image, 200, 255,
cv2.THRESH_BINARY)

Detect contours to find the particles
contours, _ = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Filter contours based on the size (in micrometers) to keep only
those > 10 micrometers
min_size_micrometers = 10
min_size_pixels = min_size_micrometers / micrometers_per_pixel
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
min_size_pixels**2]

Annotate the image with detected particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
for cnt in filtered_contours:
cv2.drawContours(annotated_image, [cnt], -1, (0, 255, 0), 2) # Draw
green contours

Display the image with annotated particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f"Annotated Image with {len(filtered_contours)} Particles >
10 Micrometers")
plt.axis('off')
plt.show()

Output the number of detected particles larger than 10 micrometers
len(filtered_contours)

Gemini’s
Feedback

Feedback for ChatGPT's Response
Strengths:

43

ChatGPT's response provides a well-structured Python code that
accomplishes the task of counting particles larger than 10
micrometers.
It includes all the necessary steps: image loading, scale calibration,
thresholding, contour detection, size filtering, and visualization.
Areas for Improvement:

Thresholding: The threshold value (200) might need adjustments
based on the specific image. It's a good idea to explore adaptive
thresholding techniques for uneven illumination.
Noise filtering: Consider adding noise reduction steps before
thresholding, especially if the background has slight variations that
could lead to misidentified particles.
Contour filtering: The current approach filters based on area.
Depending on the particle shape, circularity or other shape features
could be used for a more robust filtration of non-particle objects.
Ignore intersecting particles: The prompt asks to ignore intersecting
particles at the bottom. While the code addresses particle size, it
doesn't exclude those touching the bottom. You can explore
morphological operations like erosion to break these connections or
define a region of interest (ROI) excluding the bottom area before
contour detection.
Additional Suggestions:

ChatGPT could mention these limitations in its response and suggest
ways to improve the solution for different image conditions.
It could also explore libraries like scikit-image that offer
functionalities for particle analysis.
Overall, ChatGPT's response provides a good starting point for image
analysis. By incorporating the suggested improvements, it can deliver
more robust and accurate particle counting for various image
conditions.

44

ChatGPT’s
Improved
Response

Let's incorporate the feedback to improve the analysis
from skimage import morphology
from skimage.filters import threshold_otsu
from skimage.measure import label, regionprops
from skimage.morphology import remove_small_objects

Reload the image
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

Apply GaussianBlur to reduce noise before thresholding
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)

Use adaptive thresholding or Otsu's thresholding for better results
otsu_thresh_value = threshold_otsu(blurred_image)
_, thresholded = cv2.threshold(blurred_image, otsu_thresh_value,
255, cv2.THRESH_BINARY)

Remove small noise using morphological operations
thresholded_cleaned = remove_small_objects(thresholded > 0,
min_size=20)

Create an ROI to exclude particles intersecting at the bottom
height, width = thresholded_cleaned.shape
roi = np.zeros_like(thresholded_cleaned)
roi[:int(height*0.9), :] = thresholded_cleaned[:int(height*0.9), :] #
Exclude bottom 10% region

Label and measure regions
labeled_image = label(roi)

2

45

regions = regionprops(labeled_image)

Set the minimum particle size to 10 micrometers and filter
accordingly
min_size_pixels = (min_size_micrometers /
micrometers_per_pixel)**2
filtered_regions = [region for region in regions if region.area >
min_size_pixels]

Annotate the image with the filtered particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
for region in filtered_regions:
minr, minc, maxr, maxc = region.bbox
cv2.rectangle(annotated_image, (minc, minr), (maxc, maxr), (0, 255,
0), 2)

Display the improved annotated image
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image,
cv2.COLOR_BGR2RGB))
plt.title(f"Annotated Image with {len(filtered_regions)} Particles >
10 Micrometers")
plt.axis('off')
plt.show()

Output the number of particles larger than 10 micrometers
len(filtered_regions)

46

Image 10

 Text / Code / Image Answer
ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image

44

47

image_path = "/mnt/data/10.png"
image = cv2.imread(image_path)

Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Thresholding to isolate white particles
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)

Find contours of the white particles
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

Scale bar info: The scale bar indicates 300 micrometers = some
number of pixels
For now, I'll calculate pixel-to-micrometer conversion using the
300um scale bar in the image.
Cropping the scale bar out to avoid false particle detections from that
region

Approximate where the scale bar is in the bottom of the image
height, width = gray.shape
scale_bar_region = gray[height - 50:height, :] # Assume bottom 50px
contains the scale bar
scale_bar_length_pixels = width # The bar stretches the full width of
the image

300 um corresponds to the width of the image under the scale bar
scale_bar_length_um = 300 # micrometers
pixel_to_micrometer_ratio = scale_bar_length_um /
scale_bar_length_pixels

Now process contours to filter those larger than 10 micrometers (in
pixels)
min_size_um = 10
min_size_pixels = min_size_um / pixel_to_micrometer_ratio

Filter and draw contours larger than 10 micrometers
large_particles = []
for contour in contours:
if cv2.contourArea(contour) > min_size_pixels:
large_particles.append(contour)

Draw the detected large particles on the image for visualization
annotated_image = image.copy()
cv2.drawContours(annotated_image, large_particles, -1, (0, 255, 0), 2)

48

Count and annotate large particles
num_large_particles = len(large_particles)

Display the image with annotations
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB))
plt.title(f"Detected Large Particles (>10 micrometers):
{num_large_particles}")
plt.axis('off')
plt.show()

Output the number of large particles
num_large_particles

Gemini’s
Feedback

The response you crafted is excellent! It covers all the essential steps
for counting large particles in the image while considering the scale
bar and excluding intersecting particles. Here are some minor
improvements to consider:

1. Handling Unknown Scale Bar Length:

Currently, the code assumes the scale bar length is 300 micrometers. In
a real scenario, you might not know this value beforehand. You can
prompt for user input or implement image processing techniques to
estimate the scale bar length automatically.
2. Refining Scale Bar Cropping:

The current approach assumes the scale bar occupies the bottom 50
pixels. A more robust approach could involve techniques like color
thresholding or template matching to identify the scale bar region
dynamically.
3. Intersecting Particles:

While the prompt mentions ignoring intersecting particles, there's no
explicit code for it. You can introduce additional steps to filter out
contours that touch the image borders. Techniques like bounding box
checks or morphological operations can be helpful.
4. Additional Considerations:

Error handling: Include checks for invalid image paths or unexpected
image formats.
Efficiency: Explore optimized contour filtering methods or image
processing libraries like scikit-image for potentially faster execution.
Overall, ChatGPT's response demonstrates a strong understanding of
image processing concepts and provides a solid foundation for particle
analysis. These refinements can further enhance its robustness and

49

adaptability to various image scenarios.
ChatGPT’s
Improved
Response

Proceed with the initial assumption that the scale bar length is 300
micrometers
and continue particle analysis while ignoring particles that intersect
the image borders.

Assuming the scale bar length is 300 micrometers as a fallback
scale_bar_length_um = 300 # micrometers
scale_bar_length_pixels = width # Assuming full width of the image
for the scale bar
pixel_to_micrometer_ratio = scale_bar_length_um /
scale_bar_length_pixels

Reapply thresholding to isolate white particles
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)

Find contours of the white particles again
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

Filter large particles and exclude those intersecting with image
borders
large_particles = []
for contour in contours:
area = cv2.contourArea(contour)

Ignore particles that are too small
if area > min_size_pixels:
Check if the particle touches the image borders (intersecting

44

50

particles)
x, y, w, h = cv2.boundingRect(contour)
if x > 5 and y > 5 and x + w < width - 5 and y + h < height - 5: #
Leave margin for border detection
large_particles.append(contour)

Draw the detected large particles on the image for visualization
annotated_image = image.copy()
cv2.drawContours(annotated_image, large_particles, -1, (0, 255, 0), 2)

Count the number of large particles
num_large_particles = len(large_particles)

Display the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB))
plt.title(f"Detected Large Particles (>10 micrometers):
{num_large_particles}")
plt.axis('off')
plt.show()

Output the number of large particles detected
num_large_particles

Table S4. Results of teamwork - Experiment II

