SUPPORTING INFORMATION

Collaborative Al Enhances Image Understanding in Materials Science
Ruoyan Avery Yin,! Zhichu Ren,? Zongyou Yin,? Zhen Zhang,> So Yeon Kim,?> Chia-Wei Hsu,? Ju Li?
"Department of Computing Science, National University of Singapore, Singapore

2Department of Nuclear Science and Engineering and Department of Materials Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA, USA

3Research School of Chemistry, The Australian National University, Canberra, Australian Capital
Territory, 2601 Australia

*Corresponding author. Email: zc_ren@mit.edu, liju@mit.edu

EXPERIMENT I: IDENTIFYING SPECIFIC MATERIAL PHASES

of function calls: * ROI Identified:

function calls: * ROI Identified:

of function calls: * ROI Identified:

* N of function calls: 7 * ROI Identified:
% Number of function calls: 5 x ROI Identified: d.

Figure S3. Example outputs of script

Here is the result for ChatGPT and Gemini:

ChatGPT | Gemini
Total iterations ran: | 31 16
Total iterations with | 6 4
correct ROI indicated:
Percentage of 19.4% 25%
correct iterations:
Average number of | 8.2 6
functions called:

Table S1. Comparison of ChatGPT and Gemini Performance

A. OPTIMISATION

As we realized that the runtime is rather long, we experimented with cutting down the number of debates
rounds from 5 to 2. This change did not decrease the level of accuracy, hence we decided to use 2 rounds

of debate eventually.

B. TEAMWORK EXAMPLES

Teamwork Example 1 (80% accurac

Figure S4. Example 1 output

Image

Is the ROI
identified
correct?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Table S2. Results of teamwork - Example 1

Teamwork Example 2 (60% accuracy)

Figure S5. Example 2 output

Image Is the ROI
identified
correct?
Yes

Yes

Yes

No

No

No (They did
not give
result)

Yes

No (They did
not give
result)

Yes

Yes

Table S3. Results of teamwork — Example 2

EXPERIMENT II: COUNTING PARTICLES

Iael

Det.
BSD Full

import cv2
import numpy as np
import matplotlib.pyplot as plt

Text / Code / Image Answer
ChatG Particles Larger Than 10 Micrometers: 6 6
PT’s o7 A B AR \
First
Respo
nse

Load the image
image path ='/mnt/data/01.png'
image = cv2.imread(image path, cv2IMREAD GRAYSCALE)

Preprocessing: Threshold the image to isolate white particles
_, thresholded image = cv2.threshold(image, 200, 255,
cv2.THRESH BINARY)

Remove the scale bar area from the image for accurate measurements
height, width = thresholded image.shape

Define the scale bar region (manually based on visual inspection,
typically at the bottom)

scale bar region = height - 50 # Approximate region to remove the scale
bar

thresholded image no bar = thresholded image[:scale bar region, :]

Detect contours
contours, = cv2.findContours(thresholded image no_bar,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Use the scale bar for pixel to micrometer conversion

Scale bar shows 300 micrometers (300 um)

scale bar length um =300 # Length in micrometers

scale bar length px =300 # Pixel length of the scale bar (based on scale
bar width in image)

Calculate pixel to micrometer conversion
pixel to um ratio =scale bar length um /scale bar length px

Filter out particles smaller than 10 micrometers
min_size um =10
min_size px = min_size um/ pixel to um ratio

Filter the contours based on the size (area) threshold
large particles_contours = [cnt for cnt in contours if
cv2.contourArea(cnt) >= min_size px**2]

Annotate the large particles on the image

annotated image = cv2.cvtColor(image|[:scale bar region, :],
cv2.COLOR_GRAY2BGR)

for cnt in large particles contours:

cv2.drawContours(annotated image, [cnt], -1, (0, 0, 255), 2) # Red color
for large particles

Count the number of large particles

num_large particles = len(large particles_contours)

Display the annotated image

plt.figure(figsize=(10, 10))

plt.imshow(annotated image)

plt.title(f' Particles Larger Than 10 Micrometers: {num_large particles}")
plt.axis('off")

plt.show()

num_large particles

Gemin
1’s
Feedb
ack

Great work on your particle counting solution! To make it even better,
could you experiment with the following:

Adaptive thresholding: Instead of using a fixed threshold, try adaptive
thresholding techniques like Otsu's method to handle images with uneven
illumination. This can help to more accurately segment the particles from
the background.

Noise reduction: If the image contains noise (e.g., salt-and-pepper noise),
consider applying noise reduction techniques before thresholding. This
can improve the accuracy of contour detection and reduce the number of
false positives.

Aspect ratio filtering: In addition to filtering based on area, consider
filtering based on aspect ratio. This can help to capture elongated
particles that might be missed by area-based filtering alone.

User input for scale bar length: Instead of assuming the scale bar length in
pixels, allow the user to define it through click-drag or by entering a
value. This will make the solution more flexible and adaptable to
different images.

ChatG
PT’s
Impro
ved
Respo
nse

(

Particles Larger Than 10 Micrometers (with Aspect Ratio Filtering): 5

Redefine the image path and parameters to avoid issues
image path ='/mnt/data/01.png'

Reload the image for processing
image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Apply median blur to reduce noise (salt-and-pepper noise reduction)
denoised image = cv2.medianBlur(image, 5)

Adaptive thresholding using Otsu's method
_, otsu_thresholded = cv2.threshold(denoised image, 0, 255,
cv2.THRESH BINARY + cv2. THRESH_ OTSU)

Remove the scale bar area from the image for accurate measurements
scale bar region = image.shape[0] - 50 # Approximate region to remove
the scale bar

thresholded no_bar = otsu_thresholded|[:scale_bar region, :]

Detect contours
contours, = cv2.findContours(thresholded no_bar,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Allow the user to define scale bar length (for this example, we'll assume
it's 300px)

user_scale bar length px =300 # Can be adjusted by user input

scale bar length um =300 # Known length in micrometers
pixel to um ratio = scale_bar length um /user scale bar length px

Filter based on area and aspect ratio
min size um = 10

min_size px =min_size um/pixel to um ratio

Aspect ratio filtering (considering elongated particles with an aspect
ratio > 2)
aspect_ratio threshold =2

Filter contours based on area and aspect ratio

large particles contours =[]

for cnt in contours:

area = cv2.contourArea(cnt)

if area >=min_size px**2:

Calculate the bounding rectangle of the contour

X, y, W, h = cv2.boundingRect(cnt)

aspect_ratio = max(w, h) / min(w, h) # Calculate aspect ratio
if aspect ratio >= aspect ratio_threshold:

large particles contours.append(cnt)

Annotate the large particles on the image

annotated image adaptive = cv2.cvtColor(image[:scale bar region, :],
cv2.COLOR_GRAY2BGR)

for cnt in large particles contours:
cv2.drawContours(annotated image adaptive, [cnt], -1, (0, 255, 0), 2) #
Green color for large particles

Count the number of large particles
num_large particles adaptive = len(large particles_contours)

Display the annotated image

plt.figure(figsize=(10, 10))
plt.imshow(annotated image adaptive)

plt.title(f'Particles Larger Than 10 Micrometers (with Aspect Ratio
Filtering): {num large particles adaptive}')

plt.axis('off")

plt.show()

num large particles adaptive

300pm

Det.
BSD Full

Text / Code / Image Answer
ChatGPT’s Number of particles larger than 10 micrometers: 253 253
First ' \ s \ A\ L\
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image path ='/mnt/data/02.png'
image = cv2.imread(image path)

Convert image to grayscale for thresholding
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply thresholding to isolate the white particles (brightest regions)
_, thresholded = cv2.threshold(gray, 200, 255,
cv2.THRESH BINARY)

Perform contour detection to identify particles
contours, = cv2.findContours(thresholded,
cv2.RETR _EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Now, convert pixel-to-micrometer using the scale bar
scale bar length px =300 # Based on the scale bar indicating 300
um

scale bar length um =300 # 300 micrometers according to the
scale bar

pixel to micrometer ratio = scale bar length um/
scale bar length px

Initialize list to hold detected particle sizes and filter contours
based on size

min_particle size um =10 # Particles larger than 10 micrometers
min_particle size px =min_particle size um/

pixel to micrometer ratio

filtered contours = []

for contour in contours:

area = cv2.contourArea(contour)

if area >= min_particle size px: # Filter based on the size threshold
filtered contours.append(contour)

Draw contours on the original image

annotated image = image.copy()
cv2.drawContours(annotated _image, filtered contours, -1, (0, 255,
0),2)

Count the number of particles
num_particles = len(filtered contours)

Display the annotated image with contours and the number of
particles
plt.figure(figsize=(10, 10))

plt.imshow(cv2.cvtColor(annotated image,
cv2.COLOR_BGR2RGB))

plt.title(f"Number of particles larger than 10 micrometers:
{num_particles}")

plt.axis('off")

plt.show()

Save the annotated image
output_image path = "/mnt/data/annotated particles.png"

cv2.imwrite(output_image path, annotated image)

num_particles

Gemini’s
Feedback

The response by ChatGPT looks good! It seems to have a well-
structured approach to tackle this problem. Here's a breakdown of the
steps and some potential improvements we can discuss:

Steps:

Load the image.

Convert the image to grayscale for thresholding.

Apply thresholding to isolate white particles.

Perform contour detection to identify particle regions.

Convert pixels to micrometers using the scale bar information.
Filter contours based on minimum particle size (10 micrometers).
Draw the contours of the filtered particles on a copy of the original
image.

Count the number of filtered particles (considered larger than 10
micrometers).

Display and save the annotated image.

Improvements:

Thresholding: While a threshold of 200 seems reasonable, it might be
beneficial to try Otsu's thresholding which is an automatic method to
determine the optimal threshold.

Noise Reduction: Consider adding noise reduction techniques before
thresholding, especially if the background seems uneven.

Aspect Ratio Consideration: The code currently filters based on area.
If the particles are not circular, you might want to consider filtering
based on aspect ratio as well.

Calibration: Ideally, for better accuracy, we would want to perform
calibration on a separate image with a known reference object of
similar size to the particles.

Overall, ChatGPT's response provides a solid foundation for counting
particles larger than 10 micrometers. By incorporating the suggested
improvements, we can potentially achieve more robust and accurate
particle identification.

ChatGPT’s
Improved
Response

umber of particles larger than 10 micrometers: 271

e

\\E |
AR |

Re-load the image and apply the original approach with some
adjustments based on feedback.
image = cv2.imread(image path)

Convert image to grayscale for thresholding
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply slightly lower thresholding to capture more particles while
still ignoring noise

_, thresholded = cv2.threshold(gray, 195, 255,

cv2.THRESH BINARY) # Lowered threshold a bit from original
200

Perform contour detection to identify particles
contours, = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Convert pixel-to-micrometer using the scale bar

scale bar length px =300 # Based on the scale bar indicating 300
um

scale bar length um =300 # 300 micrometers according to the
scale bar

pixel to micrometer ratio = scale bar length um/
scale bar length px

Initialize list to hold detected particle sizes and filter contours
based on size

min_particle size um =10 # Particles larger than 10 micrometers
min_particle size px = min_particle size um/

271

10

pixel to micrometer ratio

filtered contours =[]

for contour in contours:

area = cv2.contourArea(contour)

if area >= min_particle size px: # Filter based on the size threshold
filtered contours.append(contour)

Draw contours on the original image

annotated image = image.copy()
cv2.drawContours(annotated _image, filtered contours, -1, (0, 255,
0), 2)

Count the number of particles
num_particles = len(filtered contours)

Display the annotated image with contours and the number of
particles

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image,

cv2.COLOR BGR2RGB))

plt.title(f"Number of particles larger than 10 micrometers:
{num_particles}")

plt.axis('off")

plt.show()

Save the annotated image
output_image path ="/mnt/data/annotated particles updated.png'
cv2.imwrite(output_image path, annotated image)

1

num_particles, output image path

BSD Full

11

Text / Code / Image Answer
ChatGPT’s Particles larger than 10 micrometers: 1 1
First 57 ' ‘
Response i

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image

12

image path = '/mnt/data/03.png'
image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Crop the scale bar to avoid it affecting calculations
cropped _image = image[:-50, :]

Define pixel to micrometer conversion from the scale bar

scale bar length micrometers = 300 # From the image scale bar
scale bar length pixels = 646 # Measured manually from the image
pixel to micrometer = scale bar length micrometers /
scale bar length pixels

Thresholding to isolate the white particles
_, thresholded_image = cv2.threshold(cropped image, 200, 255,
cv2.THRESH BINARY)

Finding contours of the white particles
contours, = cv2.findContours(thresholded image,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Filter particles larger than 10 micrometers
min_particle size micrometers = 10

min_particle size pixels = min_particle size micrometers /
pixel to micrometer

filtered contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
(np.pi * (min_particle size pixels/2)**2)]

Annotate image

annotated image = cv2.cvtColor(cropped image,
cv2.COLOR_GRAY2BGR)

for cnt in filtered contours:
cv2.drawContours(annotated image, [cnt], -1, (0, 255, 0), 2)

Display annotated image and the number of particles
num_particles = len(filtered contours)

Displaying the annotated image

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image,
cv2.COLOR_BGR2RGB))

plt.title(f'Particles larger than 10 micrometers: {num_particles}")
plt.axis('off")

plt.show()

num_particles

13

Gemini’s
Feedback

The response by ChatGPT looks good! It seems to have addressed all
the key points mentioned in the prompt. Here's a breakdown of the
steps involved and some additional points to consider for
improvement:

Strengths:

Grayscale conversion: Converting the image to grayscale is a good
initial step for particle segmentation as it reduces complexity.

Scale bar handling: Cropping the image to exclude the scale bar
ensures accurate pixel-to-micrometer conversion.

Thresholding: Thresholding helps isolate the white particles from the
background.

Contour detection: Finding contours helps identify individual
particles.

Particle size filtering: The code correctly calculates the minimum
pixel area based on the user-provided micrometer threshold and filters
particles accordingly.

Image annotation: Highlighting the identified particles visually
confirms the results.

Possible Improvements:

Thresholding: You might want to consider adaptive thresholding
techniques to account for uneven illumination across the image. This
can improve particle segmentation, especially for particles with
varying intensities.

Noise reduction: Depending on the image quality, there might be
noise affecting particle detection. Techniques like erosion and
dilation can be explored to reduce noise.

Morphology: Morphological operations like opening (erosion
followed by dilation) can help remove small objects and improve the
shapes of the detected particl

14

ChatGPT’s
Improved
Response

Particles larger than 1 micrometers: 338

Let's refine the approach with the following improvements:

1. Apply adaptive thresholding for better segmentation.

2. Use morphological operations (opening) to reduce noise and
improve particle shape.

Reload the image in grayscale for clean processing
image = cv2.imread(image path, cv2IMREAD GRAYSCALE)

Crop the image to exclude the scale bar
cropped_image = image[:-50, :]

Convert the image to remove noise by applying GaussianBlur
blurred image = cv2.GaussianBlur(cropped image, (5, 5), 0)

Adaptive thresholding for better handling of uneven illumination
adaptive_thresh = cv2.adaptiveThreshold(blurred image, 255,
cv2.ADAPTIVE THRESH GAUSSIAN C,

cv2.THRESH BINARY, 11, 2)

Morphological opening to remove small noise
kernel = np.ones((3, 3), np.uint8)

opened image = cv2.morphologyEx(adaptive thresh,
cv2.MORPH_OPEN, kernel)

Finding contours of the particles
contours, = cv2.findContours(opened image,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX SIMPLE)

Recalculate minimum particle size in pixels based on 10
micrometers

338

15

min_particle size pixels =min_particle size micrometers /
pixel to micrometer

Filter particles larger than the minimum particle size (10
micrometers)

filtered contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
(np.pi * (min_particle size pixels/2)**2)]

Annotate image with the detected particles

annotated image = cv2.cvtColor(cropped image,
cv2.COLOR_GRAY2BGR)

for cnt in filtered contours:
cv2.drawContours(annotated image, [cnt], -1, (0, 255, 0), 2)

Display the result with the number of particles
num_particles = len(filtered contours)

Displaying the annotated image with the count of particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image,

cv2.COLOR BGR2RGB))

plt.title(f'Particles larger than 10 micrometers: {num_particles}")
plt.axis('off")

plt.show()

num_particles

16

Fw Det.
300 um 20 x 1.56mm BSD Full

import cv2
import numpy as np
from matplotlib import pyplot as plt

Load the image
image path = "/mnt/data/04.png"

Text / Code / Image Answer
ChatGPT’s Identified Particles > 10 micrometers: 4 4
First e =7
Response

17

image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Thresholding to isolate the bright particles
_, thresholded = cv2.threshold(image, 200, 255,
cv2.THRESH BINARY)

Find contours of the thresholded image
contours, = cv2.findContours(thresholded, cv2.RETR _EXTERNAL,
cv2.CHAIN_APPROX SIMPLE)

Calculate pixel to micrometer conversion using the scale bar
(assuming the scale bar is 300 micrometers)
scale_bar length micrometers = 300

scale bar length pixels =400 # This is a rough estimate based on the
image, can be updated if necessary

pixel to micrometer = scale_bar length micrometers /
scale bar length pixels

Filter contours based on size, ignoring small ones (convert area to
micrometer units)

particles larger than 10 micrometers = []

for contour in contours:

area = cv2.contourArea(contour)

Convert contour area to micrometers

area_micrometers = area * (pixel _to_micrometer ** 2)

Only include particles larger than 10 micrometers in size

if area_micrometers > (10 ** 2): # 10 micrometer threshold area
particles larger than 10 micrometers.append(contour)

Annotate the original image with identified large particles
annotated image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated image,
particles_larger than 10 micrometers, -1, (0, 255, 0), 2)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f"Identified Particles > 10 micrometers:
{len(particles_larger than 10 micrometers)}")
plt.axis('off")

plt.show()

Save annotated image to display
annotated image path = "/mnt/data/annotated image.png"
cv2.imwrite(annotated image path, annotated image)

18

Number of large particles detected
len(particles larger than 10 micrometers)

Gemini’s
Feedback

The response by ChatGPT looks good! It covers the essential steps to
count particles larger than 10 micrometers and provides clear
explanations for each step. Here are some minor improvements that
could be made:

Threshold value selection: While providing a threshold value (200) is
helpful, mentioning how the user can determine the optimal threshold
in case their image has different lighting conditions could be
beneficial. You can suggest using Otsu's thresholding which is an
automatic method for threshold selection.

Noise Reduction (Optional): The code currently doesn't include noise
reduction steps. Depending on the image quality, there might be
speckles or small, unwanted white areas that could be filtered out using
techniques like morphological operations (erosion and dilation) before
contour detection.

Consider aspect ratio (Optional): An additional step to filter particles
based on their aspect ratio could be useful if the particles are expected
to be roughly circular or elongated in a certain way. This can be
achieved by calculating the aspect ratio of each contour and discarding
those outside the expected range.

Overall, ChatGPT's response effectively addresses the prompt and
provides a working solution. The suggested improvements can further
enhance the solution's robustness for various image conditions.

ChatGPT’s
Improved
Response

|dentified Particles > 10 micrometers: 16

Det.
BSD Full

Re-approaching the task based on feedback

16

19

import cv2
import numpy as np
from matplotlib import pyplot as plt

Load the image
image path = "/mnt/data/04.png"
image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Apply Otsu's thresholding for automatic threshold selection
_, thresholded otsu = cv2.threshold(image, 0, 255,
cv2.THRESH BINARY + ¢v2.THRESH OTSU)

Apply noise reduction using morphological operations (optional step
to improve particle detection)

First, use erosion to remove small noise, then dilation to restore the
shape

kernel = np.ones((3, 3), np.uint8)

thresholded cleaned = cv2.morphologyEx(thresholded otsu,
cv2.MORPH_OPEN, kernel)

Find contours of the cleaned thresholded image
contours, = cv2.findContours(thresholded cleaned,
cv2.RETR_EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Calculate pixel to micrometer conversion using the scale bar
(assuming the scale bar is 300 micrometers)

scale bar length micrometers = 300

scale bar length pixels =400 # This is a rough estimate based on the
image, can be updated if necessary

pixel to micrometer = scale bar length micrometers /
scale bar length pixels

Filter contours based on size, ignoring small ones (convert area to
micrometer units)

particles_larger than 10 micrometers = []

for contour in contours:

Get the bounding rectangle to calculate aspect ratio (optional filtering
based on shape)

X, y, W, h = cv2.boundingRect(contour)

aspect_ratio = float(w) / h

Filter based on aspect ratio (optional) - assuming roughly circular or
elongated

if 0.5 <aspect ratio < 2.0: # Filtering out extreme aspect ratios

area = cv2.contourArea(contour)

Convert contour area to micrometers

area_micrometers = area * (pixel to micrometer ** 2)

Only include particles larger than 10 micrometers in size

if area_micrometers > (10 ** 2): # 10 micrometer threshold area
particles larger than 10 micrometers.append(contour)

Annotate the original image with identified large particles
annotated image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated image,
particles_larger than 10 micrometers, -1, (0, 255, 0), 2)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f"Identified Particles > 10 micrometers:
{len(particles_larger than 10 micrometers)}")
plt.axis('off")

plt.show()

Save annotated image to display
annotated image path = "/mnt/data/annotated image otsu.png"
cv2.imwrite(annotated image path, annotated image)

Number of large particles detected
len(particles larger than 10 micrometers)

300pm

Det.
BSD Full

21

Text / Code / Image Answer
ChatGPT’s Particles larger than 10 micrometers: 17 17
First N\S 8 ;
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the uploaded image

22

image path = '/mnt/data/05.png'
image = cv2.imread(image path)

Convert image to grayscale
gray image = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)

Thresholding to isolate white particles (bright spots)
_, thresholded image = cv2.threshold(gray image, 200, 255,
cv2.THRESH BINARY)

Find contours of the white particles
contours, = cv2.findContours(thresholded image,
cv2.RETR_EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Calculate pixel to micrometer conversion using the scale bar (300
micrometers for 300 pixels)

Assuming the scale bar at the bottom is 300 pixels corresponding to
300 micrometers

scale bar length pixels =300 # This is a rough estimate

scale bar length micrometers =300 # As shown in the scale bar
pixel to micrometer ratio = scale bar length micrometers /
scale bar length pixels

Filter contours by size (ignoring particles smaller than 10
micrometers)

particles_larger than 10 micrometers = []

for contour in contours:

area = cv2.contourArea(contour)

if area * pixel to_micrometer ratio**2 >= 10**2: # Filter by particle
size in square micrometers

particles larger than 10 micrometers.append(contour)

Draw contours on the original image

annotated image = image.copy()
cv2.drawContours(annotated image,

particles larger than 10 micrometers, -1, (0, 255, 0), 2)

Display the number of particles larger than 10 micrometers
num_large particles = len(particles larger than 10 micrometers)

Show the annotated image with highlighted particles
plt.figure(figsize=(10, 10))

plt.imshow(cv2.cvtColor(annotated image, cv2.COLOR_BGR2RGB))
plt.title(f'Particles larger than 10 micrometers: {num_large particles}")
plt.axis('off")

plt.show()

23

num_large particles

Gemini’s
Feedback

The response you created for chatGPT looks good! It covers all the
essential steps to count the large particles in the image including:

Grayscale conversion

Thresholding to isolate white particles

Contour detection to find individual particles

Size filtering based on the scale bar information

Highlighting the particles on the original image

Counting the number of large particles

Here are some minor improvements you can suggest to chatGPT:

Mention potential limitations: It can be helpful to mention that the
accuracy of the particle count can be affected by factors like uneven
illumination or overlapping particles.

Alternative thresholding methods: You can mention that while
thresholding is used here, other image segmentation techniques like
Otsu's thresholding might be explored for better particle separation in
certain image conditions.

Scale bar calibration check: Adding a line suggesting that the user can
verify the scale bar calibration by measuring a known feature in the
image (if available) would be a good addition.

Overall, the response effectively addresses the prompt and provides a
valuable solution.

ChatGPT’s
Improved
Response

Otsu method - Particles larger than 10 micrometers: 31

Improving the analysis with additional suggestions

Apply Otsu's thresholding for better particle separation
, otsu_thresholded = cv2.threshold(gray image, 0, 255,

31

24

cv2.THRESH BINARY + cv2.THRESH OTSU)

Find contours of the white particles with Otsu's thresholding
otsu_contours, = cv2.findContours(otsu_thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Re-filter contours by size using Otsu's thresholding

particles larger than 10 micrometers_otsu = []

for contour in otsu_contours:

area = cv2.contourArea(contour)

if area * pixel to_micrometer ratio**2 >= 10**2: # Filter by particle
size in square micrometers

particles_larger than 10 micrometers otsu.append(contour)

Draw contours on the original image for Otsu's method
annotated image otsu = image.copy()
cv2.drawContours(annotated image otsu,

particles larger than 10 micrometers_otsu, -1, (255, 0, 0), 2)

Display the number of particles larger than 10 micrometers using
Otsu's method

num_large particles otsu =

len(particles larger than 10 micrometers_otsu)

Show the updated annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image otsu,
cv2.COLOR_BGR2RGB))

plt.title(fOtsu method - Particles larger than 10 micrometers:
{num_large particles otsu}")

plt.axis('off")

plt.show()

num_large particles otsu

300pm

BSD Full

25

Text / Code / Image Answ
er
ChatGP 0
T’s First
Respons
e

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image path = '/mnt/data/06.png'
image = cv2.imread(image path, cv2IMREAD GRAYSCALE)

Crop out the scale bar and other annotations at the bottom of the image

26

cropped_image = image[:900, :]

Thresholding to isolate white particles
_, thresholded _image = cv2.threshold(cropped image, 200, 255,
cv2.THRESH BINARY)

Detect contours of the white particles
contours, = cv2.findContours(thresholded image,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Measure the scale bar at the bottom to determine pixel-to-micrometer
conversion

The scale bar shows 300 pm, let's measure how many pixels this
corresponds to

scale_bar width pixels = 640 # Manually estimated width of the scale
bar in pixels

scale bar width micrometers = 300 # The scale bar represents 300 um

Calculate pixel-to-micrometer ratio
pixel to micrometer ratio = scale bar width micrometers /
scale bar width pixels

Filter out small particles by calculating their area in micrometers
particles_larger than 10 micrometers = []

for contour in contours:

area = cv2.contourArea(contour)

if area * pixel to micrometer ratio**2 > 10**2: # Filtering particles
larger than 10 um?

particles larger than 10 micrometers.append(contour)

Draw contours on the original image for visualization
annotated image = cv2.cvtColor(cropped image,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated image,
particles_larger than 10 micrometers, -1, (0, 255, 0), 2)

Count the number of particles
num_particles = len(particles_larger than 10 micrometers)

Display the annotated image with identified particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f'Particles larger than 10 um: {num_particles}')
plt.axis('off")

plt.show()

27

Return the number of particles larger than 10 um
num_particles

Gemini’
S
Feedbac
k

Feedback for ChatGPT's Response:
ChatGPT's response provides a good solution to the prompt. Here's a
breakdown of its strengths and suggestions for improvement:

Strengths:

Complete and well-structured code: The code covers all the steps
mentioned in the prompt, including image loading, pre-processing,
thresholding, contour detection, particle filtering, annotation, and
counting.

Clear variable naming: The code uses descriptive variable names, making
it easy to understand.

Correct filtering logic: The particle filtering correctly considers the area
in micrometers based on the pixel-to-micrometer ratio.

Suggestions for Improvement:

Thresholding value selection: The threshold value of 200 might be
specific to this image and may not generalize well to other images.
Consider adding a step to automatically determine an optimal threshold
based on image properties (e.g., Otsu's thresholding).

Scale bar measurement: Manually estimating the scale bar width in pixels
can introduce errors. If the scale bar information is available in the image
metadata, it can be directly extracted for better accuracy.

Error handling: The code assumes the image path is correct and doesn't
handle potential errors during image loading. It would be good practice
to include error handling (e.g., try-except blocks) for robustness.

Overall, ChatGPT's response is a great starting point. Incorporating the
suggestions above can make the solution more generic and robust to
handle variations in images.

ChatGP
T’s
Improve
d
Respons
e

Particles larger than 10 pm: 3

Let's improve the analysis based on the feedback
1. Automatic thresholding using Otsu's method
2. Use precise scale measurement, manually measured earlier for now

28

3. Include error handling for image loading

Load the image with error handling

try:

image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)
if image is None:

raise ValueError("Image not found or unable to load.")

except Exception as e:

print(f"Error loading image: {e}")

Crop out the scale bar and other annotations at the bottom of the image

cropped_image = image[:900, :]

Automatically determine an optimal threshold using Otsu's method
_, thresholded image = cv2.threshold(cropped image, 0, 255,
cv2.THRESH BINARY + cv2. THRESH OTSU)

Detect contours of the white particles
contours, = cv2.findContours(thresholded image,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Recalculate pixel-to-micrometer ratio using manual scale bar
measurement

scale bar width pixels = 640 # From earlier estimation

scale _bar width micrometers = 300 # As per the image scale

Pixel-to-micrometer conversion factor
pixel to micrometer ratio =scale bar width micrometers /
scale_bar width pixels

Filter out small particles by calculating their area in micrometers
particles larger than 10 micrometers = []

for contour in contours:

area = cv2.contourArea(contour)

if area * pixel to _micrometer ratio**2 > 10**2: # Filtering particles
larger than 10 um?

particles_larger than 10 micrometers.append(contour)

Draw contours on the original image for visualization
annotated image = cv2.cvtColor(cropped image,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated image,
particles_larger than 10 micrometers, -1, (0, 255, 0), 2)

Count the number of particles
num_particles = len(particles larger than 10 micrometers)

29

Display the annotated image with identified particles
plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f'Particles larger than 10 um: {num_particles}')
plt.axis('oft")

plt.show()

Return the number of particles larger than 10 um
num_particles

300pm

Det.
BSD Full

30

ChatGPT’s
First
Response

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image path ='/mnt/data/07.png'

31

image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Define the scale bar size: 300 pm is equal to a certain pixel length
in the scale bar
scale bar length microns = 300

Crop the scale bar region to exclude it from the analysis

Adjusting based on where scale bar typically is (bottom of the
image)

scale bar crop =image[:-50, :] # Cropping the bottom 50 pixels
(approximate scale bar area)

Apply a threshold to isolate the white particles
_, thresholded _image = cv2.threshold(scale bar crop, 200, 255,
cv2.THRESH BINARY)

Find contours of the white regions
contours, = cv2.findContours(thresholded image,
cv2.RETR_EXTERNAL, cv2.CHAIN_ APPROX SIMPLE)

Calculate the conversion factor from pixels to microns

Using the bottom cropped part of the image to calculate the scale
bar length

scale bar region = image[-50:, :]

_, scale_bar_thresh = cv2.threshold(scale bar region, 200, 255,
cv2.THRESH BINARY)

scale bar contours, = cv2.findContours(scale bar_thresh,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Find the longest contour in the scale bar region (this should be the
scale bar)

scale bar contour = max(scale bar contours, key=cv2.contourArea)
X, ¥, W, h = cv2.boundingRect(scale bar contour)

Calculate pixel-to-micron ratio
pixel to micron ratio =scale bar length microns /w

Initialize the list to hold the particles larger than 10 microns
large particles =[]

Analyze the detected particles

for contour in contours:

area = cv2.contourArea(contour)

if area > 0:

Calculate equivalent diameter (for roundish objects)
diameter = np.sqrt(4 * area / np.pi)

32

diameter microns = diameter * pixel to micron_ratio

If the particle is larger than 10 microns, keep it
if diameter microns > 10:
large particles.append(contour)

Draw contours on the original image to highlight the particles
annotated image = cv2.cvtColor(scale bar crop,
cv2.COLOR_GRAY2BGR)

cv2.drawContours(annotated image, large particles, -1, (0, 255, 0),
2) # Draw in green

Display the number of large particles and show the annotated
image
num_large particles = len(large particles)

Plot the annotated image

plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f'Identified Particles Larger Than 10 Microns:
{num_large particles}')

plt.axis('off")

plt.show()

Return the number of large particles
num large particles

Gemini’s
Feedback

ChatGPT's response looks good! It provides a well thought-out
approach to counting particles larger than 10 micrometers in the
image using image processing techniques with OpenCV and libraries
like NumPy. Here are some minor improvements that could be made:

Error handling: The code currently assumes the image can be loaded
successfully from the path. It would be good to add error handling to
gracefully handle cases where the image cannot be found or loaded.

Adapting to different scale bar locations: The code assumes the scale
bar is located at the bottom of the image and crops accordingly. If the
scale bar location can vary in different images, the code might need
to be adjusted to find the scale bar region dynamically.

Alternative for diameter calculation: The code calculates the diameter
assuming the particles are roundish objects. If the particles are not
round, an alternative method might be needed to determine their size.

Overall, ChatGPT's response effectively addresses the prompt and
provides a solution to count large particles. With the suggested

33

improvements, the code can be more robust and handle image
variations.

ChatGPT’s
Improved
Response

Identified Particles Larger Than 10 Microns: 67

& Sl

A 718 3

BS(

Enhancing the code based on the feedback provided:

1. Add error handling for loading the image.

2. Adapt the code to handle different scale bar locations.

3. Provide an alternative method for diameter calculation if
particles are not round (using bounding boxes).

def'load _image(image path):

try:

image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)
if image is None:

raise FileNotFoundError(f'Image not found or unable to load:
{image path}")

return image

except Exception as e:

print(f"Error loading image: {e}")

return None

Enhanced version of particle counting with bounding box method
for irregular shapes

def analyze particles(image):

Assuming scale bar length in microns

scale bar length microns =300

Apply a threshold to isolate white particles
_, thresholded image = cv2.threshold(image, 200, 255,
cv2.THRESH BINARY)

67

34

Find contours of the white regions
contours, = cv2.findContours(thresholded image,
cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Search for the scale bar by locating the longest contour (presumed
to be the scale bar)

scale bar contours, = cv2.findContours(thresholded image[-50:,
:]l, cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

if scale bar contours:

Find the longest contour in the scale bar region

scale bar _contour = max(scale bar contours, key=cv2.contourArea)
X, y, W, h = cv2.boundingRect(scale bar contour)

Calculate pixel-to-micron ratio using the width of the scale bar
pixel to micron ratio =scale bar length microns/w

else:

raise ValueError("Scale bar not found. Ensure that the image contains
a visible scale bar.")

Initialize the list to hold the particles larger than 10 microns
large particles =[]

Alternative size calculation: using bounding boxes to consider non-
round shapes

for contour in contours:

X, y, W, h = cv2.boundingRect(contour)

ifw>0and h>0:

Calculate the equivalent size based on the bounding box
dimensions

particle size microns = max(w, h) * pixel to micron_ratio

if particle size microns > 10:

large particles.append(contour)

Draw contours on the original image to highlight the particles
annotated_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
cv2.drawContours(annotated image, large particles, -1, (0, 255, 0),
2) # Draw in green

Return the number of large particles and the annotated image
num_large particles = len(large particles)
return num_large particles, annotated image

Load the image and perform the analysis
image = load_image(image path)
if image is not None:

35

num_large particles, annotated image = analyze particles(image)

Display the result

plt.figure(figsize=(10, 10))
plt.imshow(annotated image)

plt.title(f'Identified Particles Larger Than 10 Microns:
{num_large particles}')

plt.axis('off")

plt.show()

num_large particles

300pm

36

Text / Code / Image Answer
ChatGPT’s | Annotated Image with Particles Larger Than 10 Micrometers (Count: 1) 1
Response

import cv2

import numpy as np
import matplotlib.pyplot as plt

Load the image
image path ='/mnt/data/08.png'
image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

37

Get the dimensions of the image
height, width = image.shape

Crop out the scale bar region (manually estimate the area)

Assume the scale bar region is the bottom 10% of the image
scale bar region = int(height * 0.9)

image cropped = image[:scale bar region, :]

Apply a threshold to isolate white particles (the bright areas)
_, thresholded = cv2.threshold(image cropped, 200, 255,
cv2.THRESH BINARY)

Detect contours of the white particles
contours, = cv2.findContours(thresholded,
cv2.RETR _EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Now let's process the contours and filter those larger than 10
micrometers

We'll first calculate the pixel to micrometer ratio using the scale bar
Scale bar is 300 micrometers long, we will find its pixel length by
manual measurement

scale bar length microns =300 # from the image label
scale bar length pixels = 605 # manually measured from the image
pixel to micron ratio =scale bar length microns /
scale bar length pixels

Filter contours based on size (10 microns or more)

filtered contours =[]

particle areas =[]

for contour in contours:

area = cv2.contourArea(contour) * (pixel to micron_ratio ** 2) #
Convert area from pixels to micrometers

if area >= (10 ** 2): # Only consider particles with an area
equivalent to 10 microns or larger

filtered _contours.append(contour)

particle areas.append(area)

Draw contours on the original cropped image for visualization
image annotated = cv2.cvtColor(image cropped,
cv2.COLOR_GRAY2BGR)

cv2.drawContours(image annotated, filtered contours, -1, (0, 255,
0),2)

Count the number of particles

38

num_particles = len(filtered contours)

Display the annotated image

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image annotated,
cv2.COLOR_BGR2RGB))

plt.title(f' Annotated Image with Particles Larger Than 10
Micrometers (Count: {num_particles})')

plt.axis('off")

plt.show()

num_particles
Gemini’s | Strengths:
Feedback

ChatGPT's response provides a well-structured Python code that
accomplishes the task of counting particles larger than 10
micrometers.

It incorporates essential steps like image loading, scaling calibration
using the scale bar, thresholding, contour detection, and area filtering
based on the size threshold.

It visualizes the results using an annotated image highlighting the
identified particles.

Areas for Improvement:

Thresholding: While thresholding is a good approach to isolate
particles, the threshold value (200) might need adjustments based on
the image's lighting conditions.

Suggest including a step to explore different thresholds and their
impact on the results.

Contour filtering: The assumption of a circular particle for area
calculation (using area * pi) might not be accurate for all particle
shapes.

Consider mentioning this as a limitation and explore alternative
approaches for non-circular particles, such as using the bounding
rectangle area or equivalent diameter.

Manual Measurement: Manually measuring the scale bar length in
pixels can introduce errors.

If possible, suggest incorporating a semi-automatic approach where
the user can define a fixed length region on the scale bar, and the
code calculates the pixel length within that region.

Overall, ChatGPT's response demonstrates a good understanding of
image processing techniques for particle analysis. The suggested
improvements can enhance the robustness and generalizability of the
solution.

39

ChatGPT’s
Improved
Response

(Count: 10)

Improved Annotated Image with Particles Larger Than 10 Micrometers

Let's improve the previous analysis based on the feedback:

- Add a function to explore different threshold values and select the

best one.

- Improve the particle size filtering by considering bounding boxes
or equivalent diameters for non-circular particles.

- Automate the scale bar detection to avoid manual measurement
errors.

Reload the image and define an automatic threshold exploration
method

def auto_threshold(image, lower threshold=150,
upper_threshold=255):

""" Apply a range of thresholds and return the best one for detecting
bright particles."""

best threshold = None

max_contours =0

for threshold in range(lower_threshold, upper_threshold, 5):

_, temp_thresh = cv2.threshold(image, threshold, 255,
cv2.THRESH BINARY)

temp_contours, = cv2.findContours(temp _thresh,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

if len(temp_contours) > max_contours:

max_contours = len(temp_contours)

best_threshold = threshold

return best_threshold

Apply the auto threshold method to find the best threshold value
best threshold value = auto_threshold(image cropped)

Apply the best threshold found
_, thresholded auto = cv2.threshold(image cropped,
best threshold value, 255, cv2. THRESH BINARY)

16

40

Detect contours of the white particles using the improved threshold
contours_auto, = cv2.findContours(thresholded auto,
cv2.RETR _EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Filter particles by bounding box size or equivalent diameter (for
non-circular shapes)

filtered contours_auto =[]

for contour in contours_auto:

Calculate the bounding box area or equivalent diameter to account
for non-circular particles

X, y, W, h = cv2.boundingRect(contour)

bounding box area=w * h

bounding box area microns = bounding box area *
(pixel to micron ratio ** 2)

Filter based on area or a minimum dimension threshold (e.g., at
least one dimension should be >= 10 microns)

if bounding box_area microns >= (10 ** 2) or w *

pixel to micron_ratio >= 10 or h * pixel to micron ratio >= 10:
filtered contours_auto.append(contour)

Draw contours on the original cropped image for visualization
image annotated auto = cv2.cvtColor(image cropped,
cv2.COLOR_GRAY2BGR)
cv2.drawContours(image annotated auto, filtered contours auto, -1,
(0, 255,0), 2)

Count the number of particles
num_particles_auto = len(filtered contours_auto)

Display the updated annotated image with improved thresholding
and particle filtering

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image annotated auto,

cv2.COLOR BGR2RGB))

plt.title(fImproved Annotated Image with Particles Larger Than 10
Micrometers (Count: {num_particles auto})")

plt.axis('off")

plt.show()

num_particles auto

Det.
BSD Full

41

300 um

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image
image path = "/mnt/data/09.png"

Det.
BSD Full

Text / Code / Image Answer
ChatGPT’s Annotated Image with 0 Particles > 10 Micrometers 0
First . Yk O % 3# %
Response

42

image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Set the scale bar details

scale_bar length micrometers =300 # From the scale bar in
micrometers

scale bar pixel length = 1084 # Measured manually from the image
for the scale bar in pixels

Compute the pixel to micrometer conversion factor
micrometers per pixel = scale bar length micrometers /
scale bar pixel length

Apply thresholding to isolate white particles
_, thresholded = cv2.threshold(image, 200, 255,
cv2.THRESH BINARY)

Detect contours to find the particles
contours, = cv2.findContours(thresholded,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

Filter contours based on the size (in micrometers) to keep only
those > 10 micrometers

min_size _micrometers = 10

min_size pixels =min_size micrometers / micrometers_per pixel
filtered contours = [cnt for cnt in contours if cv2.contourArea(cnt) >
min_size pixels**2]

Annotate the image with detected particles

annotated image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
for cnt in filtered contours:

cv2.drawContours(annotated image, [cnt], -1, (0, 255, 0), 2) # Draw
green contours

Display the image with annotated particles

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image,
cv2.COLOR_BGR2RGB))

plt.title(f"Annotated Image with {len(filtered contours)} Particles >
10 Micrometers")

plt.axis('off")

plt.show()

Output the number of detected particles larger than 10 micrometers
len(filtered contours)

Gemini’s
Feedback

Feedback for ChatGPT's Response
Strengths:

43

ChatGPT's response provides a well-structured Python code that
accomplishes the task of counting particles larger than 10
micrometers.

It includes all the necessary steps: image loading, scale calibration,
thresholding, contour detection, size filtering, and visualization.
Areas for Improvement:

Thresholding: The threshold value (200) might need adjustments
based on the specific image. It's a good idea to explore adaptive
thresholding techniques for uneven illumination.

Noise filtering: Consider adding noise reduction steps before
thresholding, especially if the background has slight variations that
could lead to misidentified particles.

Contour filtering: The current approach filters based on area.
Depending on the particle shape, circularity or other shape features
could be used for a more robust filtration of non-particle objects.
Ignore intersecting particles: The prompt asks to ignore intersecting
particles at the bottom. While the code addresses particle size, it
doesn't exclude those touching the bottom. You can explore
morphological operations like erosion to break these connections or
define a region of interest (ROI) excluding the bottom area before
contour detection.

Additional Suggestions:

ChatGPT could mention these limitations in its response and suggest
ways to improve the solution for different image conditions.

It could also explore libraries like scikit-image that offer
functionalities for particle analysis.

Overall, ChatGPT's response provides a good starting point for image
analysis. By incorporating the suggested improvements, it can deliver
more robust and accurate particle counting for various image
conditions.

44

ChatGPT’s
Improved
Response

Annotated Image with 2 Particles > 10 Micrometers

Let's incorporate the feedback to improve the analysis
from skimage import morphology

from skimage.filters import threshold otsu

from skimage.measure import label, regionprops

from skimage.morphology import remove small_objects

Reload the image
image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)

Apply GaussianBlur to reduce noise before thresholding
blurred image = cv2.GaussianBlur(image, (5, 5), 0)

Use adaptive thresholding or Otsu's thresholding for better results
otsu_thresh value = threshold otsu(blurred image)

_, thresholded = cv2.threshold(blurred image, otsu_thresh value,
255, cv2.THRESH BINARY)

Remove small noise using morphological operations
thresholded cleaned = remove_small objects(thresholded > 0,
min_size=20)

Create an ROI to exclude particles intersecting at the bottom
height, width = thresholded cleaned.shape

roi = np.zeros_like(thresholded cleaned)

roi[:int(height*0.9), :] = thresholded cleaned[:int(height*0.9), :] #
Exclude bottom 10% region

Label and measure regions
labeled image = label(roi)

45

regions = regionprops(labeled image)

Set the minimum particle size to 10 micrometers and filter
accordingly

min_size pixels = (min_size micrometers /

micrometers per pixel)**2

filtered regions = [region for region in regions if region.area >
min_size pixels]

Annotate the image with the filtered particles

annotated image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
for region in filtered regions:

minr, minc, maxr, maxc = region.bbox
cv2.rectangle(annotated image, (minc, minr), (maxc, maxr), (0, 255,

0),2)

Display the improved annotated image

plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image,

cv2.COLOR BGR2RGB))

plt.title(f" Annotated Image with {len(filtered regions)} Particles >
10 Micrometers")

plt.axis('off")

plt.show()

Output the number of particles larger than 10 micrometers
len(filtered regions)

300 um

46

Text / Code / Image Answer
ChatGPT’s Detected Large Particles (>10 micrometers): 44 44
First 7 LY : '
Response)

import cv2
import numpy as np
import matplotlib.pyplot as plt

Load the image

47

image path ="/mnt/data/10.png"
image = cv2.imread(image path)

Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Thresholding to isolate white particles
_, thresh = cv2.threshold(gray, 200, 255, cv2. THRESH BINARY)

Find contours of the white particles
contours, = cv2.findContours(thresh, cv2.RETR _EXTERNAL,
cv2.CHAIN_APPROX SIMPLE)

Scale bar info: The scale bar indicates 300 micrometers = some
number of pixels

For now, I'll calculate pixel-to-micrometer conversion using the
300um scale bar in the image.

Cropping the scale bar out to avoid false particle detections from that
region

Approximate where the scale bar is in the bottom of the image
height, width = gray.shape

scale bar region = gray[height - 50:height, :] # Assume bottom 50px
contains the scale bar

scale bar length pixels = width # The bar stretches the full width of
the image

300 um corresponds to the width of the image under the scale bar
scale bar length um =300 # micrometers

pixel to micrometer ratio = scale bar length um/
scale bar length pixels

Now process contours to filter those larger than 10 micrometers (in
pixels)

min_size um =10

min_size pixels =min_size um/ pixel to micrometer ratio

Filter and draw contours larger than 10 micrometers
large particles =[]

for contour in contours:

if cv2.contourArea(contour) > min_size pixels:

large particles.append(contour)

Draw the detected large particles on the image for visualization
annotated image = image.copy()
cv2.drawContours(annotated image, large particles, -1, (0, 255, 0), 2)

48

Count and annotate large particles
num_large particles = len(large particles)

Display the image with annotations

plt.figure(figsize=(10, 10))

plt.imshow(cv2.cvtColor(annotated image, cv2.COLOR_BGR2RGB))
plt.title(f"Detected Large Particles (>10 micrometers):

{num_large particles}")

plt.axis('off")

plt.show()

Output the number of large particles
num _large particles

Gemini’s
Feedback

The response you crafted is excellent! It covers all the essential steps
for counting large particles in the image while considering the scale
bar and excluding intersecting particles. Here are some minor
improvements to consider:

1. Handling Unknown Scale Bar Length:

Currently, the code assumes the scale bar length is 300 micrometers. In
a real scenario, you might not know this value beforehand. You can
prompt for user input or implement image processing techniques to
estimate the scale bar length automatically.

2. Refining Scale Bar Cropping:

The current approach assumes the scale bar occupies the bottom 50
pixels. A more robust approach could involve techniques like color
thresholding or template matching to identify the scale bar region
dynamically.

3. Intersecting Particles:

While the prompt mentions ignoring intersecting particles, there's no
explicit code for it. You can introduce additional steps to filter out
contours that touch the image borders. Techniques like bounding box
checks or morphological operations can be helpful.

4. Additional Considerations:

Error handling: Include checks for invalid image paths or unexpected
image formats.

Efficiency: Explore optimized contour filtering methods or image
processing libraries like scikit-image for potentially faster execution.
Overall, ChatGPT's response demonstrates a strong understanding of
image processing concepts and provides a solid foundation for particle
analysis. These refinements can further enhance its robustness and

49

adaptability to various image scenarios.

ChatGPT’s
Improved
Response

Detected Large Particles (>10 micrometers): 44

300pm 320 x 1.55mm 10kV M SD Full Label

Proceed with the initial assumption that the scale bar length is 300
micrometers

and continue particle analysis while ignoring particles that intersect
the image borders.

Assuming the scale bar length is 300 micrometers as a fallback
scale bar length um =300 # micrometers

scale bar length pixels = width # Assuming full width of the image
for the scale bar

pixel to micrometer ratio = scale bar length um/
scale bar length pixels

Reapply thresholding to isolate white particles
_, thresh = cv2.threshold(gray, 200, 255, cv2. THRESH BINARY)

Find contours of the white particles again
contours, = cv2.findContours(thresh, cv2.RETR _EXTERNAL,
cv2.CHAIN_APPROX SIMPLE)

Filter large particles and exclude those intersecting with image
borders

large particles =[]

for contour in contours:

area = cv2.contourArea(contour)

Ignore particles that are too small
if area > min_size pixels:
Check if the particle touches the image borders (intersecting

44

50

particles)

X, y, W, h = cv2.boundingRect(contour)

ifx>5andy>5and x + w <width - 5 and y + h < height - 5: #
Leave margin for border detection

large particles.append(contour)

Draw the detected large particles on the image for visualization
annotated image = image.copy()
cv2.drawContours(annotated image, large particles, -1, (0, 255, 0), 2)

Count the number of large particles
num_large particles = len(large particles)

Display the annotated image with highlighted particles
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(annotated image, cv2.COLOR BGR2RGB))
plt.title(f"Detected Large Particles (>10 micrometers):

{num_large particles}")

plt.axis('off")

plt.show()

Output the number of large particles detected
num large particles

Table S4. Results of teamwork - Experiment I1

