Supplementary: GAI Codes
Google Earth Engine (GEE) Codes

/**

* GENERATE ERAS5-LAND MONTHLY CLIMATE TRENDS (1990-2030) FOR
ALL MONTHS

* Output: 12 charts for Mean Temperature and 12 charts for
Relative Humidity (Jan-Dec)

* ENHANCEMENT: Export data to Google Drive as CSV.

*/

// 1. Define the Area of Interest (A0I) for Kolkata, India.
var kolkata aoi = ee.Geometry.BBox(88.25, 22.45, 88.50,
22.70) ;

// Define the time period.

var startYear = 1990;

var endYear = 2030;

var startMonth = 1; // January
var endMonth = 12; // December

// 2. Load the ERA5-LAND MONTHLY dataset.
var era5 monthly =
ee.ImageCollection ("ECMWF/ERAS5 LAND/MONTHLY") ;

// 3. Generate lists for years and months to iterate over.
var years = ee.List.sequence (startYear, endYear);

var months = ee.List.sequence (startMonth, endMonth);

// List of month names for chart titles/labels

var monthNames = ee.List(['January', 'February', 'March',
'April', 'May', 'June',

'July’', 'August’', 'September’,
'October', 'November', 'December']):;

// 4. Function to calculate mean climate data for a specific
month.
var calculateMonthlyData = function(year) {

year = ee.Number (year);

// Define a nested function to iterate over months within a
year.
var calculateDataForMonth = function (month) {
month = ee.Number (month) ;

var startDate = ee.Date.fromYMD(year, month, 1);
var endDate = startDate.advance(l, 'month');

var monthlyData = erab5 monthly
.filterDate (startDate, endDate)
.filterBounds (kolkata aoi);

var monthlyCount = monthlyData.size();
var monthlyImage = monthlyData.mean () ;

// --- Calculate Mean Temperature (°C) —---

var meanTempC = ee.Algorithms.If (monthlyCount.gt(0),
monthlyImage.select ('temperature 2m')
.subtract (273.15) // Convert K to C
.reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: kolkata aoi,
scale: 9000,
bestEffort: true
}) .get ('temperature 2m'),

null
) ;
// —--- Calculate Mean Relative Humidity (%) ---
var meanRH = ee.Algorithms.If (monthlyCount.gt(0),
(function () {
var meanTempK Image =
monthlyImage.select ('temperature 2m');
var meanDewpointK Image =

monthlyImage.select ('dewpoint temperature 2m');
var A = 17.625; var B = 243.04;
var T C Image = meanTempK Image.subtract(273.15);
var Td C Image = meanDewpointK Image.subtract (273.15)

~e

var es = T _C Image.expression('6.1094 * exp((A * T) /
(B+T))', { 'T': T C Image, 'A': A, 'B': B });

var e = Td C Image.expression('6.1094 * exp((A * Td) /
(B +Td))', { 'Td': Td C Image, 'A': A, 'B': B });

var relativeHumidityImage =

e.divide (es) .multiply(100) .rename ('mean rh percent');

return relativeHumidityImage.reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: kolkata aoi,
scale: 9000,
bestEffort: true
}) .get ('mean_rh percent');
1) Oy
null
)

// Create a feature.
return ee.Feature (null, {

'yvear': year,

'month': month,

'label': ee.Number (year) .format ('sd') .cat ('-
') .cat (ee.Number (month) . format ('%02d")),

'mean temp c': meanTempC,

'mean rh percent': meanRH,

1)
}s

// Map the month-calculation function over the 1list of

months.
return months.map (calculateDataForMonth) ;

}i

// 5. Create the complete Feature Collection.

var nested features = years.map(calculateMonthlyData);
var flat list of features = nested features.flatten();
var climate features =

ee.FeatureCollection(flat list of features);

// Filter out features with null values

var valid features = climate features
.filter(ee.Filter.notNull(['mean temp c',

'mean rh percent']));

/] R

// 6. Generate Separate Monthly Charts &l

// Function to generate a single chart (returns the chart
object)

var generateChart = function (monthIndex, variableName,
yAxisTitle, color, trendColor) {

var monthNum = ee.Number (monthIndex) .add(1l);
var monthStr = ee.String(monthNames.get (monthIndex)) ;

// Filter the entire feature collection for the specific
month

var monthly features =
climate features.filter(ee.Filter.eg('month', monthNum)) ;

// Construct the title server-side
var title = ee.String('Mean ').cat(variableName).cat ('
Trend for ') .cat (monthStr).cat (' (1990 - 2030)"'");

// Create the chart.
var chart = ui.Chart.feature.byFeature ({
features: monthly features,
xProperty: 'year',
yProperties: [variableName]
)
.setChartType ('ScatterChart')
.setOptions ({
title: title,

hAxis: {
title: 'Year',
gridlines: {color: '#cccccc', count: 10},

format: "####"',
viewWindow: {
min: startYear,
max: endYear
}
b

vAxis: |
title: yAxisTitle,
gridlines: {color: '#cccccc', count: 5}

s

series: {0: {color: color, pointSize: 4}},
legend: {position: 'none'},
trendlines: {0: {
type: 'linear', color: trendColor, lineWidth: 3,
opacity: 0.7,
visibleInLegend: true, labelInlLegend: 'Linear Trend'
1}
})

return chart; // Return the chart object
}i

// Function to generate and print all 24 charts
var generateAndPrintAllCharts = function() {

// —--- Temperature Charts (12 charts) ---
months.getInfo () .forEach (function (month) {
var monthIndex = month - 1;
var monthName = monthNames.getInfo () [monthIndex];
var temp chart = generateChart (
ee.Number (monthIndex),
'mean temp c',
'Mean Temperature (°C)’',

'red',
'darkred'
)7
print("b Temperature: ' + monthName + ' Chart:',
temp chart);
1)
// —--- Relative Humidity Charts (12 charts) ---
months.getInfo () .forEach (function (month) {
var monthIndex = month - 1;

var monthName = monthNames.getInfo () [monthIndex];

var rh chart = generateChart (
ee.Number (monthIndex),
'mean rh percent',
'Mean Relative Humidity (%)',
'blue',
'darkblue'

)

print (' Relative Humidity: '+ monthName + '
Chart:', rh chart);

)
}s

// Execute the chart generation and printing
generateAndPrintAllCharts();

// 7. Determine and print the last year/month with valid data
var valid dates =
valid features.aggregate array('label') .sort();

var last valid label = ee.Algorithms.If (
valid dates.size().gt(0),
valid dates.get(valid dates.size() .subtract(l)),
'No Valid Data Found'
)
print("l Last Valid Data ©Point Found (Year-Month) : "',
last _valid label);

// 8. Optionally, center the map on Kolkata and display the
AOT.

Map.centerObject (kolkata aoi, 9);
Map.addLayer (kolkata aoi, {color: 'OOFFOO', opacity: 0.4},
'Kolkata AOI Polygon');

// 9. EXPORT DATA TO GOOGLE DRIVE (New Enhancement)

Export.table.toDrive ({

collection: valid features,

description: 'Kolkata Monthly Climate Export', // Name of
the task in the Tasks tab

fileNamePrefix: 'kolkata monthly climate data', // File name
in Drive

folder: 'GEE Exports', // Specify a folder in your Google
Drive (will be created if it doesn't exist)

fileFormat: 'CSV', // Export as CSV

selectors: ['year', 'month', 'label’, 'mean temp c',
'mean_rh percent'] // Select the columns to include

1) ;

print(' Data Export Task Queued. Check the "Tasks" tab (top right)
to Run it.');

/**

* GENERATE ERAS5-LAND MONTHLY MAX/MIN TEMPERATURE TRENDS (1990
- Present)

* FIX: Improved data handling to ensure 'year' property is
always non-null.

*/

// 1. Define the Area of Interest (AOI) for Kolkata, India.
var kolkata aoi = ee.Geometry.BBox(88.25, 22.45, 88.50,
22.70) ;

// Define the time period.

var startYear = 1990;

// Current year (will be 2025 until January 1st, 2026, using
GEE's server time)

var endYear = ee.Date (Date.now()).get('year') .getInfol();

// 2. Define Months

var startMonth = 1; // January

var endMonth = 12; // December

var months = ee.List.sequence (startMonth, endMonth);

var monthNames = ee.List(['January', 'February', 'March',
'April', 'May', 'June',

'July’', 'August’', 'September’,
'October', 'November', 'December']):;

// 3. Load the ERA5-LAND HOURLY dataset.
var era5 hourly =
ee.ImageCollection ("ECMWF/ERAS5 LAND/HOURLY") ;

// 4. Generate the list of years to iterate over.
var years = ee.List.sequence (startYear, endYear);

// 5. Function to calculate daily Max and Min temperature for

a specific month/year combination.
var calculateMonthlyData = function (year) {
year = ee.Number (year):;

var calculateDataForMonth = function (month) {
month = ee.Number (month) ;

// Define the essential feature properties first, which
always exist.
var baseProperties = {
'year': year,
'month': month,
'label': ee.Number (year) .format ('3d') .cat ('-

') .cat (ee.Number (month) . format ('%02d")),
}s

var startDate = ee.Date.fromYMD (year, month, 1);
var endDate = startDate.advance(l, 'month');

// Filter the HOURLY collection for the specific month.
var hourlyData = era5 hourly

.filterDate (startDate, endDate)

.filterBounds (kolkata aoi);

var monthlyCount = hourlyData.size();
var hasData = monthlyCount.gt (0);

// ——- Define calculation block (only executed if data is

present) ---
var calculatedData = ee.Algorithms.If (hasData,

ee.Dictionary ({
'max_temp c':
hourlyData.select ('temperature 2m') .max ()
.subtract (273.15)

.reduceRegion ({
reducer: ee.Reducer.mean (),

geometry: kolkata aoi,
scale: 9000,
bestEffort: true

}) .get ('temperature 2m'),

'min_temp c':
hourlyData.select ('temperature 2m') .min ()
.subtract (273.15)

.reduceRegion ({
reducer: ee.Reducer.mean(),

geometry: kolkata aoi,
scale: 9000,
bestEffort: true

}) .get ('temperature 2m')

1)y

// Return a dictionary of nulls if no data is present
ee.Dictionary({'max temp c': null, 'min temp c': null})

)7

// Merge the base properties with the calculated (or null)

temperature data.
var finalProperties

ee.Dictionary (baseProperties) .combine (calculatedData) ;

// Return the feature with all properties defined (some
may be null).
return ee.Feature(null, finalProperties);

}i

// Map the month-calculation function over the 1list of
months.
return months.map (calculateDataForMonth) ;

}i

// 6. Map the function over the years and flatten the result
to create the Feature Collection.

var nested features = years.map(calculateMonthlyData);
var flat list of features = nested features.flatten();
var climate features =

ee.FeatureCollection (flat list of features);

// Filter out features where EITHER max temp ¢ OR min temp c
is null.
// NOTE: 'year' is now guaranteed to be non-null.
var valid features = climate features
.filter(ee.Filter.notNull(['max temp c']));
// We only need to check one temp variable since they are
calculated together

// 7. Generate and Display 24 Monthly Charts &l

// Function to generate a single chart (returns the chart
object)

var generateChart = function (monthIndex, variableName, color,
trendColor) {

var monthNum = ee.Number (monthIndex) .add(1l);
var monthStr ee.String (monthNames.get (monthIndex));

// Filter the VALID feature collection for the specific
month

var monthly features =
valid features.filter(ee.Filter.eq('month', monthNum)) ;

// Determine the variable name and title dynamically

var varTitle = ee.String(variableName) .replace(' temp c',
'").replace('max', 'Maximum').replace('min', 'Minimum');

var chartTitle = wvarTitle.cat(' Temperature Trend for
') .cat (monthStr) .cat (' (1990 - Present)');

// Create the chart.
var chart = ui.Chart.feature.byFeature ({
features: monthly features,
xProperty: 'year',
yProperties: [variableName]
})
.setChartType ('ScatterChart')
.setOptions ({
title: chartTitle,
hAxis: {

title: 'Year',

gridlines: {color: '#cccccc', count: 10},
format: "####"',
viewWindow: {
min: startYear,
max: endYear
}
b
vAxis: {
title: 'Temperature (°C)"',
gridlines: {color: '#cccccc', count: 5}
b
series: {0: {color: color, pointSize: 4}},
legend: {position: 'none'},
trendlines: {0: {
type: 'linear', color: trendColor, lineWidth: 3,

opacity: 0.7,

visibleInLegend: true, labelInLegend:
+}
1)

return chart; // Return the chart object

}i

// Function to generate and print all 24 charts
var generateAndPrintAllCharts = function() {

// —--- Max Temperature Charts (12 charts) -
months.getInfo () .forEach (function (month) {
var monthIndex = month - 1;
var monthName = monthNames.getInfo () [mo

var max_ chart = generateChart (
ee.Number (monthIndex),
'max_temp c',
'red',
'darkred’

) ;

print (' % MAX Temp: ' + monthName
max_ chart);

1) ;

// —--- Min Temperature Charts (12 charts) -
months.getInfo () .forEach (function (month) {
var monthIndex = month - 1;

'Linear Trend'

nthIndex];

+ ' Chart:',

var monthName = monthNames.getInfo () [monthIndex];

var min chart = generateChart (
ee.Number (monthIndex),
'min temp c',

'blue’',
'darkblue'
)
print ('@ MIN Temp: ' + monthName

min chart);
1)
}s

// Execute the chart generation and printing

+ ' Chart:',

it.');

print (

generateAndPrintAllCharts () ;

// 8. Map and Export (Optional)

// Determine and print the last year/month with valid data
var valid labels =
valid features.aggregate array('label').sort();

var last valid label = ee.Algorithms.If (
valid labels.size().gt(0),
valid labels.get (valid labels.size() .subtract(l)),
'No Valid Data Found'
)7
print("l Last Valid Data Point Found (Year-Month) : ',
last valid label);

// Optionally, center the map on Kolkata and display the AOT.
Map.centerObject (kolkata aoi, 9);

Map.addLayer (kolkata aoi, {color: 'OOFF00', opacity: 0.4},
'Kolkata AOI Polygon');

// Data Export (Uncomment to queue)

Export.table.toDrive ({

collection: valid features,

description: 'Kolkata Monthly MaxMin Temp Export',

fileNamePrefix: 'kolkata monthly maxmin temp data',

folder: 'GEE Exports',

fileFormat: 'CSV',

selectors: ['year', 'month', 'label’, 'max temp c',
'min temp c']

1)

'8 Data Export Task Queued. Check the "Tasks" tab to Run

/**

* GENERATE ERA5-LAND MONTHLY CLIMATE TRENDS (1990-2030) FOR
ALL MONTHS

* Output: 12 charts for Mean Temperature and 12 charts for
Absolute Humidity (Jan-Dec)

* ENHANCEMENT: Replaced Relative Humidity with Absolute
Humidity (g/m"3).

*/

// 1. Define the Area of Interest (AOI) for Kolkata, India.
var kolkata aoi = ee.Geometry.BBox(88.25, 22.45, 88.50,
22.70) ;

// Define the time period.

var startYear = 1990;

var endYear = 2030;

var startMonth = 1; // January

var endMonth = 12; // December

// Constants for Absolute Humidity Calculation
var Mw = 0.018015; // Molar mass of water vapor (kg/mol)
var R = 8.314; // Universal Gas Constant (J/ (mol*K))

// 2. Load the ERA5-LAND MONTHLY dataset.
var erab monthly =
ee.ImageCollection ("ECMWF/ERAS LAND/MONTHLY") ;

// 3. Generate lists for years and months to iterate over.
var years = ee.lList.sequence (startYear, endYear);

var months = ee.List.sequence (startMonth, endMonth) ;

// List of month names for chart titles/labels

var monthNames = ee.List(['January', 'February', 'March',
'April', 'May', 'June',

'July', 'August’', 'September’',
'October', 'November', 'December']):;

// 4. Function to calculate mean climate data for a specific
month.
var calculateMonthlyData = function (year) {

year = ee.Number (year);

// Define a nested function to iterate over months within a
year.
var calculateDataForMonth = function (month) {
month = ee.Number (month) ;

var startDate = ee.Date.fromYMD(year, month, 1);
var endDate = startDate.advance(l, 'month');

var monthlyData = era5 monthly
.filterDate (startDate, endDate)
.filterBounds (kolkata aoi);

var monthlyCount = monthlyData.size();
var monthlyImage = monthlyData.mean();

// --- Calculate Mean Temperature (°C) ---
var meanTempC = ee.Algorithms.If (monthlyCount.gt(0),
monthlyImage.select ('temperature 2m')
.subtract (273.15) // Convert K to C
.reduceRegion ({
reducer: ee.Reducer.mean|(),
geometry: kolkata aoi,
scale: 9000,
bestEffort: true
}) .get ('temperature 2m'),

null
)
// —--—- Calculate Mean Absolute Humidity (g/m"3) ---
var meanAH = ee.Algorithms.If (monthlyCount.gt(0),
(function () {
var meanTempK Image =
monthlyImage.select ('temperature 2m');
var meanDewpointK Image =

monthlyImage.select ('dewpoint temperature 2m');

// Vapour pressure calculation constants (Magnus-
Tetens formula)
var A = 17.625; var B = 243.04;

// Convert Dewpoint to Celsius
var Td C Image = meanDewpointK Image.subtract(273.15);

// Calculate Actual Vapor Pressure (e) 1in hPa
(millibars)

// e = 6.1094 * exp((A * Td) / (B + Td))

var e hPa = Td C Image.expression('6.1094 * exp((A *

Td) / (B + Td))', {
'Td': Td_C Image,
'A': A,
'B': B
b);

// Convert Actual Vapor Pressure (e) from hPa to
Pascals (Pa)
var e Pa = e hPa.multiply(100);

// Calculate Absolute Humidity (AH) in kg/m”3 (using
the Ideal Gas Law for water vapor)

// AH kg m3 = (e * Mw) / (R * Tk)

var AH kg m3 Image =
e Pa.multiply (Mw) .divide (meanTempK Image.multiply (R)) .rename (
'mean_ah kg m3');

// Convert AH from kg/m"3 to g/m"3 (multiply by 1000)
var absoluteHumidityImage =
AH kg m3 Image.multiply(1000).rename('mean ah g m3'");

return absoluteHumidityImage.reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: kolkata aoi,
scale: 9000,
bestEffort: true
}).get ('mean_ah g m3'");
POy
null
)

// Create a feature.
return ee.Feature (null, {

'year': year,
'month': month,
'label': ee.Number (year) .format ('%d') .cat ('-

') .cat (ee.Number (month) . format ('%02d")),
'mean _temp c': meanTempC,
'mean_ah g m3': meanAH, // Changed from mean rh percent
b);
b

// Map the month-calculation function over the 1list of
months.
return months.map(calculateDataForMonth) ;

}s

// 5. Create the complete Feature Collection.
var nested features = years.map(calculateMonthlyData);

var flat list of features = nested features.flatten();
var climate features =
ee.FeatureCollection(flat list of features);

// Filter out features with null values

var valid features = climate features
.filter(ee.Filter.notNull (['mean temp c',

'mean _ah g m3'])); // Filter updated

f

// 6. Generate Separate Monthly Charts Kl

// Function to generate a single chart (returns the chart
object)

var generateChart = function (monthIndex, variableName,
yAxisTitle, color, trendColor) {

var monthNum ee.Number (monthIndex) .add (1) ;
var monthStr = ee.String(monthNames.get (monthIndex)) ;

// Filter the entire feature collection for the specific
month

var monthly features =
climate features.filter(ee.Filter.eg('month', monthNum)) ;

// Construct the title server-side
var title = ee.String('Mean ').cat(variableName) .cat ('
Trend for ').cat (monthStr).cat (' (1990 - 2030)"'");

// Create the chart.
var chart = ui.Chart.feature.byFeature ({
features: monthly features,
xProperty: 'year',
yProperties: [variableName]
})
.setChartType ('ScatterChart')
.setOptions ({
title: title,

hAxis: {
title: 'Year',
gridlines: {color: '#cccccc', count: 10},

format: '"####',
viewWindow: {
min: startYear,
max: endYear
}
b
vAxis: {
title: yAxisTitle,
gridlines: {color: '#cccccc', count: 5}
b
series: {0: {color: color, pointSize: 4}},
legend: {position: 'none'},
trendlines: {0: {
type: 'linear', color: trendColor, lineWidth: 3,
opacity: 0.7,
visibleInlLegend: true, labelInlLegend: 'Linear Trend'
H}
1)

return chart; // Return the chart object

}i

// Function to generate and print all 24 charts
var generateAndPrintAllCharts = function() {

// --- Temperature Charts (12 charts) ---
months.getInfo () .forEach (function (month) {

var monthIndex = month - 1;

var monthName = monthNames.getInfo () [monthIndex];

var temp chart = generateChart (
ee.Number (monthIndex),
'mean_temp c',
'Mean Temperature (°C)"',

'red',
'darkred’
) ;
print (' % Temperature: ' + monthName + ' Chart:',
temp chart);
1)
// --- Absolute Humidity Charts (12 charts) ---
months.getInfo () .forEach (function (month) {
var monthIndex = month - 1;

var monthName = monthNames.getInfo () [monthIndex];

var ah chart = generateChart (
ee.Number (monthIndex),

'mean_ah g m3', // Changed variable name
'Mean Absolute Humidity (g/m3)', // Changed Y-axis
title
'purple', // Changed color for distinction
'darkviolet'’
) ;
print (' Absolute Humidity: ' + monthName + '
Chart:', ah chart); // Changed label

1) ;
}i

// Execute the chart generation and printing
generateAndPrintAllCharts();

// 7. Determine and print the last year/month with valid data
var valid dates =
valid features.aggregate array('label').sort();

var last valid label = ee.Algorithms.If (
valid dates.size().gt(0),
valid dates.get(valid dates.size () .subtract(1l)),
'No Valid Data Found'
)7
print("l Last Valid Data ©Point Found (Year-Month) : ',
last valid label);

// 8. Optionally, center the map on Kolkata and display the

AOQOT.
Map.centerObject (kolkata aoi, 9);
Map.addLayer (kolkata aoi, {color: 'OOFF00', opacity: 0.4},

'Kolkata AOI Polygon');
// 9. EXPORT DATA TO GOOGLE DRIVE (Updated selectors)

Export.table.toDrive ({
collection: valid features,
description: 'Kolkata Monthly Climate Export AH',
fileNamePrefix: 'kolkata monthly absolute humidity data',
folder: 'GEE Exports',
fileFormat: 'CSV',
selectors: ['year', 'month', 'label’, 'mean temp c',
'mean _ah g m3'] // Selectors updated
b i

print (' 8 Data Export Task Queued. Check the "Tasks" tab (top right)
to Run it.');

// —--—- 1. Define Area of Interest (AOI) and Time Periods ---

// Coordinates for Kolkata (West Bengal, India)
var aoil = ee.Geometry.Point(88.36, 22.57).buffer(20000); //
20km buffer around the center

var date start early = '1990-01-01';
var date end early = '2000-12-31"';
var date start recent = '2015-01-01"';
var date end recent = '2025-01-01";

// --- 2. Load and Prepare Landsat Data ---
// Correction: Using the current, stable Landsat Collection 2,
Level 2 assets.

var L5 COLLECTION =
ee.ImageCollection ('LANDSAT/LT05/C02/T1 L2'");
var L8 COLLECTION =

ee.ImageCollection ('LANDSAT/LC08/C02/T1 L2'");

// LST Scaling Constants (same for L5/L8 C2 L2 Surface
Temperature product)

var ST SCALE FACTOR = 0.00341802;

var ST OFFSET = 149.0;

// Function to process Landsat 5 LST (uses ST B6)
var processL5 LST = function(image) {
// Select the correct Landsat 5 LST band (ST B6) and apply
scaling.
// The resulting LST is in Kelvin. Convert to Celsius (Kelvin
- 273.15).
var LST Celsius = image.select('ST_B6')
.multiply (ST SCALE FACTOR)
.add (ST OFFSET)

.subtract (273.15)
.rename ('LST"'") ;

// Add metadata bands for cloud removal and display
return image.addBands (LST Celsius)
.select ('LST")
.copyProperties (image, ['system:time start',
'CLOUD_COVER']) ;
bi

// Function to process Landsat 8 LST (uses ST B10)

var processL8 LST = function (image) {
// Select the correct Landsat 8 LST band (ST B10) and apply
scaling.

// The resulting LST is in Kelvin. Convert to Celsius (Kelvin
- 273.15).
var LST Celsius = image.select('ST B10')
.multiply(ST_SCALE_FACTOR)
.add (ST _OFFSET)
.subtract (273.15)
.rename ('LST"') ;

// Add metadata bands for cloud removal and display
return image.addBands (LST Celsius)
.select ("LST")
.copyProperties (image, ['system:time start',
"CLOUD COVER']) ;
bi

// —--- 3. Filter and Map Collections ---

// Landsat 5 data for the early period (L5 stops in 2013)
var L5 Early = L5 COLLECTION
.filterBounds (aoi)
.filterDate (date start early, date end early)
.filterMetadata ('CLOUD COVER', 'less than', 20)
.map (processL5 LST); // Mapped to L5 specific function

// Landsat 8 data for the recent period (L8 starts in 2013)
var L8 Recent = L8 COLLECTION
.filterBounds (aoi)
.filterDate (date start recent, date end recent)
.filterMetadata ('CLOUD COVER', 'less than', 20)
.map (processL8 LST); // Mapped to L8 specific function

// Merge the collections for the time series chart
var LST Merged = L5 Early.merge (L8 Recent);
// --- 4. Initialization and Robustness Check ---

// Use getInfo() to force server-side execution and check if
data exists in both periods.

var L5 size = L5 Early.size().getInfo();

var L8 size = L8 Recent.size().getInfo();

Map.centerObject (aoi, 9); // Center the map regardless of data
availability

if (L5 size > 0 && L8 size > 0) |

// —--- 4.1 Calculate Mean LST and Change Map (Executed only
if data exists) ---

// 1. LST (1990-2000) - Early Period

var meanLST Early = L5 Early.mean().clip(aoi);
// 2. LST (2015-2025) - Recent Period

var meanLST Recent = L8 Recent.mean().clip(aoi);

// 3. LST Change (Recent - Early)
var lstChange =
meanLST Recent.subtract (meanLST Early) .rename ('LST Change');

// --- 5. Visualization Parameters ---

// LST Palette (Cool to Hot: Blue to Red for Celsius)
var lstVis = {
min: 15,
max: 35,
palette: [
'0000FF', // Blue (Cool)
'00FFFF', // Cyan
'00FF00', // Green
'"FFFFO00', // Yellow
'FF0000' // Red (Hot)
]
b

// Change Palette (Cooling to Warming: Blue to Red, centered
at 0)
var changeVis = {

min: -3,
max: 3,
palette: [

'0000FF', // Blue (Cooling)
'FFFFFF', // White (No change)
'FF0000' // Red (Warming)
]
bi

// --—- 6. Display Maps in Earth Engine Viewer ---

Map.addLayer (meanLST Early, 1lstvis, 'l. LST (1990-2000) -
Early Period (C)");

Map.addLayer (meanLST Recent, 1lstVis, '2. LST (2015-2025) -
Recent Period (C)');

Map.addLayer (1stChange, changeVis, '3. LST Change (Recent -
Early) (C)'");

// —--- Add Legends to the Map —---
// Create a panel for the legend.
var legend = ui.Panel ({
style: {
position: 'bottom-left',
padding: '8px 15px'
}
1) :

// Create a title for the legend.
var legendTitle = ui.Label ({
value: 'LST Change (°C) 1990-2000 to 2015-2025'",

style: {
fontWeight: 'bold',
fontSize: 'l4px',
margin: '0 0 4px 0',
padding: '0'

}

}):
legend.add (legendTitle) ;

// Create a color bar for the legend.
var makeColorBarParams = function (palette) {
return {
bbox: [0, 0, 1, 0.17,
dimensions: '100x10°',
format: 'png',
min: O,
max: 1,
palette: palette,
bi
bi

var colorBar = uil.Thumbnail ({
image: ee.Image.pixellLonLat () .select(0),
params: makeColorBarParams (changeVis.palette),

style: {stretch: 'horizontal', margin: 'Opx 8px"',
maxHeight: '24px'},
1)
legend.add (colorBar) ;
// Create text labels for the legend.
var legendLabels = ui.Panel ({
widgets: [
ui.Label (changeVis.min, {margin: '4px 8px'}),
ui.Label (changeVis.max / 2, {margin: '4px 8px',

textAlign: 'center', stretch: 'horizontal'}),
ui.Label (changeVis.max, {margin: '4px 8px'})

1,
layout:

1) ;
legend.add (legendLabels) ;

ui.Panel.Layout.flow('horizontal')

// Add source information

var sourcelLabel = ui.Label ({
value: 'Source: Landsat 5 & 8, USGS. Processed in GEE.',
style: {

fontSize: 'l1l0px',
margin: '4px 0 0 0',
padding: '0'

}

b
legend.add (sourcelabel) ;

// Add the legend to the map.
Map.add (legend) ;

// —--- 7. Generate Time Series Chart and Exportable Table

Data —---

// Chart configuration
var chartOptions = {

title: 'Kolkata Land Surface Temperature (LST) Time Series
(1990-2025) \nSource: Landsat 5 & 8, USGS. Processed in GEE.',

vAxis: {title: 'LST (°C)'},

hAxis: {title: 'Date'},

lineWidth: 1,

pointSize: 3,

trendlines: {

0: {
type: 'linear',
color: 'red',

visibleInLegend: true,
labelInlLegend: 'Long-term Trend',

}
}i

// Create the chart using the merged LST collection
var LSTChart = ui.Chart.image.series(
LST Merged,
aoi,
ee.Reducer.mean(),
30 // Scale (resolution) in meters
)
.setOptions (chartOptions)
.setChartType ('ScatterChart');

// Print the chart to the console
print (LSTChart) ;
print ('LST layers successfully generated for the AOI. Check

the Map and Console for results.');
// --- Generate Feature Collection for CSV Export (FIX for
Export.chart.toDrive error) ---
var exportFeatures = LST Merged.map (function (image) {
var stats = image.reduceRegion ({

reducer: ee.Reducer.mean(),
geometry: aoi,

scale: 30,

maxPixels: 1le9

)

// Get the date string.
var date =
ee.Date (image.get ('system:time start')).format ('YYYY-MM-dd');

// Return a feature containing the date and the LST mean.
return ee.Feature (null, {
'Date': date,
'LST Celsius': stats.get ('LST')
1) :
}).filter (ee.Filter.notNull (['LST Celsius'l)); // Filter out
features where LST could not be calculated (e.g., all cloudy)

// --- 8. Export Data and Images (Defensive Block) ---

// 8.1 Export the LST Change Image to Google Drive (GeoTIFF
only - PNG not supported)
try {
// Export 1: High Quality GeoTIFF (Preserves original data)
Export.image.toDrive ({

image: lstChange,
description: 'Kolkata LST Change Map GeoTIFF',
folder: 'GEE Exports',
fileNamePrefix: 'Kolkata LST Change Map GeoTIFF',
region: aoi.bounds (),
scale: 30, // Landsat resolution
crs: 'EPSG:4326',
fileFormat: 'GeoTIFF',
maxPixels: 1lel3
1) :
print ('Image Map GeoTIFF export task initialized.');
} catch (e) {

print ('--- IMAGE EXPORT FAILURE ---");
print ('Image export could not be initialized due to an
invalid Image object. Error details: ' + e);

}

// 8.2 Export the Time Series Chart Data to Google Drive
(CSV) (FIX: Use Export.table)
try |
Export.table.toDrive ({
collection: exportFeatures,
description: 'Kolkata LST TimeSeries Data CSV',
folder: 'GEE Exports',
fileNamePrefix: 'Kolkata LST TimeSeries Data',
fileFormat: 'CSV'
1)
print ('Chart Data CSV export task initialized wvia
Export.table.');

} catch (e) {
print ('--- CHART DATA EXPORT FAILURE ---'");
print ('Chart data export could not be initialized. Error
details: ' + e);

}

// 8.3 Generate a direct PNG download URL for visualization
(Workaround for GEE JS API limitation)
try {
// FIX: Removed 'scale' as it conflicts with 'dimensions'
in getThumbURL.

var thumbParams = {
'min': changeVis.min,
'max': changeVis.max,

'palette': changeVis.palette,
'dimensions': 1024, // High resolution for download
'region': aoi.bounds(),
'crs': 'EPSG:4326'
bi

var thumbUrl = lstChange.getThumbURL (thumbParams) ;

print ('--- VISUAL MAP PNG DOWNLOAD URL ---");
print ('Use this URL to download the LST Change Map (Visual
PNG, 1024px) directly: ' + thumbUrl);

} catch (e) {
print ('--- PNG URL GENERATION FAILURE ---'");
print ('Could not generate the direct PNG download URL.
Error details: ' + e);

}

// Add a final note about the exports

print ('You must click "Run" in the Earth Engine "Tasks" tab
to start the file transfers to Google Drive.');

print ('The chart data is now exported as a CSV table called
"Kolkata LST TimeSeries Data" in the GEE Exports folder.');

} else {

print ('--- ERROR ---");

print ('Image collection error: Cannot calculate LST change
because one or both required collections are empty.');

print ('L5 (1990-2000) images found: ' + L5 size);

print ('L8 (2015-2025) images found: ' + L8 size);

print ('Please check the date ranges or relax the cloud cover
filter (currently set to less than 20%).'");

/**

* MEAN DIURNAL TEMPERATURE RANGE (DTR) ANALYSIS (1990 -
Present) for ALL MONTHS (Jan-Dec)

* FINAL FIX: Restructured to wuse SERVER-SIDE REDUCTION
(ee.Reducer.group) for DTR

* calculation across all vyears, eliminating client-side
memory/rate limit issues

* that caused the "Dictionary does not contain key" error.

* * ENHANCEMENT: Added a process to combine all monthly DTR
data and export it to a CSV.

*/

// 1. Define the Area of Interest (A0I) for Kolkata, India.
var kolkata aoi = ee.Geometry.BBox(88.25, 22.45, 88.50,
22.70) ;

// 2. Define the Time Period (1990 to present).
var startYear = 1990;

var currentYear = ee.Date(Date.now()) .get('year');
// Define the months to analyze (January = 1, ..., December =
12)

var monthsToAnalyze = ee.List.sequence(l, 12).getInfo();

// Define a client-side 1list of month names for the chart
titles
var monthNames = ['January', 'February', 'March', 'April',
'May', 'June',

'July', 'August', 'September', 'October',
'November', 'December'];

// 3. Load the ERA5-LAND HOURLY dataset once and filter by year
range.
var hourlyData = ee.ImageCollection ("ECMWEF/ERA5 LAND/HOURLY")
.filterBounds (kolkata aoi)
.filterDate (ee.Date.fromYMD (startYear, 1, 1),
ee.Date.fromYMD (currentYear.add(l), 1, 1))
.select ('temperature 2m'); // Temperature is in Kelvin (K)

// —-—-- 4. Core Server-Side DTR Calculation ---

var calculateMonthlyDTR = function (month) {
month = ee.Number (month) ;

// a. Filter data for the target month across all years

var monthlyData =
hourlyData.filter (ee.Filter.calendarRange (month, month,
'month'));

// b. Calculate daily DTR (Max - Min)
var dailyDTR = monthlyData.map (function (image) {
// Tag the image with its date's year and day-of-year
for grouping

var date = ee.Date(image.get('system:time start'));
var year = date.get('year');
var day = date.getRelative('day', 'year');

// Get the start and end of the current day for
filtering
var dayRange = date.getRange('day'):;

// This 1is the core DTR calculation, now performed
efficiently on the server.

// NOTE: The filterDate here is inefficient as it re-
filters the whole collection

// a better approach would be to group by day and then
reduce.

// For now, we will keep the original logic for min/max
calculation,

// but it is important to note this is a very heavy-
1lift on the server:

var maxK = monthlyData.filterDate (dayRange) .max ()

var minK = monthlyData.filterDate (dayRange) .min ()

var dtrImage = maxK.subtract (minK) .rename ('DTR C'

’
;
)7

// Calculate the mean DTR over the AOI and attach
properties
var meanDTR = dtrImage.reduceRegion ({
reducer: ee.Reducer.mean|(),
geometry: kolkata aoi,
scale: 9000,
bestEffort: true

1)

// Return a feature with the DTR, year, and day for
later grouping/filtering.
return ee.Feature(null, {

'DIR C': ee.Number (meanDTR.get ('DTR C', 0)), //
Use 0 if DTR fails

'yvear': year,

'day': day

)
1)

// c. Group by Year and reduce to get the Mean Monthly DTR
var annualMeanDTR = dailyDTR
.filter(ee.Filter.gt ('DTR C', 0)) // Filter out any
failed calculations

.reduceColumns ({
reducer: ee.Reducer.mean () .group ({
groupField: 1, // Group by the 'year' property
groupName: 'year',
1),
selectors: ['DTR C', 'year']

1)

// d. Reformat the result into a clean FeatureCollection
var results =
ee.List (annualMeanDTR.get ('groups')) .map (function (group) {
group = ee.Dictionary(group);
var year = group.get('year');
var mean dtr = ee.Number (group.get('mean')) .round();
var monthName =
ee.String(ee.List (monthNames) .get (month.subtract(l)));

return ee.Feature(null, {
'yvear': year,
'month num': month, // Added for filtering/sorting
in CSV
'month name': monthName, // Added for context in
CSv
'date str': ee.Date.fromYMD (year, month,
1) .format ('YYYY'),
'Observed DTR': mean dtr
1)
1)

return ee.FeatureCollection (results);

}i

// --- 5. Execution Loop (Client-Side) and Collection Storage
// Initialize an empty client-side 1list to hold the
FeatureCollections for each month
var allMonthlyDTRCollections = [];

var analyzeMonth = function (month) {
month = ee.Number (month) ;
var monthName = monthNames[month.getInfo() - 1];

// Get the calculated FeatureCollection from the server.
var annualDTR features = calculateMonthlyDTR (month) ;

// ******xxx*x ENHANCEMENT: Store the results for later
MEerging ** %k kkx*

allMonthlyDTRCollections.push (annualDTR features);

//

R R S b S b e S b I S b S b I S I S I b e S b e S b S b I S b S b I db b S b S 2b e S b A S b I S 2 I S 4

* ok ok ok k k ok x

// a. Calculate Simple Linear Trend (Regression) for
coefficient printing.

var linearFit = annualDTR features.reduceColumns ({
reducer: ee.Reducer.linearFit (),
selectors: ['year', 'Observed DTR']

)

var slope = ee.Number (linearFit.get ('scale'));

var intercept = ee.Number (linearFit.get ('offset'));

// b. Generate the Chart (using built-in trendline)
var dtrChart = ui.Chart.feature.byFeature ({
features: annualDTR features, // Chart only the
observed data
xProperty: 'date str', // Use the string format for
better chart display
yProperties: ['Observed DTR']
})
.setChartType ('ScatterChart')
.setOptions ({
title: 'Mean ' + monthName + ' DTR Trend (Linear Fit)

for Kolkata (1990 - ' + currentYear.getInfo() + ")',

hAxis: {title: 'Year', showTextEvery: 5},

vAxis: {title: 'Mean ' + monthName + ' DTR (°C)',
minValue: 0, gridlines: {color: '#cccccc'}},

pointSize: 4,
trendlines: {
0: {
type: 'linear',
color: '#FF4500',
linewWidth: 3,
visibleInlLegend: true,
labelInlLegend: 'Linear Trend'
}
}y
series: {
0: {color: '#008080"'}
by
explorer: {}

)

// c. Output the results.

print ('--- »/ Mean ' + monthName + ' DTR Trend Analysis
(Linear Fit) ---'");
print ('Annual Mean DTR Chart:', dtrChart);
print ('Regression Coefficients:',
ee.Dictionary ({
'Month': monthName,

'Slope (m) - Change per year':
slope.format ('%.4f"),
'Y-Intercept (b)': intercept.format('$.3f")
})
)
bi
// --- 6. Final Execution and Data Export —---

print ('*** Running Multi-Month DTR Analysis for Kolkata (1990
- ' 4+ currentYear.getInfo() + ') ***x');

// Run the analysis for all months from January (1) to December
(12) .
monthsToAnalyze.forEach (function (month) {

analyzeMonth (ee.Number (month)) ;

1)

// *xxookxxdox ENHANCEMENT: Merge and Export Data X**xx#kkx

// 1. Merge all monthly FeatureCollections into a single

collection.

// ee.FeatureCollection(list) automatically merges the
collections in the list.

var allDataCollection =

ee.FeatureCollection(allMonthlyDTRCollections) .flatten();

// 2. Define the export task to Google Drive.
Export.table.toDrive ({

collection: allDataCollection,

description: 'Kolkata Monthly DTR 1990 Present',

folder: 'EarthEngine Exports', // Change this to your
desired Drive folder

fileNamePrefix: 'Kolkata DTR Data',

fileFormat: 'CSV',

selectors: ['year', 'month num', 'month name', 'Observed
DTR', 'date str'] // Select columns for CSV
})

print (' Data Export Task Created:',

'A task to export all DTR data to a CSV file in your
Google Drive has been created.',

'Check the "Tasks" tab (right side of the GEE code
editor) to run the export.'
)

// KA R IA A I A A A A A A I A A I A A I A A A AR A A I A A I A A I A A I A A I AR A AR A AR A, * K

// Final map output

Map.centerObject (kolkata aoi, 9);
Map.addLayer (kolkata aoi, {color: 'OOFFO0', opacity: 0.4}, 'Kolkata
AOI Polygon');

// 1. Define the Region of Interest (ROI) - Kolkata and a 30km
buffer
var kolkata = ee.Geometry.Point (88.3639, 22.5726) ; //

Approximate center of Kolkata
var roi = kolkata.buffer (30000); // 30 km buffer

// 2. Filter ERA5-Land Daily data (2m temperature)

var erab = ee.ImageCollection ('ECMWF/ERAS5 LAND/DAILY AGGR')
.filterDate ('1990-01-01"', ee.Date(Date.now()))
.filterBounds (roi) ;

// Function to calculate Diurnal Temperature Range (DTR) in
Celsius
var calculateDTR = function (image) {
// Select the available maximum and minimum temperature bands
// Tmax and Tmin are in Kelvin. Convert to Celsius and
calculate DTR.

var tmaxC =
image.select ('temperature 2m max') .subtract(273.15);
var tminC =

image.select ('temperature 2m min') .subtract(273.15);

var dtr = tmaxC.subtract (tminC) .rename ('DTR"');

// Copy properties and return the DTR band
return dtr.copyProperties(image, ['system:time start']);

}i

// Map the function over the image collection to get the daily

DTR
var dtrCollection = erab.map(calculateDTR);

// 3. Calculate Annual Mean DTR

var currentYear = ee.Date(Date.now()).get('year');

var years = ee.LlList.sequence (1990, currentYear.subtract(l));
// Exclude current incomplete year

// Use ee.FeatureCollection ()
var annualDTR = ee.FeatureCollection (years.map (function (year)
{

var start = ee.Date.fromYMD (year, 1, 1);

var end = start.advance(l, 'year');

var yearlyDTR = dtrCollection.filterDate (start, end) .mean () ;

// Calculate the mean DTR over the ROI for the year
var meanDTR = yearlyDTR.reduceRegion ({

reducer: ee.Reducer.mean(),

geometry: roi,

scale: 10000,

maxPixels: 1e9
}) .get ('DTR") ;

// Return a feature for charting
return ee.Feature (null, {

'year': year,
'DTR': meanDTR,
'system:time start': start.millis()
1)
})).filter(ee.Filter.notNull (['DTR'])) ;

// 4. Create and Display Time Series Chart
var chart = ui.Chart.feature.byFeature ({
features: annualDTR,
xProperty: 'year',
yProperties: ['DTR']
})
.setChartType ('ScatterChart')

.setOptions ({
title: 'Annual Mean Diurnal Temperature Range (DTR) for
Kolkata (30km Buffer)',
hAxis: {title: 'Year', format: '"####'}, // <<< FIX APPLIED
HERE
vAxis: {title: 'Mean DTR (°C)'},
trendlines: {0: {color: 'red', visibleInLegend: true,

type: 'linear', showR2: true}},
lineWidth: 1,
pointSize: 3,

explorer: {}

1)

// Print the chart to the Console
print (chart) ;

// Center map and add ROI boundary
Map.centerObject (kolkata, 9);

Map.addLayer (roi, {color: 'FF0000'}, 'Kolkata 30km Buffer');

// --- 1. FIXED PARAMETERS (GEOGRAPHY & MASKS) ---

// City Location (Kolkata, India)
var KOLKATA_LAT = 22.57;
var KOLKATA LON 88.36;

// Analysis Radii

var BUFFER RADIUS KM = 30; // Total area of analysis

var URBAN CORE_RADIUS KM = 5; // Fixed 5 km circle for Urban
Sample

// Define the region of interest (ROI)

var point = ee.Geometry.Point (KOLKATA LON, KOLKATA LAT):;

var roi = point.buffer (BUFFER RADIUS KM * 1000);

var urban core geom = point.buffer (URBAN CORE RADIUS KM *
1000) ;

// Load the Global Human Settlement Layer (GHSL) Built-up Grid
(P2016)

var built up =
ee.Image ('JRC/GHSL/P2016/BUILT LDSMT GLOBE V1').select ('built
')

// Define Rural areas (< 5% built-up density)
var rural mask = built up.lt(5).rename('Rural Mask');

// Set the map center and zoom level
Map.centerObject (roi, 10);

// --- 2. LST PROCESSING FUNCTION ---

// Function to process MODIS LST, convert to Celsius, and apply

QC mask.
var processLST = function (image) {
var scaleFactor = 0.02;

// Acceptable Quality (QC flags 0 or 1) for both Day and

Night LST.

var acceptableQualityMask =
image.select ('QC Day').lte(l) .or (image.select ('QC Night').lte
(1))

// Convert Day LST to Celsius

var dayLST = image.select('LST Day lkm')
.multiply(scaleFactor)
.subtract (273.15)
.updateMask (acceptableQualityMask)
.rename ('LST Day C');

// Convert Night LST to Celsius

var nightLST = image.select ('LST Night 1km')
.multiply(scaleFactor)
.subtract (273.15)
.updateMask (acceptableQualityMask)
.rename ('LST Night C'");

return image.addBands (dayLST) .addBands (nightLST) .clip(roi);
}i

// —--- 3. UHI CALCULATION FUNCTION ---

/**
* Calculates and prints the Urban Heat Island Intensity (UHII)
for a given date range.
* @param {string} startDate - Start date (YYYY-MM-DD).
* (@param {string} endDate - End date (YYYY-MM-DD).
* @param {string} label - Label for the console output.
* @returns {ee.Image} The mean LST image for the period.
*/
var calculateUHI = function(startDate, endDate, label) {
print ('=s======== '),
print (' ANALYSIS PERIOD: ' + label);
print ('),

// 1. Load and Process LST Collection

var modisLST = ee.ImageCollection ('MODIS/061/MOD11A2")
.filterDate (startDate, endDate)
.filterBounds (roi)
.map (processLST) ;

// 2. Calculate Mean LST Composite
var meanLST = modisLST.select ('LST Day C',
'LST Night C') .mean();

// 3. Extract Urban Core LST (5km fixed geometry)
var urban stats = meanLST.reduceRegion ({

reducer: ee.Reducer.mean(),

geometry: urban core geom,

scale: 1000,

maxPixels: 1le9

1)

// 4. Extract Rural Area LST (Low-density mask)
var rural 1st = meanLST.updateMask (rural mask) ;
var rural stats = rural lst.reduceRegion ({

reducer: ee.Reducer.mean|(),

geometry: roi,

scale: 1000,

maxPixels: 1e9

1)

// 5. Calculate UHII (Urban - Rural)

var uhii day = ee.Number (urban stats.get ('LST Day C'))
.subtract (ee.Number (rural stats.get ('LST Day C')));

var uhii night = ee.Number (urban stats.get ('LST Night C'))
.subtract (ee.Number (rural stats.get ('LST Night C')));

// 6. Print Results

print ('"URBAN LST (' + label + '):', urban stats);

print ("RURAL LST (' + label + '):', rural stats);

print ('--- URBAN HEAT ISLAND INTENSITY (UHII) ---'");

print ('Daytime UHII (Urban - Rural) : ',

uhii day.format('%$.2f'), '°C');

print ('"Nighttime UHII (Urban - Rural) : ',
uhii night.format ('$.2£'), '°C');

return meanLST;

}i

// --- 4. EXECUTION ---

// Run Historical Analysis (2000-2001)
var lst 2000 = calculateUHI('2000-01-01', '2002-01-01"', '2000-
2001 BASELINE');

// Run Recent Analysis (2022-2023)
var lst 2022 = calculateUHI('2022-01-01"', '2024-01-01', '2022-
2023 RECENT') ;

// -—-— 5. MAP VISUALIZATION (using 2022-2023 data) ---
var 1lstVis = {
min: 20, // Min Temp (C)

max: 40, // Max Temp (C)
palette: ['blue', 'cyan', 'green', 'yellow', 'red']

var diffvis = {

min: O,
max: 10, // Max Diurnal Range (C)
palette: ['white', 'yellow', 'orange', 'red']

}i

// Add geographic layers

Map.addLayer (urban _core geom, {color: 'orange'}, 'l. Urban
Core (5km Radius)'):;
Map.addLayer (rural mask.updateMask (rural mask), {palette:

['green']}, '2. Rural Background (<5% Density)');

// Add LST visualization (using the recent 2022 data)
Map.addLayer (1st 2022.select ('LST Day C'), 1stVis, '3. Mean
Day LST (2022-2023)"'");
Map.addLayer (1st 2022.select ('LST Night C'), 1lstVis, '4. Mean
Night LST (2022-2023)"');

print ('\nMap Layers: The map shows the Land Surface Temperature
for the 2022-2023 period.');
print ('Results Comparison: Check the console for the side-by-side
UHII comparison between 2000-2001 and 2022-2023."'");

/**
* Google Earth Engine Script to Analyze Rainfall
(Precipitation)

* Trends in Kolkata, India, from 1990 to Present (2024).

* This script focuses on three key metrics: Annual Total,
Annual Mean Daily,

* and Annual Monthly Mean Daily precipitation.

* This script uses the CHIRPS Daily: Climate Hazards Group
InfraRed Precipitation

* with Station data (UCSB-CHG/CHIRPS/DAILY).

*

* Author: Gemini

* Date: November 2025

*/

// —-—— 1. Define Area of Interest (AOI) and Time Periods ---

// Coordinates for Kolkata (West Bengal, India)
var aoi = ee.Geometry.Point(88.36, 22.57) .buffer (30000);

var START DATE = '1990-01-01";
var END DATE = '2025-01-01'; // Up to the present

Map.centerObject (aci, 8); // Center the map
Map.addLayer (aoi, {color: '000000'}, 'AOI: Kolkata Region');

// Define a list of years and months for iteration

var years = ee.List.sequence (1990, 2024);
var months = ee.List.sequence(l, 12);
var seriesNames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'];
// --- 2. Load and Filter CHIRPS Daily Data ---

var chirps = ee.ImageCollection ('UCSB-CHG/CHIRPS/DAILY")
.filterDate(START_DATE, END_DATE)
.filterBounds (aoi) ;

print ('Total daily CHIRPS images found:', chirps.size());

// —--- 3. ANNUAL TOTAL AND MEAN DAILY ANALYSIS (Request 1 & 3)

// Function to calculate annual statistics (mean daily and
total precipitation)
var calculateAnnualStats = function (year) {

var start = ee.Date.fromYMD (year, 1, 1);

var end = start.advance(l, 'year');

// Filter for the current year
var annualCollection = chirps.filterDate (start, end);

// 1. Calculate Annual Total Precipitation (sum of daily
values)
var annualTotal = annualCollection.sum() .reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: aoi,
scale: 5566, // CHIRPS resolution (~5.5 km)
maxPixels: 1le9
}) .get ('precipitation');

// 2. Calculate Annual Mean Daily Precipitation (mean of
daily values)
var annualMeanDaily = annualCollection.mean () .reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: aoi,

scale: 5566,
maxPixels: 1le9
}) .get ('precipitation');

// Return a Feature for charting
return ee.Feature (null, {
'Year': year,
'Annual Total Rainfall mm': annualTotal,
'Annual Mean Daily Rainfall mm': annualMeanDaily,
'system:time start': start.millis() // Required for time
series charts
1)
bi

// Map the function over the list of years
var annualStatsFC =
ee.FeatureCollection (years.map (calculateAnnualStats));

// —--- 3.1. Chart: Annual Total Rainfall (Request 1) ---
var annualTotalChart = ui.Chart.feature.byFeature ({
features: annualStatsFC,
xProperty: 'system:time start',
yProperties: ['Annual Total Rainfall mm']
})
.setChartType ('ColumnChart')
.setOptions ({
title: 'l. Kolkata Annual Total Rainfall (1990-2024)"',
hAxis: {title: 'Year', format: 'yyyy'},
vAxis: {title: 'Total Rainfall (mm)'},
colors: ['OOOOFF']
1)
print ('Chart 1: Annual Total Rainfall:', annualTotalChart);

// --- 3.2. Chart: Annual Mean Daily Rainfall (Request 3) ---
var annualMeanChart = ui.Chart.feature.byFeature ({
features: annualStatsFC,
xProperty: 'system:time start',
yProperties: ['Annual Mean Daily Rainfall mm']
})
.setChartType ('LineChart"')
.setOptions ({
title: '3. Kolkata Annual Mean Daily Rainfall (1990-2024)"',
hAxis: {title: 'Year', format: 'yyyy'},
vAxis: {title: 'Mean Daily Rainfall (mm/day) "'},
colors: ['OOAOQOO'],
trendlines: { 0: { color: 'red' } }
1)
print ('Chart 2 Annual Mean Daily Rainfall:"',
annualMeanChart) ;

// --- 4. ANNUAL MONTHLY MEAN ANALYSIS (Request 2) (FIXED FOR
CHARTING) ---
/*x

* Function to calculate mean daily precipitation for a given
month/year and format it.

* This function returns a flattened structure (Year, Month,
Value) suitable for ui.Chart.feature.groups.

* (@param {ee.Number} year The year to calculate statistics
for.

* @return {ee.FeatureCollection} A feature collection of 12
features (one for each month).
*/
var createMonthlyTimeSeriesFC = function (year) {
// Use a server—-side map to generate 12 features for the 12
months of the year
return ee.FeatureCollection (months.map (function (month) {
month = ee.Number (month) ;
var start = ee.Date.fromYMD (year, month, 1);
var end = start.advance(l, 'month');

// Filter collection for the current month within the year
var monthlyCollection = chirps.filterDate(start, end);

// Calculate Mean Daily Precipitation for this month/year
var meanDailyPrecip =
monthlyCollection.mean () .reduceRegion ({

reducer: ee.Reducer.mean(),

geometry: aoi,

scale: 5566,

maxPixels: 1le9
}) .get ('precipitation');

// Return a Feature for charting, using Month Name as the
series identifier
return ee.Feature (null, {
'Year': year,
'Month': month,
'Month Name':
ee.List (seriesNames) .get (month.subtract(l)), // Get Jan, Feb,
etc.
'Mean Daily Rainfall mm': meanDailyPrecip,
'system:time start': start.millis() // X-axis property
(used by the chart)
1)
1)
i

// Map the function over the list of years and flatten the

result (e.g., 35 years * 12 months = 420 features)

var monthlyTimeSeriesFC =
ee.FeatureCollection (years.map (createMonthlyTimeSeriesFC)) .f1l
atten();

// —-—-— 4.1. Chart: Annual Monthly Mean Daily Rainfall Time

Series (Request 2) ---
var annualMonthlyMeanChart = ui.Chart.feature.groups({
features: monthlyTimeSeriesFC,
xProperty: 'system:time start',
yProperty: 'Mean Daily Rainfall mm',
seriesProperty: 'Month Name' // Group the data by month to
create 12 distinct lines
})
.setChartType ('LineChart')

.setOptions ({
title: '2. Kolkata Monthly Mean Daily Rainfall Trends
(1990-2024) ',

hAxis: {title: 'Year', format: 'yyyy'},
vAxis: {title: 'Mean Daily Rainfall (mm/day) "'},
series: {

0: {color: 'blue'}, // Jan

5: {color: 'green', lineWidth: 3}, // Jun (Highlighting
Monsoon start)
6: {color: 'red', lineWidth: 3} // July (Highlighting
Monsoon peak)
by
legend: {position: 'right'}
}):
print ('Chart 3: Annual Monthly Mean Daily Rainfall Trends:',
annualMonthlyMeanChart) ;

// --- 5. Export Annual Data (CSV) ---
// Two separate exports for clarity: Annual Totals/Means and
Monthly Time Series.

// 5.1 Export Annual Total and Mean Daily Data
Export.table.toDrive ({
collection: annualStatsFC.select ([
'Year',
'Annual Total Rainfall mm',
'Annual Mean Daily Rainfall mm'
1)
description: 'Kolkata Annual Rainfall Summary CSV',
folder: 'GEE Exports',
fileNamePrefix: 'Kolkata Annual Rainfall Summary Data',
fileFormat: 'CSV'
})i

// 5.2 Export Monthly Time Series Data
Export.table.toDrive ({
collection: monthlyTimeSeriesFC.select ([
'Year',
'Month Name',
'Mean Daily Rainfall mm'
1)
description: 'Kolkata Monthly Rainfall TimeSeries CSV',
folder: 'GEE Exports',
fileNamePrefix: 'Kolkata Monthly Rainfall TimeSeries Data',
fileFormat: 'CSV'
}):

print ('Rainfall Analysis Data CSV export tasks initialized. You must
click "Run" in the Earth Engine "Tasks" tab to start the file transfer
to Google Drive.');

/**

* Google Earth Engine Script to Analyze ANNUAL Urban Area
Trend

* in Kolkata, India, from 2001 to 2023.

*

* This script calculates the total 'Urban and Built-up' area
for every year

* in the defined period using the MODIS MCD12Q1 product,
visualizing the trend

* in a time-series chart.
*

* Author: Gemini
* Date: November 2025
*/

// —-—— 1. Define Area of Interest (AOI) and Time Periods ---

// Coordinates for Kolkata (West Bengal, India)

var aoli = ee.Geometry.Point(88.36, 22.57).buffer (30000); //
30km buffer

Map.centerObject (aoi, 8);

Map.addLayer (aoi, {color: '000000'}, 'AOI: Kolkata Region');

var START YEAR = 2001; // Start year for time series
var END_YEAR = 2023; // End year for time series

// Define the LULC code for Urban/Built-up in the grouped
classification

var URBAN CODE = 4;

var URBAN NAME = '4. Urban and Built-up';

// --- 2. Load and Prepare MODIS Land Cover Data (MCD12Q1 V6)

var LULC_COLLECTION = ee.ImageCollection ('MODIS/061/MCD12Q1");

// IGBP codes and our grouped codes (where 4 = Urban)

var ORIGINAL IGBP CODES = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 171;
var GROUPED LULC_CODES = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

3! 4! 2! 2! 5]; // 4 = Urban

/**

* Function to filter by year, reclassify, and calculate the
urban area.

* (@param {ee.Number} year The year to calculate statistics
for.

* @return {ee.Feature} A feature containing the year and
calculated urban area in km?.

*/

var calculateAnnualUrbanArea = function (year) {
year = ee.Number (year);
var date = ee.Date.fromYMD (year, 1, 1);

var lulcImage = LULC COLLECTION
.filter(ee.Filter.calendarRange (year, year, 'year'))
Lfirst ()
.select ('LC_Typel')
.clip(aoi);

// Reclassify to get the grouped LULC codes (where 4 is
Urban)

var lulc reclass = lulcImage.remap (ORIGINAL IGBP CODES,
GROUPED LULC_CODES) ;

// Create Urban mask: 1 where Urban (Code 4), 0 otherwise
var urbanMask =

lulc reclass.eq(URBAN CODE) .rename ('Urban Mask');

// Calculate the total area of the Urban class from the mask

var stats =
urbanMask.multiply (ee.Image.pixelArea()) .reduceRegion ({
reducer: ee.Reducer.sum(),
geometry: aoi,
scale: 500, // MODIS resolution
maxPixels: 1lelO0
1)

// Convert m? to km?
var area_km2 =
ee.Number (stats.get ('Urban Mask')) .divide (le6);

// Return a Feature for charting, using the date as the time
axis property
return ee.Feature(null, {

'Year': year,
'system:time start': date.millis(),
'Urban Area km2': area_ km2
1)
bi
// —--- 3. Area Calculation and Time Series Generation ---

// Generate a list of years from 2001 to 2023
var years = ee.List.sequence (START YEAR, END YEAR);

// Calculate urban area for every year and store 1in a
FeatureCollection

var urbanTimeSeriesFC =
ee.FeatureCollection (years.map (calculateAnnualUrbanArea)) ;

// —--- 4. Visualization (Chart) and Map Display ---
// 4.1. Chart: Annual Urban Area Trend

var urbanAreaChart = ui.Chart.feature.byFeature ({
features: urbanTimeSeriesFC,

xProperty: 'system:time start', // Use system:time start
for proper date scaling
yProperties: ['Urban Area km2']

})
.setChartType ('LineChart')
.setOptions ({
title: 'Kolkata Annual Urban Area Trend (km?): '+
START YEAR + ' - ' + END YEAR,
hAxis: {title: 'Year', format: 'yyyy'},
vAxis: {title: 'Urban Area (km?2?)'},
colors: ['FF0OO00O'],
// Add a linear trendline to visualize the long-term growth
rate
trendlines: {
0: {
type: 'linear',
color: 'gray',
visibleInLegend: true,
labelInlLegend: 'Long-term Trend',
}
by
legend: {position: 'none'}

1)

print ('Urban Area Time Series Chart:', urbanAreaChart);

// 4.2. Map: Visualize Urban Expansion (Start vs. End Year)
// Helper function to get the urban mask for map visualization
var getUrbanMask = function (year) {
var lulcImage = LULC COLLECTION
.filter(ee.Filter.calendarRange (year, year, 'year'))
.first ()
.select ('LC_Typel')
.clip(aoi);
var lulc reclass = lulcImage.remap (ORIGINAL IGBP CODES,
GROUPED LULC_CODES) ;
return lulc reclass.eq(URBAN CODE) .rename ('Urban Mask');
bi

var urban mask early = getUrbanMask (START YEAR) ;
var urban mask recent = getUrbanMask (END YEAR) ;

// Calculate Urban Expansion: Not urban in early, IS urban in
recent.

var urban expansion =
urban mask early.eq(0).and(urban mask recent.eq(l)) .selfMask(

) 7

// Stable Urban: Was urban in early, IS still urban in recent.
var stable urban = urban mask early.selfMask();

// Visualization

var urbanVis = {min: 1, max: 1, palette: ['808080']}; // Stable
Urban (Grey)
var expansionVis = {min: 1, max: 1, palette: ['FF0000'1l}; //

New Expansion (Red)

Map.addLayer (stable urban, urbanVis, 'Stable Urban ! +
START YEAR, true);

Map.addLayer (urban expansion, expansionVis, 'Urban Expansion '
+ START YEAR + '-' + END YEAR, true);

print ('Urban Change Layers (Stable Grey, Expansion Red) added
to Map.'):

// --- 5. Export Data ---

// Export the full annual time series data to Google Drive
(CsV)
Export.table.toDrive ({
collection: urbanTimeSeriesFC.select (['Year',
'Urban Area km2']),
description: 'Kolkata Annual Urban Area TimeSeries CSV',
folder: 'GEE Exports',
fileNamePrefix: 'Kolkata Annual Urban Area TimeSeries',
fileFormat: 'CSV'
});

print ('Urban Area Time Series Data CSV export task initialized
via Export.table.');

print ('You must click "Run" in the Earth Engine "Tasks" tab to
start the file transfer to Google Drive.');

Codes related to GCM & CMIP6 for Scenario based Projections

10.

Data: Temperature and Humidity Projection

Output file name: Temperature Humidity Projection

Code:

/**

* Google Earth Engine Script to Project Future Annual
Temperature and Humidity Trends

* for Kolkata using the CMIP6 climate model dataset across
ALL SSP scenarios.

*

* It uses the CanESM5 model for consistency.

*/
// —-—-— 1. CONFIGURATION AND AOI DEFINITION (Kolkata) ---
var AOI CENTER = ee.Geometry.Point(88.3697, 22.5726); //

Kolkata coordinates
var BUFFER_KM = 30;
var waters aoi = AOI CENTER.buffer (BUFFER KM * 1000) .bounds () ;

// GCM and Scenario Selection
var GCM MODEL = 'CanESM5';
var SCENARIOS = ['sspl26', 'ssp245', 'ssp370', 'sspb85'];

// Time Range for Time Series Analysis
var START YEAR = 1985;
var END YEAR = 2070;

var years = ee.List.sequence (START YEAR, END YEAR);

// Constants
var KELVIN TO CELSIUS = -273.15;
var HUMIDITY SCALE = 1000; // Convert kg/kg to g/kg

Map.centerObject (AOI_CENTER, 8);

Map.addLayer (waters_aoi, {color: 'AA0000', opacity: 0.2},
'Kolkata 30km AOI'");

print ('Annual Temperature and Humidity Trend (1985-2070) for

All SSPs using Model:', GCM MODEL) ;

// —--—- 2. MASTER FUNCTION TO PROCESS A SINGLE VARIABLE FOR ALL
SCENARIOS —---

/**

* Runs the time series analysis for a specific climate
variable across all SSPs.

* @param {ee.String} variable The band name ('tas' or 'huss').
* @param {ee.String} outputName The desired column name (e.qg.,
'Mean Temperature C').

* (@param {ee.Number} offset The wvalue to subtract (e.g.,
KELVIN TO CELSIUS).

* (@param {ee.Number} scale The value to multiply by (e.g.,
HUMIDITY SCALE) .

* (@return {ee.FeatureCollection} Rainfall time series data
for the given scenario.

*/
var processVariable = function(variable, outputName, offset,
scale) {

// Internal function to process one SSP
var processScenario = function (scenario) {

var ssp = ee.String(scenario);

// Load data filtered by GCM, current SSP, and variable
var collection = ee.ImageCollection ('NASA/GDDP-CMIP6'")
.filter(ee.Filter.and(
ee.Filter.eg('model’', GCM MODEL),
ee.Filter.eq('scenario', ssp)
))
.filterDate(START_YEAR + '-01-01", END YEAR + '-12-31")
.select (variable) ;

/**
* Calculates the mean of the variable for one year.
*/
var calculateAnnualMean = function (year) {
var year number = ee.Number (year);
var year start date = ee.Date.fromYMD(year number, 1,
1)
var year end date = ee.Date.fromYMD (year number.add(l),
1, 1);
var yearlyCollection =

collection.filterDate (year start date, year end date);

// Calculate the mean over all time steps in the year
var annualMean = yearlyCollection.mean () ;

var is null = annualMean.bandNames () .size () .eq(0);

// RApply offset and scale (conversion from K to C or
kg/kg to g/kg)
var finalImage = ee.Algorithms.If (is null,
ee.Image.constant (0),
ee.Image (annualMean) .add (offset) .multiply(scale)

)7

// Rename and set the year index

// FIX: Convert the year number to a string for
system:index compatibility.

return
ee.Image (finalImage) . rename (outputName) .set ('system:index"',
ee.String (year number));

}i
/**

* Reduces the image to the mean value over the AOI and
creates a Feature.
*/
var imageToFeature = function (image) {
// The system:index is now a string thanks to the fix
above
var year string = image.get('system:index');

// Calculate the mean over the AOI
var stats = image.reduceRegion ({
reducer: ee.Reducer.mean|(),
geometry: waters aoi,
scale: 1000,
maxPixels: 1le9,
bestEffort: true
1)

var mean value = stats.get (outputName) ;

// Create a base feature with static properties
var feature = ee.Feature(null, {
'Year': ee.Number.parse(ee.String(year string)), //
Parse back to number for charting/joining
'SSP': ssp,
})

// Dynamically set the variable's wvalue wusing the
variable outputName as the key
return feature.set (outputName, mean value);

}i

// Calculate annual means and convert to a
FeatureCollection
var annual mean collection =

ee.ImageCollection (years.map (calculateAnnualMean)) ;
return annual mean collection.map (imageToFeature);

}i

// Iterate over all SCENARIOS and combine all
FeatureCollections into one.

return
ee.FeatureCollection(ee.List (SCENARIOS) .map (processScenario))
.flatten () ;
}i

// —--- 3. MAIN EXECUTION AND DATA PREPARATION ---

// 3a. Process Temperature (tas)
var temp features = processVariable (
'tas',
'Mean Temperature C',
KELVIN TO CELSIUS,
1 // No scaling needed after offset
) ;

// 3b. Process Specific Humidity (huss)
var humidity features = processVariable (
'huss',
'Mean Specific Humidity g kg',
0, // No offset needed
HUMIDITY SCALE
)

// 3c. Merge the two collections by joining on 'Year' and 'SSP'
properties
// We must join on both Year and SSP to ensure we match the
right data points
var filter = ee.Filter.and(
ee.Filter.equals ({leftField: 'Year', rightField: 'Year'}),
ee.Filter.equals ({leftField: 'SSP', rightField: 'SSP'})
) ;

var simpleJoin = ee.Join.inner();

var joined = simpleJoin.apply (temp features,
humidity features, filter);

// Extract the joined features and combine the fields

var final features = joined.map (function (feature) {
var primary = ee.Feature (feature.get('primary'));
var secondary = ee.Feature(feature.get ('secondary'));

// Copy all properties from the secondary feature (humidity)
into the primary feature (temp)

return primary.copyProperties (secondary,
['Mean Specific Humidity g kg']);
}):

// === 4. CHARTING ---
var SERIES COLORS = ['#00A859', '#5C90ED', '#FF7F00',
'#D62728'1; // sspl26, ssp245, ssp370, ssp585

// 4a. Temperature Chart
var tempChart = ui.Chart.feature.groups ({
features: temp features,
xProperty: 'Year',
yProperty: 'Mean Temperature C',
seriesProperty: 'SSP'
})
.setChartType ('LineChart"')
.setOptions ({
title: 'Kolkata Mean Annual Temperature Trend (°C) by SSP
Scenario',
vAxis: {title: 'Temperature (°C)'},
hAxis: {title: 'Year', format: 'YYYY'},
legend: {position: 'right'},
series: {
0: { color: SERIES COLORS[0], lineWidth: 2, pointSize: 2,
label: 'sspl26'},
1: { color: SERIES COLORS[1l], lineWidth: 2, pointSize: 2,
label: 'ssp245'},
2: { color: SERIES COLORS[2], lineWidth: 2, pointSize: 2,
label: 'ssp370'},
3: { color: SERIES COLORS[3], lineWidth: 2, pointSize: 2,
label: 'ssp585'},
br
interpolateNulls: true,

1)

print ('Mean Annual Temperature Time Series Chart:',
tempChart) ;

// 4b. Humidity Chart

var humidityChart = ui.Chart.feature.groups ({
features: humidity features,
xProperty: 'Year',
yProperty: 'Mean Specific Humidity g kg',
seriesProperty: 'SSP'

1)

.setChartType ('LineChart')

.setOptions ({
title: 'Kolkata Mean Annual Specific Humidity Trend (g/kg)

by SSP Scenario',
vAxis: {title: 'Specific Humidity (g/kg)'},
hAxis: {title: 'Year', format: 'YYYY'},
legend: {position: 'right'},

series: {
0: { color: SERIES COLORS[0], lineWidth: 2, pointSize: 2,
label: 'sspl26'},
1: { color: SERIES COLORS[1l], lineWidth: 2, pointSize: 2,
label: 'ssp245'},
2: { color: SERIES COLORS[2], lineWidth: 2, pointSize: 2,
label: 'ssp370'},
3: { color: SERIES COLORS[3], lineWidth: 2, pointSize: 2,
label: 'ssp585'},
b
interpolateNulls: true,

}) i

print ('"Mean Annual Specific Humidity Time Series Chart:',
humidityChart) ;

// --- 5. CSV EXPORT SETUP --—-

Export.table.toDrive ({
collection: final features,
description: 'Kolkata Temp Humidity All SSPs TimeSeries',
folder: 'EarthEngine Exports',
fileNamePrefix: 'kolkata temp humidity all ssps’,
fileFormat: 'CSV',
// Define column order for the final CSV
selectors: ['Year', 'SSp', 'Mean Temperature C',
'Mean Specific Humidity g kg']
1) :

print ('--- CSV Export Information ---');

print ('A task named
"Kolkata Temp Humidity All SSPs TimeSeries" has been set
up.');

print ('To download the comprehensive CSV, go to the **Tasks** tab
(on the right side of the code editor) and click **Run** on the
task.");

11. Data: Rainfall Projection
Output file name: Rainfall Projection

Code:

/**

* Google Earth Engine Script to Project Future Annual Rainfall
Patterns in Kolkata

* using the CMIP6 climate model dataset across ALL SSP
scenarios.

*

* This script runs the analysis for: sspl26, ssp245, ssp370,
and sspb85.

* It generates a multi-line time series chart and sets up a
single CSV export file.

*/
// —--- 1. CONFIGURATION AND AOI DEFINITION (Kolkata) ---
var AOI CENTER = ee.Geometry.Point(88.3697, 22.5726); //

Kolkata coordinates
var BUFFER KM = 30;
var waters aoi = AOI CENTER.buffer (BUFFER KM * 1000) .bounds () ;

// GCM and Scenario Selection

var GCM MODEL = 'CanESM5';
var SCENARIOS = ['sspl26', 'ssp245', 'ssp370', 'sspb85'];

// Time Range for Time Series Analysis
var START YEAR = 1985;
var END YEAR = 2070;

// Constants
var SECONDS PER DAY = 86400;
var years = ee.List.sequence (START YEAR, END YEAR);

Map.centerObject (AOI CENTER, 8);

Map.addLayer (waters_aoi, {color: 'AAQQ0Q", opacity: 0.2},
'Kolkata 30km AOI');

print ('Annual Rainfall Trend (1985-2070) for All SSPs using
Model:', GCM MODEL) ;

// —--- 2. MASTER FUNCTION TO PROCESS EACH SCENARIO ---

/**

* Runs the annual precipitation calculation and feature
extraction for a single scenario.

* (@param {ee.String} scenario The SSP scenario name (e.qg.,
'ssp245"') .

* (@return {ee.FeatureCollection} Rainfall time series data
for the given scenario.

*/
var processScenario = function (scenario) {

var ssp = ee.String(scenario);

// Load data filtered by GCM and current SSP
var precipitation collection =
ee.ImageCollection ("NASA/GDDP-CMIP6'")
.filter(ee.Filter.and(
ee.Filter.eg('model’', GCM MODEL),
ee.Filter.eq('scenario', ssp)
))
.filterDate(START_YEAR + '-01-01", END YEAR + '-12-31")
.select ('pr');

/**
* Calculates total precipitation for one year.
* @param {ee.Number} year The current year as an ee.Number
object.
* @return {ee.Image} The annual total precipitation image.
*/
var calculateAnnualPpt = function (year) {
var year number = ee.Number (year);
var year start date = ee.Date.fromYMD(year number, 1, 1);
var year end date = ee.Date.fromYMD (year number.add(1l), 1,
1);

var yearlyCollection =
precipitation collection.filterDate (year start date,
year end date);

var annualSum = yearlyCollection.sum() ;

var is null = annualSum.bandNames () .size().eq(0);

var annualPptImage = ee.Algorithms.If(is null,

ee.Image.constant (0),
annualSum.multiply (SECONDS PER DAY) // <Convert daily
rates (mm/s) to Total mm/year

)7

var finalImage =
ee.Image (annualPptImage) .rename ('Annual Rainfall mm');

// Set system:time start for internal date handling if
needed, though we use the 'Year' property

return finallImage;

}i
/**

* Reduces the image to the mean wvalue over the AOI and
creates a Feature.

* @param {ee.Image} image An image containing
'Annual Rainfall mm'.
* @return {ee.Feature} A feature with 'Year', 'Rainfall',
and 'SSP'.
*/
var imageToFeature = function (image) {

// Get the vyear property from the map iteration (not
automatically on the image)
var year = image.get ('system:index');

// Calculate the mean over the AOI
var stats = image.reduceRegion ({
reducer: ee.Reducer.mean(),
geometry: waters aoi,
scale: 1000,
maxPixels: 1le9,
bestEffort: true
})

var mean rainfall = stats.get ('Annual Rainfall mm');

// Create a feature with the desired properties
return ee.Feature(null, {
'Year': ee.Number.parse (ee.String(year)), // Convert the
index string back to a number
'Mean Annual Rainfall mm': mean rainfall,
'SSP': ssp // Attach the scenario name to the data point
1)
bi

// Calculate annual totals and convert to a FeatureCollection

var annual ppt collection =
ee.ImageCollection (years.map(calculateAnnualPpt));
var rainfall features =

annual ppt collection.map (imageToFeature);

return rainfall features;

}i

// Iterate over all SCENARIOS and combine all
FeatureCollections into one.

var all rainfall data =
ee.FeatureCollection(ee.List (SCENARIOS) .map (processScenario))
.flatten();

// --- 3. CHARTING (TIME SERIES) ---

// Chart features by grouping them based on the 'SSP' property
var timeSeriesChart = ui.Chart.feature.groups ({
features: all rainfall data,
xProperty: 'Year',
yProperty: 'Mean Annual Rainfall mm',
seriesProperty: 'SSP' // This creates a separate line for
each scenario
})
.setChartType ('LineChart"')
.setOptions ({
title: 'Kolkata Annual Rainfall Trend (1985-2070) by SSP
Scenario',
vAxis: {title: 'Mean Annual Rainfall (mm)'},
hAxis: {title: 'Year', format: 'YYYY'},
legend: {position: 'right'},
series: {
0: { color: '"#00A859', lineWidth: 2, pointSize: 2, label:
'sspl26 (Sustainable)'}, // Green
1: { color: '"#5C90ED', lineWidth: 2, pointSize: 2, label:
'ssp245 (Mid-Road) '}, // Blue
2: { color: "#FF7F00', lineWidth: 2, pointSize: 2, label:
'ssp370 (Regional)'}, // Orange
3: { color: '"#D62728', lineWidth: 2, pointSize: 2, label:
'ssp585 (Fossil-Fueled)'}, // Red
bo
interpolateNulls: true,

1)

print ('Kolkata Annual Rainfall Time Series Chart:"',
timeSeriesChart) ;

// -—-—- 4. CSV EXPORT SETUP --—-

// Define the export task for the combined collection
Export.table.toDrive ({
collection: all rainfall data,
description: 'Kolkata Rainfall All SSPs_ TimeSeries',
folder: 'EarthEngine Exports',

fileNamePrefix: 'kolkata rainfall all ssps',
fileFormat: 'CSV',
selectors: ['Year', 'SSP', 'Mean Annual Rainfall mm'] //

Define column order

1)

print ('--- CSV Export Information ---");
print ('A task named "Kolkata Rainfall All SSPs TimeSeries" has
been set up.');
print ('To download the comprehensive CSV, go to the **Tasks** tab
(on the right) and click **Run** on the task.');
R Codes

1. R Script to analyse and visualize temperature and humidity trends

R Script for Climate Trend Analysis and Forecasting (1990-Present)
This version uses Base R for data handling, ggplot2 for plotting, and
gridExtra for multi-panel arrangement.

1. SETUP AND DATA LOADING

Load necessary packages.

library (ggplot?2)

gridkExtra is used for combining the individual plots into a single multi-
panel view.

library(gridExtra)

grid is REQUIRED for textGrob and gpar functions used by grid.arrange
for custom titles/captions.

library(grid)

library(stats) # For 1lm() and predict() - this is a base package

Define the file paths for the uploaded CSVs
file max min <- 'Monthly Max Min Temp.csv'
file mean ah <- 'Monthly Mean Temp AH.csv'
file mean rh <- 'Monthly Mean Temp RH.csv'

Load the dataframes using base R's read.csv

df max min <- read.csv(file max min, stringsAsFactors = FALSE)

df mean ah <- read.csv(file mean ah, stringsAsFactors = FALSE)

df mean rh <- read.csv(file mean rh, stringsAsFactors = FALSE)
R
2. DATA PREPARATION AND MERGING (Using Base R Syntax)

__

Function for data cleaning and preparation
clean data <- function(df, prefix) {
Create a standard Date column
df$Dhate <- as.Date(paste(df$year, dfSmonth, '01', sep = '-'), format =

'$Y-%m-%d")

Select and rename relevant columns
if (prefix == "max min") {

df <- df[, c("Date", "max temp c", "min temp c")]
colnames (df) <- c("Date", "MaxTemp", "MinTemp")

} else if (prefix == "mean_ah") {
df <- df[, c("Date", "mean temp c", "mean ah g m3")]
colnames (df) <- c("Date", "MeanTemp", "AH")

} else if (prefix == "mean rh") {
df <- df[, c("Date", "mean rh percent")]
colnames (df) <- c("Date™", "RH")

}
return (df)

}
df max min clean <- clean data(df max min, "max min")
df mean ah clean <- clean data(df mean ah, "mean ah")

df mean rh clean <- clean data(df mean rh, "mean rh")

Perform the merge using base R's merge ()

df combined <- merge (df max min clean, df mean ah clean, by = "Date", all
= TRUE)

df combined <- merge(df combined, df mean rh clean, by = "Date", all =
TRUE)

Filter out NA Dates and create the numeric time variable
df combined <- df combined[!is.na(df combined$Date),]

Create a numeric time variable (fractional vyear) for the original

aggregate trend fitting

df combined$Time <- as.numeric (format (df combinedS$Date, "%Y")) +
(as.numeric (format (df combined$bate, "%j")) - 1) / 365.25

*** KEY ADDITION for Monthly Breakdown: Extract Year and Month ***
df combined$Year <- as.numeric (format (df combined$Date, "%Y"))
df combined$Month <- as.numeric(format (df combined$Date, "%m"))

Define the variables and labels for analysis (Keeping only Temperature
metrics)
analysis vars <- c("MaxTemp", "MinTemp", "MeanTemp")
var labels <- c(

"Monthly Max Temp (°C)",

"Monthly Min Temp (°C)",

"Monthly Mean Temp (°C)",

"Monthly Relative Humidity (%)", # Kept for consistency, but will not be
used

"Monthly Absolute Humidity (g/m3)" # Kept for consistency, but will not
be used
)
names (var_ labels) <- c("MaxTemp", "MinTemp", "MeanTemp", "RH", "AH") #
Renaming to ensure correct mapping

cat (" \H"
)

cat (" DESCRIPTIVE STATISTICS (1990 - Present)\n")

cat ("=========sssssssssssssssssssssssssssssssESS S S S SSSSSSsSSSSSSS s === \n\
n")

Helper function to calculate the monthly trends (change from first to
last point)
calculate monthly trends <- function(data, var name) {

month names <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",
"Sep", Woct", "NOV", HDeCH)

Create a factor for Month for plotting consistency
monthly trends <- data.frame(Month = <factor (month names, levels =
month names),
Start Year = numeric(12),
End Year = numeric(12),
Total Change = numeric(1l2),
Direction = character(12),
stringsAsFactors = FALSE)

Define the trend threshold for 'Stable'
threshold <- 0.1

for (m in 1:12) {
Filter data for the current month, excluding NAs for the variable
month data <- data[data$Month == m & !is.na(datal[, var name]),]

total change <- NA

direction <- "Insufficient Data"
start year calc <- NA

end year calc <- NA

if (nrow(month data) >= 2) {
Sort the data by Year to reliably get the earliest and latest
points
month data <- month_data[order(month_data$Year),]

Get the earliest and latest available years
start year calc <- month dataS$Year([1]
end year calc <- month data$Year[nrow(month data)]

Get the value corresponding to the earliest year (first row after
sort)
start val <- month data[l, var name]

Get the value corresponding to the latest year (last row after
sort)
end val <- month data[nrow(month data), var name]

Calculate change and direction
if (!is.na(start val) && !is.na(end val)) {
total change <- end val - start val

if (abs(total change) < threshold) {
direction <- "Stable"
} else if (total change > 0) {

direction <- "Increasing"
} else {
direction <- "Decreasing"

}
}

Assign values to the data frame columns individually to prevent R
from coercing

the numeric 'Total Change' column into a character type when
assigning mixed types.

monthly trends[m, "Start Year"] <- start year calc

monthly trends[m, "End Year"] <- end year calc

monthly trends[m, "Total Change"] <- total change

monthly trends[m, "Direction"] <- direction

}

Clean up: Remove NAs/NaNs for plotting, which wusually indicate
"Insufficient Data"
monthly_trends$Total_Change[is.na(monthly_trends$Total_Change)] <-0
monthly trendsS$Direction <- factor (monthly trends$Direction,
levels = c("Increasing",
"Decreasing", "Stable", "Insufficient Data"))

return (monthly trends)

}

Function to create and print overall descriptive stats
print overall stats <- function(data, var name, label) ({
x <- datal[, var_ name]

stats <- data.frame
N = sum(!is.na(x)),
Mean = mean (x, na.rm = TRUE),
SD = sd(x, na.rm = TRUE),
Min = min(x, na.rm = TRUE),

Q025 = quantile(x, 0.25, na.rm = TRUE),
Median = median(x, na.rm = TRUE),

Q75 = quantile(x, 0.75, na.rm = TRUE),
Max = max(x, na.rm = TRUE)

)

cat (sprintf ("--- %s ---\n", label))

cat ("--- Overall Statistics (All Months Combined) ---\n")
print (round(stats, 3), row.names = FALSE)

cat (vv\nu)

}

Function to generate the monthly change bar plot
plot monthly change <- function(trend data, var name, full label) {

Define colors for the direction factor
trend colors <- c("Increasing" = "#E41AIC", # Red
"Decreasing”™ = "#377EB8", # Blue
"Stable" = "#AAAAAA", # Gray
"Insufficient Data" = "#DDDDDD") # Light Gray/NA

Determine the unit for the y-axis label

unit <- sub (".*\\N((.*)\\) ", "\\1", full label)
p <- ggplot(trend data, aes(x = Month, y = Total Change, fill =
Direction)) +

Use geom bar for the change value
geom bar (stat = "identity", width = 0.8, alpha = 0.9) +

Add labels showing the exact change value above/below the bar
geom_text (aes(label = ifelse(Direction != "Insufficient Data",
format (round(Total Change, 2), nsmall =

2), ")),
*** FIX: Adjusted vjust to increase vertical spacing for

better label visibility ***
vjust = ifelse(trend dataS$Total Change >= 0, -1.0, 2.0),
color = "black", size = 3) +

Line at zero change
geom hline(yintercept = 0, color = "black", linewidth = 0.5) +

Custom color scale
scale fill manual (values = trend colors, drop = FALSE) +

Labels and Theme

labs (
title = paste("Monthly Total Change:", full label),
subtitle = "Change calculated from the earliest available data point
to the latest.",
x = "Month",
y = pastel("Total Change (", unit, ™)),
fill = "Trend Direction"
) +
theme minimal (base size = 11) +
theme (
plot.title = element text (face = "bold", size = 14, hjust = 0.5),
plot.subtitle = element text(size = 10, hjust = 0.5, color =
vvgray50n) ,

axis.title.x = element blank(),

axis.text.x = element text (face = "bold"),
legend.position = "bottom"

)

return (p)

}

Storage for the plots
monthly change plots <- list()
counter <- 1

for (var in analysis vars) {
1. Print overall descriptive statistics (unmodified)
print overall stats(df combined, var, var labels[var])

2. Calculate monthly trends
trend data <- calculate monthly trends(df combined, var)

3. Generate the visualization

p <- plot monthly change (trend data, var, var_ labels[var])
monthly change plots|[[counter]] <- p

counter <- counter + 1

4. MONTHLY TREND ANALYSIS AND PLOTTING (3 Multi-Panel Plots)

4.1 Function to Create all 12 Monthly Trend Plots for a Single Metric
(Unmodified)

The output is a single grob combining all 12 plots in a 4x3 layout.
create all monthly plots <- function(data, var name, full label) {

month names <- c¢("January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December")

plot list <- list()

Determine the last observed year for defining forecast start
max_year observed <- max(data$Year, na.rm = TRUE)

Create a sequence of years for the trend line, extending to 2030
Using a finer step (0.1) for a smooth trend line in the plot
future years <- seg(min(data$Year, na.rm = TRUE), 2030, by = 0.1)

Loop through all 12 months

for (m in 1:12) {
month data <- data[data$Month == m,]
month label <- month names[m]

Rename the target variable for safe aesthetic mapping in ggplot
month data$Value <- month data[, var name]

1. Trend Fitting: Attempting a Polynomial (Quadratic) Model with
Linear Fallback
model <- tryCatch ({
Check if enough unique points exist for a quadratic model (>= 3
unique years)
if (length(unique (month data$Year)) >= 3) {
Attempt 2nd-degree polynomial fit (Quadratic)

Using I(Year”2) for explicit term
Im(Value ~ Year + I(Year"2), data = month data)

} else {
Fallback immediately if data is insufficient for quadratic
Im(Value ~ Year, data = month data)
}
}, warning = function (w) {

Fallback to linear model if quadratic fails with a warning (e.g.,
singular fit)
Im(Value ~ Year, data = month data)
}, error = function(e) {
NULL # Return NULL if even linear fails (e.g., insufficient data)

})

Check if the model failed or if there is simply not enough data

if (is.null (model) || length(unique (month data$Year)) < 2) {
Create a placeholder plot for empty or sparse months
Use range of all data for positioning of "Insufficient Data" text
p <- ggplot (month data, aes(x = Year, y = Value)) +

geom_text (aes(x = mean (data$Year, na.rm=TRUE), y = mean(datal,

var name], na.rm=TRUE)),
label = "Insufficient Data", size = 3, color = "gray50")

+

labs(title = month label, x = NULL, y = NULL) +

theme void() +

theme (plot.title = element text (face = "bold", size = 10, hjust =
0.5))

plot list[[m]] <- p
next

}

2. Create forecast data frame
df forecast <- data.frame (Year = future years)
df_forecast$Predicted <- predict (model, newdata = df forecast)

Identify 1if the point 1is a true forecast (beyond the current

max year observed)
df forecast$Is Forecast <- df forecast$Year > max year observed

3. Create the ggplot for the month
p <- ggplot (month data, aes(x = Year, y = Value)) +

Layer 1: Observed data points (scatter) - slightly smaller
geom point (color = "#377EB8", size = 1.0, alpha = 0.7) +
Layer 2: Trend line (Historical part) - Red
geom_ line (
data = df forecast[!df forecast$Is Forecast & df forecast$Year >=

min (month dataS$Year),],
aes(x = Year, y = Predicted),

color = "#E41A1C", # Red for the historical fitted trend
size = 1.2 # Thicker line
) +
Layer 3: Forecast line (Future part) - Green, dashed, with arrowhead

geom_ line(
data = df forecast[df forecast$Is Forecast,],
aes(x = Year, y = Predicted),
color = "#4DAF4A", # Changed color to Green
size = 1.2, # Thicker line
linetype = "dashed", # Use dashed line for projection

Added arrowhead to clearly indicate forecast direction
arrow = arrow(length = unit(0.15, "inches"), ends = "last", type
= "closed")
) +

Layer 4: Visualization Polish

labs (
title = month label,
x = NULL,
y = NULL
)+
theme minimal (base size = 9) +
theme (
plot.title = element text (face = "bold", size = 10, hjust = 0.5),
axis.text.x = element text (angle = 45, hjust = 1, size = 8),

Remove Y-axis text in small panels to remove clutter
axis.text.y = element blank(),
axis.ticks.y = element blank(),
panel.grid.minor.x = element blank(),
panel.grid.minor.y = element blank(),
plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "cm")
)+
Ensure the x-axis is on a year scale and extends to 2030
scale x continuous (
breaks = seqg(floor (min(data$Year, na.rm = TRUE)), 2030, by = 10),
limits = c(floor (min(data$Year, na.rm = TRUE)), 2030)
)

plot list[[m]] <- p
}

4. Combine all 12 plots into a single output using grid.arrange

Main Title
main title <- textGrob (paste("Monthly Trend Detail and Forecast:",
full label),
gp=gpar (fontsize=16, fontface="bold"))

Subtitle
trend subtitle <- textGrob("Individual monthly change with 2nd-degree
polynomial fit projection to 2030",
gp=gpar (fontsize=12, col="gray30"))

The Y-axis label is placed to the left of the 4x3 plot grid
y _axis label <- textGrob(full label, rot = 90, gp=gpar (fontsize=12))

Plot caption focusing only on color/line type for clarity
plot caption <- textGrob ("Observed Data (Blue Points); Historical Trend
(Red Solid); Forecast (Green Dashed with Arrowhead).",
gp=gpar (fontsize=10, col="gray50"), hjust =
0.5, x = 0.5)

Arrange the components (Title, Subtitle, Y-Label, 12 Plots, Caption)
combined plot <- grid.arrange (

main_ title,

trend subtitle,

y axis label,

Combine the 12 plots into a single grob in a 4x3 matrix

do.call (arrangeGrob, c(plot list, ncol = 3, nrow = 4)),

plot caption,

ncol = 2,

Define widths: narrow column for Y-label, wide column for 4x3 plots

widths = unit.c(unit (0.5, "in"), unit (1, "null™)),

Adjust heights for the title and new subtitle

heights = unit.c(unit(0.3, "in"), unit(0.2, "in"), unit(l, "null"),
unit (0.3, "in")),

Layout matrix:

Row 1: NA, Title

Row 2: NA, Subtitle
Row 3: Y-Label, 4x3 Plots (as a single unit/grob)
Row 4: Caption (takes full width)

layout matrix = rbind(c(NA, 1),
c(Np, 2),
c(3, 4),

c(5, 9))

)

return (combined plot)

}

4.2 Generate and Display the Multi-Panel Plots

cat ("\n\n===============

=\nll)

cat (" GENERATING TREND SUMMARY PLOTS (3 Panels: Max, Min,
Mean Temp) \n")

cat (" \n\
n")

Combine the 3 monthly change plots into a single, cohesive visual summary
trend summary title <- textGrob("Long-Term Monthly Temperature Change
Summary (1990 - Present)",
gp=gpar (fontsize=18, fontface="bold"))
trend summary subtitle <- textGrob("Total Change from First to Last Data
Point by Month",
gp=gpar (fontsize=12, col="gray50"))

Display the 3 plots in a 1x3 grid
combined change plots <- grid.arrange (
grobs = monthly change plots,
ncol = 3,
top = trend summary title,
bottom = trend summary subtitle

)

Print the final arranged plot for the change summary
print (combined change plots)

cat ("\n\n

:\nll)

cat (" GENERATING MONTHLY DETAIL PLOTS (3 Multi-Panel Plots)\n")
cat ("===== \n\
n")

Plot 1: Max Temperature

plot max temp monthly <- create all monthly plots(df combined, "MaxTemp",
var labels["MaxTemp"])

print (plot max temp monthly)

Plot 2: Min Temperature
plot min temp monthly <- create all monthly plots(df combined, "MinTemp",
var labels["MinTemp"])

print (plot min temp monthly)

Plot 3: Mean Temperature

plot mean temp monthly <= create _all monthly plots(df combined,
"MeanTemp", var labels["MeanTemp"])

print (plot mean temp monthly)

5. MODEL SUMMARY (Commented out as 60 individual models are too verbose)

ey
END OF SCRIPT

B
cat ("\n\n--- INSTRUCTIONS FOR VIEWING PLOTS ---\n")

cat ("The first output is a single 1x3 grid displaying the Monthly Change
Summary for the 3 temperature metrics.\n")

cat ("This is followed by the 3 detailed 4x3 trend and forecast plots.\n")
cat ("You may need to advance the plot viewer to cycle through all 4
results.\n")

2. R Script to analyse and visualize Diurnal Temperature Range (DTR)

R Script for Monthly Diurnal Temperature Range (DTR) Trend Analysis
(1990-Present)

This script loads the DTR data, calculates a long-term trend for each
month,

and plots the observed data points with a trend-line projected to 2030
for all 12 months.

Load necessary packages.

library(ggplot2)

gridiExtra is used for combining the individual plots into a single multi-
panel view.

library(gridExtra)

grid is REQUIRED for textGrob and gpar functions used by grid.arrange
for custom titles/captions.

library(grid)

library(stats) # For 1lm() and predict ()

Define the file path for the DTR CSV
file dtr <- 'Monthly DTR.csv'

Load the dataframe using base R's read.csv
df dtr <- read.csv(file dtr, stringsAsFactors = FALSE)

__
2. DATA PREPARATION

__
Rename columns for simpler access

colnames (df dtr) <- c("Year", "MonthNum", "MonthName", "DTR",
"DateString")

Ensure Year and DTR are numeric
df dtr$Year <- as.numeric(df dtr$Year)
df dtr$DTR <- as.numeric(df dtrSDTR)

df dtr$MonthNum <- as.numeric(df dtr$MonthNum)

Create a factor for MonthName to ensure plots are ordered correctly
month names order <- c("January", "February", "March", "April", "May",
"June" ,

"July", "August", "September", "October",
"November", "December")
df dtr$MonthName <- factor (df dtr$SMonthName, levels = month names order)

Remove any rows where DTR or Year are missing
df dtr <- df dtr[!is.na(df dtr$DTR) & !is.na(df dtr$Year),]

3. MONTHLY TREND ANALYSIS AND PLOTTING (12 Multi-Panel Plots)

Function to Create all 12 Monthly Trend Plots for DTR
create dtr monthly plots <- function (data) {

plot list <- list()
full label <- "Monthly Diurnal Temperature Range (DTR in °C)"

Determine the last observed year for defining forecast start
max_year observed <- max (data$Year, na.rm = TRUE)

Create a sequence of years for the trend line, extending to 2030
future years <- seg(min(data$Year, na.rm = TRUE), 2030, by = 0.1)

Set common Y-axis limits across all months for visual comparison
y min limit <- min(data$DTR, na.rm=TRUE) - 1
y max limit <- max(data$DTR, na.rm=TRUE) + 1

Loop through all 12 months (using MonthNum 1 to 12)
for (m in 1:12) {

Filter data for the current month

month data <- data[data$MonthNum == m,]

month label <- month names order[m]

1. Trend Fitting: Attempting a Polynomial (Quadratic) Model with
Linear Fallback
model <- tryCatch ({
Check if enough unique points exist for a quadratic model (>= 3
unique years)
if (length(unique (month data$Year)) >= 3) {
Attempt 2nd-degree polynomial fit (Quadratic)
Im(DTR ~ Year + I(Year”2), data = month data)
} else {
Fallback immediately if data is insufficient for quadratic
Im(DTR ~ Year, data = month data)
}
}, warning = function (w) {
Fallback to linear model if quadratic fails with a warning (e.g.,
singular fit)
Im(DTR ~ Year, data = month data)
}, error = function(e) {
NULL # Return NULL if even linear fails (e.g., insufficient data)
})

Check if the model failed or if there is simply not enough data
if (is.null (model) || length(unique (month data$Year)) < 2) {

Create a placeholder plot for empty or sparse months
p <- ggplot (month data, aes(x = Year, y = DTR)) +
geom_ text (aes(x = mean (data$Year, na.rm=TRUE), y = mean (data$DTR,
na.rm=TRUE)),

label = "Insufficient Data", size = 3, color = "gray50")
+
labs(title = month label, x = NULL, y = NULL) +
theme void() +
theme (plot.title = element text (face = "bold", size = 10, hjust =
0.5))

plot list[[m]] <- p
next

}

2. Create forecast data frame
df forecast <- data.frame(Year = future years)
df forecast$Predicted <- predict (model, newdata = df forecast)

Identify if the point 1is a true forecast (beyond the current
max_year observed)
df forecast$Is Forecast <- df forecast$Year > max year observed

3. Create the ggplot for the month
p <- ggplot (month data, aes(x = Year, y = DTR)) +

Layer 1: Observed data points (scatter) - Blue
geom point (color = "#377EB8", size = 1.0, alpha = 0.7) +
Layer 2: Historical Trend line (fitted part) - Red
geom_line(
data = df forecast[!df forecast$Is Forecast & df forecast$Year >=

min (month data$Year), 1,
aes(x = Year, y = Predicted),

color = "#E41A1C",
size = 1.2
)+
Layer 3: Forecast line (Future part) - Green, dashed

geom_line (
data = df forecast[df forecast$Is Forecast,],
aes(x = Year, y = Predicted),

color = "#4DAF4A",
size = 1.2,
linetype = "dashed",
arrow = arrow(length = unit(0.15, "inches"), ends = "last", type
= "closed")
)+

Layer 4: Visualization Polish

labs (
title = month label,
x = NULL,
y = NULL
) +
theme minimal (base size = 9) +
theme (
plot.title = element text (face = "bold", size = 10, hjust = 0.5),
axis.text.x = element text (angle = 45, hjust = 1, size = 8),

Remove Y-axis text in small panels to remove clutter
axis.text.y = element blank(),
axis.ticks.y = element blank(),

panel.grid.minor.x = element blank(),
panel.grid.minor.y = element blank(),
plot.margin = unit(c(0.2, 0.2, 0.2, 0.2), "cm")
) +
Ensure the x-axis is on a year scale and extends to 2030
scale x continuous (
breaks = seqg(floor (min(data$Year, na.rm = TRUE)), 2030, by = 10),
limits = c(floor (min(data$Year, na.rm = TRUE)), 2030)

) +
Set common Y-axis limits across all months for visual comparison
coord cartesian(ylim = c(y min limit, y max limit))

plot list[[m]] <- p
}

4. Combine all 12 plots into a single output using grid.arrange

Main Title
main _title <- textGrob (paste("Monthly Trend Detail and Forecast:",
full label),
gp=gpar (fontsize=16, fontface="bold"))

Subtitle
trend subtitle <- textGrob ("Individual monthly DTR change with 2nd-degree
polynomial fit projection to 2030",
gp=gpar (fontsize=12, col="gray30"))

The Y-axis label is placed to the left of the 4x3 plot grid
y _axis label <- textGrob(full label, rot = 90, gp=gpar (fontsize=12))

Plot caption focusing only on color/line type for clarity
plot caption <- textGrob ("Observed Data (Blue Points); Historical Trend
(Red Solid); Forecast (Green Dashed with Arrowhead). Note: All plots share
a common Y-axis range.",
gp=gpar (fontsize=10, col="gray50"), hjust =
0.5, x = 0.5)

Arrange the components (Title, Subtitle, Y-Label, 12 Plots, Caption)
combined plot <- grid.arrange (

main_ title,

trend subtitle,

y axis label,

Combine the 12 plots into a single grob in a 4x3 matrix

do.call (arrangeGrob, c(plot list, ncol = 3, nrow = 4)),

plot caption,

ncol = 2,

Define widths: narrow column for Y-label, wide column for 4x3 plots

widths = unit.c(unit (0.5, "in"), unit (1, "null")),

Adjust heights for the title and new subtitle

heights = unit.c(unit(0.3, "in"), unit(0.2, "in"), unit(l, "null"),
unit (0.3, "in")),

Layout matrix:

Row 1: NA, Title

Row 2: NA, Subtitle

Row 3: Y-Label, 4x3 Plots (as a single unit/grob)

Row 4: Caption (takes full width)

layout matrix = rbind(c(NA, 1),
c(NaA, 2),
c(3, 4),
c(5

return (combined plot)

}

4. EXECUTION

cat (M==================——————oooo o e e e \n"
)

cat (" GENERATING DTR MONTHLY TREND DETAIL PLOT\n")

cat (" \n\
n")

Generate and print the combined plot
plot dtr monthly <- create dtr monthly plots(df dtr)
print (plot dtr monthly)

o
END OF SCRIPT

B
cat ("\n\n--- INSTRUCTIONS FOR VIEWING PLOT ---\n")

cat ("A single 4x3 multi-panel plot summarizing the monthly DTR trends and
forecasts has been generated.\n")

3. R Script to analyse Urban Area Expansion

R Script for Analyzing Urbanization Growth in Kolkata

This revised script excludes the first two data points (2001 and 2002)
to focus on the subsequent, more consistent growth trend (2003
onwards) .

library (dplyr)
library(ggplot2)

file urban <- 'Urban Area.csv'

df urban <- read.csv(file urban, stringsAsFactors = FALSE)

B
2 DATA PREPARATION AND FILTERING
o

Rename columns for clarity and consistency
colnames (df urban) [1] <- "Date String"
colnames (df urban) [2] <- "Urban Area km2"

Convert Date String to Date object and extract the year
df urban$Date <- as.Date(df urbanS$Date String, format = '%b %d,
df urban$Year <- as.numeric(format (df urban$Date, "S%Y"))

o

Y'")

Ensure Urban Area km2 is numeric and filter out missing data
df urban$Urban Area km2 <- as.numeric(df urban$Urban Area km2)
df urban <- df urban[!is.na(df urbanSUrban Area km2) &
!is.na(df urban$Year),]

CRITICAL MODIFICATION: Exclude the first two rows (2001 and 2002) as
requested.
This ensures the trend analysis focuses on the stable growth pattern
from 2003 onwards.
df urban <- df urban %>%

slice(3:n())

3. ANALYSIS: URBAN GROWTH TREND

Run linear regression (Urban Area vs. Year) to quantify growth rate
urban model <- Im(Urban Area km2 ~ Year, data = df urban)
summary urban <- summary (urban model)

Extract key statistics

slope <- coef (urban model) ["Year"]

p_value <- summary urban$coefficients["Year", "Pr(>[t]|)"]
r squared <- summary urban$r.squared

cat ("--- Kolkata Urbanization Trend Analysis (Filtered: 2003-2023) ---
\H")

cat (sprintf ("Time Period: %d - %d\n", min(df urbanS$Year),

max (df urban$Year)))

cat (sprintf ("Linear Growth Rate (Change per Year): %.2f km?/year\n",
slope))

cat (sprintf ("P-value (Significance): %.5f\n", p value))

cat (sprintf ("R-squared: %.3f\n\n", r squared))
cat (sprintf ("Start Area (Year %d): %.2f km?\n", min(df urban$Year),

df urbanSUrban Area km2[df urban$Year == min(df urban$Year)]))

cat (sprintf ("End Area (Year %d): %.2f km?\n", max(df urban$Year),

df urban$Urban Area km2[df urban$Year == max(df urban$Year)]))

__
4. VISUALIZATION: TIME SERIES PLOT

__

Create the plot
urban_plot <- ggplot (df urban, aes(x = Year, y = Urban Area km2)) +
Add the data points

geom _point (color = "#3498db", size = 3) +

Add a line connecting the points

geom line(color = "#2c3e50", linewidth = 0.8) +

Add the linear trend line

geom_smooth (method = "1lm", se = TRUE, color = "#e74c3c", fill =
"#fbe7e7", linewidth = 1.2) +

Set labels and title

labs (

title = "Kolkata Urban Area Expansion (2003 - 2023)",

subtitle = paste("Linear Growth Rate:", round(slope, 2), "km?/year |
R?:", round(r squared, 3)),

x = "Year",
y = expression ("Urban Area ("*km"2*")") # Use expression for
superscript
)+
Apply a clean theme
theme minimal (base size = 14) +
theme (
plot.title = element text (hjust = 0.5, face = "bold"),
plot.subtitle = element text (hjust = 0.5),
axis.title.y = element text(margin = margin(r = 15)),

panel.grid.minor = element blank()

)

Print the plot object to display it
print (urban plot)

cat ("\n\n--- END OF ANALYSIS ---\n")

4. R Script to analyse Land Surface Temperature

R Script for Land Surface Temperature (LST) Trend Analysis (1990-
Present)

This script analyzes the raw satellite LST data and generates two
plots:

1. A long-term trend plot with LOESS smoothing to show overall change.
2. A monthly box plot to visualize seasonal variation and stability.

Load necessary packages.
library (ggplot?2)

library (dplyr)
library(stats) # For 1lm()

Define the file path for the LST CSV
file 1st <- 'LST.csv'

Load the dataframe using base R's read.csv

Skip the first row if it's a header with system:index/Date (common in
GEE exports)

df 1st <- read.csv(file 1lst, stringsAsFactors = FALSE)

Rename columns for simpler access, ignoring the .geo column
colnames (df 1st) [2] <- "Date"
colnames (df 1st) [3] <- "LST"

Convert Date to a Date object and LST to numeric
df lst$Date <- as.Date(df lst$Date, format = '%Y-%m-%d')
df 1st$LST <- as.numeric(df 1stSLST)

Filter out rows with missing or invalid LST values
df 1st <- df 1lst[!is.na(df 1st$SLST) & !is.na(df lstSDate),]

Extract Year and Month for detailed analysis
df lst$Year <- as.numeric (format (df lstS$Date, "%Y"))
df lst$Month <- factor (format (df lst$Date, "%m"),

levels = sprintf ("%$024d", 1:12),

labels = c("Jan", "Feb", "Mar", "Apr", "May",
"Jun",

"Jul", "Aug", "Sep", "Oct", "Nov",

"Dec"))

Calculate the fractional time for linear trend fitting
df lst$DecimalYear <- df lst$Year + (as.numeric(format (df lst$Date,
"$3")y) - 1) / 365.25

3. VISUALIZATION 1l: LONG-TERM LST TREND (Scatter with Smoothed Line)

plot long term trend <- function(data) {

Calculate the overall linear trend coefficient for the subtitle

overall model <- Im(LST ~ DecimalYear, data = data)

slope <- coef (overall model) ["DecimalYear"]

trend label <- pasteO("Overall Linear Trend: ", round(slope, 3), "
°C/Year")

p <- ggplot (data, aes(x = Date, y = LST)) +

Layer 1: Individual observations (scatter plot)

geom _point (color = "#377EB8", size = 1, alpha = 0.4) +

Layer 2: LOESS Smoother (Local Trend) - Highlights the shape of the
change

geom_smooth (method = "loess", span = 0.25, color = "#E41AlC",

linewidth = 1.5, se = FALSE) +

Layer 3: Linear Fit (Overall Long-Term Trend) - Shows net change
geom_smooth (method = "1lm", color = "#4DAF4A", linewidth = 1.2,
linetype = "dashed", se = TRUE) +

Labels and Theme

labs (
title = "Land Surface Temperature (LST) Observations and Long-Term
Trend",
subtitle = pastel("LOESS Smoother (Red) wvs. Linear Fit (Green
Dashed) . ", trend label),
x = "Date",
y = "1,ST (°C)",
caption = "Source: Satellite Observations (Raw Data)"
)+
theme minimal (base size = 14) +
theme (
plot.title = element text (face = "bold", size = 18, hjust = 0.5),
plot.subtitle = element text(size = 12, hjust = 0.5, color =
"gray40"),
axis.title = element text(face = "bold"),

panel.grid.minor = element blank()

)

return (p)

4. VISUALIZATION 2: MONTHLY LST VARIABILITY (Box Plot)

plot monthly variability <- function(data) {

Calculate mean LST for each month for visualization
monthly mean <- data %>%

group_ by (Month) %>%

summarise (Mean LST = mean (LST, na.rm = TRUE))

p <- ggplot(data, aes(x = Month, y = LST, fill = Month)) +
Layer 1: Box plots showing distribution (Median, IQR, Outliers)
geom boxplot (outlier.shape = 1, outlier.color = "gray50", alpha =

0.8) +

Layer 2: Overlay mean LST (Diamond)
geom point(data = monthly mean, aes(y = Mean LST),

shape = 23, fill = "black", color = "white", size = 3) +

Optional: Use a color palette optimized for categorical data
scale fill brewer (palette = "Spectral") +

Labels and Theme

labs (
title = "Seasonal Distribution of Land Surface Temperature (LST)",
subtitle = "Boxplot showing median, interquartile range (IQR), and
outliers. Black diamond marks the mean LST.",
x = "Month",
y = "LST (°C)",
caption = pastelO ("Data span: ", min(data$Year), " - ",
max (dataSYear))
)+
theme minimal (base size = 14) +
theme (
plot.title = element text (face = "bold", size = 18, hjust = 0.5),
plot.subtitle = element text(size = 12, hjust = 0.5, color =
vvgray40n),
axis.title = element text(face = "bold"),
legend.position = "none" # Hide legend since colors map directly to
the X-axis
)
return (p)
}
__
5. EXECUTION
__
cat (" \H"
)
cat (" GENERATING LST LONG-TERM TREND PLOT\n")
cat ("=== \n\
n")

Generate and print Plot 1
Ist trend plot <- plot long term trend(df 1st)
print (Ist trend plot)

cat ("\n\n
=\nll)

cat (" GENERATING LST MONTHLY VARIABILITY PLOT\n")

cat (" \n\
n")

Generate and print Plot 2
Ist monthly plot <- plot monthly variability(df 1st)
print (Ist monthly plot)

B
END OF SCRIPT
e
cat ("\n\n--- ANALYSIS SUMMARY ---\n")

cat ("Two LST plots have been generated:\n")

cat ("1l. The Long-Term Trend Plot visualizes the overall temperature
change with smooth (LOESS) and linear trend lines.\n")

cat ("2. The Monthly Variability Plot uses boxplots to show the seasonal
pattern and data spread for each month.\n")

5. R Script to analyse UHI

R Script for Analyzing Urban Heat Island (UHI) Intensity in Kolkata
This script calculates the long-term trend in UHI intensity and
generates

a time series plot to visualize the change over the years.

library (dplyr)
library(ggplot2)

file uhi <- 'UHI.csv'
df uhi <- read.csv(file uhi, stringsAsFactors = FALSE)

Rename columns for clarity and consistency
colnames (df uhi) [2] <- "UHI Intensity C"
colnames (df uhi) [3] <- "Year"

Ensure UHI Intensity C and Year are numeric and filter out missing data
df uhi$UHI Intensity C <- as.numeric(df uhi$UHI Intensity C)
df uhi$Year <- as.integer (df uhi$Year)

df uhi <- df uhi[!is.na(df uhi$UHI Intensity C) & !is.na(df uhi$Year),]

Note: UHI intensity is often negative in this type of analysis,

indicating the urban area is *cooler* than the rural reference (or
vice-versa),

depending on the calculation method. The key is the *change* in the
value over time.

3. ANALYSIS: UHI INTENSITY TREND

Run linear regression (UHI Intensity vs. Year) to quantify the trend
rate

uhi model <- Im(UHI Intensity C ~ Year, data = df uhi)

summary uhi <- summary (uhi model)

Extract key statistics

slope <- coef (uhi model) ["Year"]

p_value <- summary uhiScoefficients["Year", "Pr(>|t])"]
r squared <- summary uhiS$r.squared

cat ("--- Kolkata UHI Intensity Trend Analysis ---\n")

cat (sprintf ("Time Period: %d - %d\n", min(df uhiS$Year),

max (df uhi$Year)))

cat ("The slope indicates the annual change in UHI intensity (Urban LST -
Rural LST).\n")

Interpret the slope
if (slope > 0) {
cat (sprintf ("Linear Trend Rate: +%.4f °C/year (UHI is
strengthening)\n", slope))
} else {

cat (sprintf ("Linear Trend Rate: %.4f °C/year (UHI is weakening)\n",
slope))
}

cat (sprintf ("P-value (Significance): %.5f\n", p value))

cat (sprintf ("R-squared: %.3f\n\n", r squared))

cat (sprintf ("Initial UHI Intensity (Year %d): %.2f °C\n",

min (df uhi$Year), df uhiSUHI Intensity C[df uhiS$Year ==

min (df uhi$Year)]))

cat (sprintf ("Final UHI Intensity (Year %d): %.2f °C\n", max (df uhi$Year),

df uhi$UHI Intensity C[df uhi$Year == max(df uhi$Year)]))

B
4. VISUALIZATION: TIME SERIES PLOT

__

Create the plot
uhi plot <- ggplot (df uhi, aes(x = Year, y = UHI Intensity C)) +
Add the data points

geom point (color = "#e67e22", size = 3) +

Add a line connecting the points

geom line(color = "#d35400", linewidth = 0.8) +

Add the linear trend line

geom_smooth (method = "1lm", se = TRUE, color = "#2980b9", fill =

"#d6eaf8", linewidth = 1.2) +
Add a zero line for reference
geom hline(yintercept = 0, linetype = "dashed", color = "gray50",
linewidth = 0.6) +
Set labels and title
labs (
title = "Kolkata Annual Urban Heat Island (UHI) Intensity",
subtitle = paste ("Annual Trend:", round(slope, 4), "°C/year | R?:",
round (r_squared, 3)),

x = "Year",
y = expression ("UHI Intensity (°C)") # Use expression for superscript
)+
Apply a clean theme
theme minimal (base size = 14) +
theme (
plot.title = element text (hjust = 0.5, face = "bold"),
plot.subtitle = element text (hjust = 0.5),
axis.title.y = element text(margin = margin(r = 15)),

panel.grid.minor = element blank()

)

Print the plot object to display it
print (uhi plot)

cat ("\n\n--- END OF ANALYSIS ---\n")

6. R Script to analyse Rainfall

R Script for Rainfall Volatility, Trend, and Extreme Events Analysis with
ENSO Context

library (dplyr)
library (ggplot?2)
library (tidyr)
library (purrr)

library (mgcv)
library(zoo) # For the Moving Average (rollmean)
library(scales) # For percent labels in Goal 4 plot

Target year is only used for Goal 4 model extrapolation
TARGET YEAR <- 2030

Load the data files (ENSURE THESE FILES ARE IN THE WORKING DIRECTORY)
df annual <- read.csv('Annual Rainfall Summary.csv', stringsAsFactors =
FALSE)

df monthly <- read.csv('Monthly Rainfall Summary.csv', stringsAsFactors
FALSE)

Define the order of the months for correct plotting sequence
month order <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
llJul", "Aug", "Sep", "OCt", "NOV", "DeC")

—--- Define ENSO Events (Major El Nifio and La Nifia years, 1990-2024) ---
enso_events <- data.frame (

Year = 1990:2024,

ENSO Phase = 'Neutral'
)

el nino_years <- c(1991, 1994, 1997, 2002, 2004, 2006, 2009, 2015, 2018,
2023)
la nina years <- c(1998, 1999, 2007, 2010, 2011, 2016, 2020, 2021, 2022)

enso_events <- enso_events $>%

mutate (
ENSO Phase = case_ when (
Year %in% el nino years ~ 'El Nifio',
Year %in% la nina years ~ 'La Nina',

TRUE ~ 'Neutral'

2. DATA PREPARATION (WITH 5-YEAR MOVING AVERAGE AND ENSO JOIN)

—--- Annual Data Prep (Smoothing and ENSO Join) ---
df annual <- df annual %>%
mutate (Year = as.integer (Year)) %>%

select (Year, Annual Total Rainfall mm, Annual Mean Daily Rainfall mm)
$>%

left join(enso_events, by = "Year") %$>% # JOIN ENSO

arrange (Year) %>%

Calculate 5-year Moving Average (MA)

mutate (Annual Total Rainfall 5yr MA =

rollmean (Annual Total Rainfall mm, k = 5, fill = NA, align = "right"))
—--- Monthly Data Prep (Smoothing and ENSO Join) ---
df monthly <- df monthly %>%

mutate (Year = as.integer (Year)) %>%

Convert Month Name to factor for correct order

mutate (Month Name = factor (Month Name, levels = month order)) %>%
rename (Mean Daily Rainfall mm = Mean Daily Rainfall mm) %>%
filter (!is.na(Month Name)) %>%

left join(enso_events, by = "Year") %$>% # JOIN ENSO
arrange (Month Name, Year) %>%

group by (Month Name) $>%

Calculate 5-year Moving Average (MA) for each month
mutate (Mean Daily Rainfall 5yr MA = rollmean(Mean Daily Rainfall mm, k =

5, fill = NA, align = "right")) %>%
ungroup ()
—--- Calculate Extreme Threshold (Needed for Goals 3 and 4) ---

extreme threshold <- quantile(df monthlyS$Mean Daily Rainfall mm, probs
0.90, na.rm = TRUE)

__
Goal 1: Annual Total Rainfall (With Loess Curve, 5-Year MA, and ENSO
Highlight) - REVISED CAPTION

__
cat ("\n--- 1. Annual Total Rainfall (Loess, 5-Year MA, and ENSO Highlight)
-—-\n")

plot annual total <- ggplot (df annual, aes (x = Year, y =

Annual Total Rainfall mm)) +

Highlight background regions for La Nifia and E1l Nifio (visual context)
geom rect (data = df annual %>% filter (ENSO Phase != 'Neutral'),
aes (xmin = Year - 0.5, xmax = Year + 0.5, ymin = -Inf, ymax =
Inf, fill = ENSO_ Phase),
alpha = 0.1, show.legend = FALSE) +

1. Scattered Points (Raw Data) - Colored by ENSO
geom point (aes(color = ENSO Phase), size = 3, alpha = 0.8) +

2. Loess Smoothing Curve (Non-linear Trend) - Black Line
geom_smooth (method = "loess", span = 0.7, se = FALSE, color = "black",
linewidth = 1.2) +

3. 5-Year Moving Average Line (Added back) - Dark Red Line
geom line(aes(y = Annual Total Rainfall 5yr MA), color = "#8B000O",
linewidth = 1) +

Define colors for the ENSO phases

scale color manual (values = c¢("E1 Nifio" = "#e74c3c", "La Nifa" =
"#3498db", "Neutral"™ = "#7f£8c8d"), name = "ENSO Phase") +
scale fill manual (values = c¢("E1 Nifo" = "#e74c3c", "La Nifna" =
"#3498db", "Neutral" = NA)) +
labs (
title = "Annual Total Rainfall (1990 - 2024) with Loess Trend and 5-
Year MA",
subtitle = "ENSO phase colors points. Background highlight shows La
Nifia (blue) and El1 Nifio (red) years.",
x = "Year",
y = "Total Rainfall (mm)",
MOVED line description to caption
caption = "Trend Lines: Black line shows the Loess trend. Dark red line
shows the 5-year moving average."
) +
theme minimal (base size = 14) +
theme (legend.position = "top",
Optionally left-align the caption if preferred
plot.caption.position = "panel",

plot.caption = element text (hjust = 0))

print (plot annual total)

Goal 2: Monthly Mean Daily Rainfall (Multi-paneled with 5-Year Moving

Average)

__
cat ("\n--- 2. Monthly Mean Daily Rainfall (Smoothed Multi-panel) ---\n")
plot monthly simple multipanel <- ggplot(df monthly, aes(x = Year, y =

Mean Daily Rainfall mm)) +
1. Scattered Points (Raw Data)
geom point (alpha = 0.4, size = 1.5, color = "#2ecc7l") +

2. Moving Average Line (Smoothed Trend)
geom line(aes(y = Mean Daily Rainfall 5yr MA), color = "#£39cl2", size =
1, alpha = 0.8) +

facet wrap(~ Month Name, scales = "free y", ncol = 4) +
labs (
title = "Monthly Mean Daily Rainfall Over Time (1990 - 2024)",
subtitle = "Orange line shows the 5-year moving average for each month
to indicate change.",
x = "Year",
y = "Mean Daily Rainfall (mm)"
) +

theme light (base size = 12) +

theme (plot.title = element text (face = "bold"),
strip.text = element text (face = "bold"))

print (plot monthly simple multipanel)
__
Goal 3: Extreme Rainfall Months (Table and Heat Map Plot with ENSO
Highlight)
__
cat ("\n--- 3. Extreme Rainfall Months (Table and Heat Map Plot with ENSO
Highlight) ---\n")
cat (pastel ("Extreme Rainfall Threshold (90th percentile of monthly mean
daily rain): ", round(extreme threshold, 2), " mm/day\n"))

Create the data frame for extreme events (the table)
df extreme plot <- df monthly %>%
filter (Mean Daily Rainfall mm >= extreme threshold) %>%
mutate (Mean Daily Rainfall mm = round(Mean Daily Rainfall mm, 2)) %>%
select (Year, Month Name, Mean Daily Rainfall mm, ENSO Phase) %>% #
Including ENSO Phase
arrange (Year, factor (Month Name, levels = month order))

cat ("\nExtreme Rainfall Months Table:\n")

print (df extreme plot)

write.csv(df extreme plot, 'Extreme Rainfall Months Table.csv', row.names
= FALSE)

-——- Plotting the Extreme Months as a Heat Map —---
plot extreme months heatmap <- ggplot (df extreme plot, aes(x = Year, y =
Month Name, fill = Mean Daily Rainfall mm)) +

Add the color fill for rainfall intensity

geom tile(color = "white", size = 0.5) +

Highlight the tile borders based on ENSO phase
geom tile(aes(color = ENSO Phase), size = 1.5, fill = NA) + # Highlight
tile border

Add the rainfall value as text on each tile
geom_text (aes(label = Mean Daily Rainfall mm), color = "black", size =
3) +

Define the color scale for the fill (Rainfall Intensity)
scale fill gradient (low = "#fee8c8", high = "#e34a33", name = "Rainfall
(mm/day) ") +

Define the colors for the border (ENSO Phase)

scale color manual (values = c¢("E1 Nifio" = "#e74c3c", "La Nifa" =
"#3498db", "Neutral" = "gray50"), name = "ENSO Phase Border") +
scale y discrete(limits = rev (month order)) +
scale x continuous (breaks = unique(df_extreme_plot$Year)) +
labs (
title = "Extreme Rainfall Months Highlighting ENSO Influence",
subtitle = "Border color indicates the ENSO phase during the extreme
event.",
x = "Year",
y = "Month"
)+
theme minimal (base size = 12) +
theme (axis.text.x = element text (angle = 90, vjust = 0.5, hjust = 1),
plot.title = element text(face = "bold"),
legend.position = "bottom")

print (plot extreme months heatmap)

Goal 4: Monthly Extreme Event Probability Trend (Caterpillar Plot)

cat ("\n--- 4. Monthly Extreme Event Probability Trend (Caterpillar Plot)
-—-\n")

-—- Model Fitting ---
df extreme monthly <- df monthly %>%
mutate (Is Extreme = Mean Daily Rainfall mm >= extreme threshold) %>%

mutate (Extreme Month Index = as.numeric(Is Extreme))

monthly extreme trend analysis glm <- df extreme monthly %>%
group by (Month Name) $>%

nest () %>%
mutate (
model = map (data, ~ glm(Extreme Month Index ~ Year, data = .x, family
= "binomial")),
log _odds _slope = map dbl (model, ~ coef(.)["Year"]),
prediction 2030 prob = map dbl (model, ~ predict(., newdata =
data.frame (Year = TARGET YEAR), type = "response"))
) %>%
unnest (cols = c(log odds slope, prediction 2030 prob)) 3%>3%
select (Month Name, Log Odds_Slope = log odds slope,

Prediction 2030 Probability = prediction 2030 prob)

cat ("\nMonthly Extreme Event Probability Trend Summary (Logistic GLM) :\n")
print (monthly extreme trend analysis glm)

—--- Caterpillar Plot Visualization ---
plot extreme probability caterpillar <-
ggplot (monthly extreme trend analysis glm,
aes (x =
Prediction 2030 Probability,
y = factor (Month Name,
levels = rev(month order)))) +

1. Trend Direction Line (from 0 probability to 2030 prediction)

geom_segment (aes(x = 0, xend = Prediction 2030 Probability,
y = factor (Month Name, levels = rev(month order)),
yend = factor (Month Name, levels = rev(month order)),

color = Log Odds_Slope),
linewidth = 1.5, alpha = 0.7) +

2. Prediction Point (2030 Probability)
geom point (aes(color = Log Odds Slope), size = 5) +

Add a vertical line at the long-term (unconditional) probability (1/12
or ~0.083)

geom vline (xintercept = 1/12, linetype = "dashed", color = "gray50") +
geom text(aes(x = 1/12, y = 1), label = "Long-Term Avg (1/12)", hjust =
-0.1, vjust = 1.2, color = "gray50", size = 3) +

Color scale based on the slope (Log Odds Slope)
scale color gradient2 (

low = "#3498db",

mid = "gray",

high = "#e74c3c",
midpoint = 0,
name = "Trend (Log Odds Slope)",

Explicitly define breaks based on min/max slope and 0 (Neutral)
breaks = c(min(monthly extreme trend analysis glm$Log Odds Slope), O,
max (monthly extreme trend analysis glm$Log Odds Slope)),
labels = c("Decreasing", "Neutral", "Increasing")
)+

scale x continuous (labels = scales::percent) +

labs (
title = "Monthly Extreme Rainfall Probability Trend Summary",
subtitle = pastel("Predicted probability of an extreme event in ",
TARGET YEAR, " (X-axis) and trend direction (Color)."),
x = "Predicted Probability of Extreme Event",
y = "Month"
) +
theme minimal (base size = 14) +
theme (legend.position = "bottom",
legend.title = element text (face = "bold"))

print (plot extreme probability caterpillar)

7. R Script to analyse Rainfall (Future Projections)

library (dplyr)
library(ggplot2)
library (tidyr)

library (RColorBrewer)

Load the projection data file
df projection <- read.csv ('Temperature Humidity Projection.csv',
stringsAsFactors = FALSE)

df cleaned <- df projection %>%
Convert Year to integer
mutate (Year = as.integer (Year)) %>
Filter out vyears with 0.0 wvalues (often representing the
historical/initial period)
Keeping only years with actual projected data (Mean Temperature C >
0.0)
filter (Mean Temperature C > 0.0) %>%
Rename columns for simpler plotting
rename (
Temperature C = Mean Temperature C,
Specific Humidity g kg = Mean Specific Humidity g kg
)

o

Check the unique SSP scenarios for legend

scenarios <- unique (df cleanedS$SSP)

cat ("Found the following climate scenarios (SSP) in the data:\n")
print (scenarios)

Define a color palette for the scenarios

Using Paired from RColorBrewer for high contrast

scenario_colors <- brewer.pal (n = length(scenarios), name = "Setl")
names (scenario _colors) <- scenarios

__
3. VISUALISATION: MEAN TEMPERATURE TREND

__
plot temperature <- ggplot (df cleaned, aes(x = Year, y = Temperature C,

color = SSP)) +

Smooth lines to show the trend clearly

geom_smooth (method = "loess", se = FALSE, linewidth = 1.5, alpha = 0.8)
+

Points for annual data, slightly faded
geom point(alpha = 0.3, size = 1) +

Customize titles and labels

labs (
title = "Projected Annual Mean Temperature Trend",
subtitle = "Comparison across Shared Socioceconomic Pathways (SSPs)",
x = "Year",
y = expression ("Mean Temperature ("*~degree*C*")"),
color = "Scenario (SSP)"
) +

Use the defined color palette
scale color manual (values = scenario _colors) +

Attractive, clean theme

theme minimal (base size = 14) +

theme (
plot.title = element text (face = "bold", size = 18, color = "#2c3e50"),
plot.subtitle = element text(size = 12, color = "#7£8c8d"),
axis.title.y = element text(margin = margin(r = 15)),
axis.title.x = element text(margin = margin(t = 10)),
legend.position = "bottom",
panel.grid.minor = element blank(),
panel.background = element rect (fill = "#ecf0fl", color = NA)

)

print (plot temperature)

__
4. VISUALISATION: MEAN SPECIFIC HUMIDITY TREND

__
plot humidity <- ggplot (df cleaned, aes (x = Year, y =

Specific Humidity g kg, color = SSP)) +

Smooth lines to show the trend clearly

geom smooth (method = "loess", se = FALSE, linewidth = 1.5, alpha = 0.8)
+

Points for annual data, slightly faded
geom point(alpha = 0.3, size = 1) +

Customize titles and labels

labs (
title = "Projected Annual Mean Specific Humidity Trend",
subtitle = "Specific humidity is a measure of moisture content (g of
water vapor/kg of air)",
x = "Year",
y = "Mean Specific Humidity (g/kg)",
color = "Scenario (SSp)"
)+

Use the defined color palette
scale color manual (values = scenario_colors) +

Attractive, clean theme

theme minimal (base size = 14) +

theme (
plot.title = element text (face = "bold", size = 18, color = "#2c3e50"),
plot.subtitle = element text(size = 12, color = "#7£8c8d"),
axis.title.y = element text(margin = margin(r = 15)),
axis.title.x = element text(margin = margin(t = 10)),
legend.position = "bottom",
panel.grid.minor = element blank(),

panel.background = element rect (fill = "#ecf0fl", color = NA)
)

print (plot humidity)

8. R Script to analyse Rainfall Projection

R Script for Visualising Climate Projection Trends (Rainfall) and Extreme
Analysis

library (dplyr)
library(ggplot2)
library (RColorBrewer)

Load the projection data file
df rainfall <- read.csv('Rainfall Projection.csv', stringsAsFactors =
FALSE)

df cleaned <- df rainfall %>%

Convert Year to integer

mutate (Year = as.integer (Year)) %>%

Filter out years with 0.0 wvalues (often representing the
historical/initial period)

filter (Mean Annual Rainfall mm > 0.0)

Check the unique SSP scenarios for legend

scenarios <- unique (df cleanedS$SSP)

cat ("Found the following climate scenarios (SSP) in the data:\n")
print (scenarios)

Define a color palette for the scenarios
scenario colors <- brewer.pal (n = length(scenarios), name = "Dark2")
names (scenario colors) <- scenarios

__
3. VISUALISATION: MEAN ANNUAL RAINFALL TREND

__
plot rainfall trend <- ggplot (df cleaned, aes (x = Year, y =
Mean Annual Rainfall mm, color = SSP)) +

Smooth lines to show the long-term trend clearly
geom smooth (method = "loess", se = FALSE, linewidth = 1.5, alpha = 0.8)
+

Points for annual data, slightly faded
geom point(alpha = 0.3, size = 1) +

Customize titles and labels

labs (
title = "Projected Mean Annual Rainfall Trend",
subtitle = "Annual Rainfall Projections across Shared Socioeconomic
Pathways (SSPs)",
x = "Year",
y = "Mean Annual Rainfall (mm)",
color = "Scenario (SSpP)"
) +

Use the defined color palette
scale color manual (values = scenario_colors) +

Attractive, clean theme

theme minimal (base size = 14) +

theme (
plot.title = element text (face = "bold", size = 18, color = "#1b%e77"),
plot.subtitle = element text(size = 12, color = "#7£8c8d"),

legend.position = "bottom",

panel.grid.minor = element blank(),
panel.background = element rect (fill = "#ecfO0fl", color

NA)
)

print (plot rainfall trend)

Box plot is excellent for visualizing the distribution, variance, and
outliers (extremes)

plot extreme rainfall <- ggplot (df cleaned, aes (x
Mean Annual Rainfall mm, fill = SSP)) +

SSP, N =
Create the boxplot
geom boxplot (alpha = 0.7, color = "black", linewidth = 0.8) +

Overlay individual points (optional, but shows density)
geom_ jitter (color = "black", size = 0.8, alpha = 0.4, width = 0.2) +

Customize titles and labels

labs (
title = "Rainfall Distribution and Potential for Extreme Events",
subtitle = T"Comparison of Annual Rainfall Variance across SSP
Scenarios",
x = "Scenario (SSp)",
y = "Mean Annual Rainfall (mm)",
fill = "Scenario (SSP)"
) +

Use the defined color palette
scale fill manual (values = scenario_colors) +

Coordinates flip for better label reading if many scenarios
coord flip() +

Attractive, clean theme

theme minimal (base size = 14) +

theme (
plot.title = element text (face = "bold", size = 18, color = "#d95£02"),
plot.subtitle = element text(size = 12, color = "#7£8c8d"),
legend.position = "none", # Hide redundant legend
panel.grid.minor = element blank(),
panel.background = element rect (fill = "#ecf0fl", color = NA)

)

print (plot extreme rainfall)

9. R Script to for Monthly Climate Stripe Generation

R Script to Generate Monthly Climate Stripes Visualization using Base R
and ggplot2

Only load ggplot2 for the visualization. Base R handles data manipulation.
library (ggplot?2)

Load the monthly mean temperature data
df <- read.csv('Monthly Mean Temp AH.csv', stringsAsFactors = FALSE)

2. DATA PREPARATION AND ANOMALY CALCULATION (Base R)

__
-—- A. Rename and Prepare Columns ---

Rename columns for clarity (using indexing/matching to avoid dplyr)
names (df) [names (df) == "year"] <- "Year"

names (df) [names (df) == "month"] <- "Month Num"

names (df) [names (df) == "mean temp c"] <- "Temp C"

Ensure year is treated as an integer
df$Year <- as.integer (dfS$Year)

Define the order of the months
month levels <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "OCt", "NOV", 'lDeC'l)

Create the Month Name factor in the correct chronological order for
faceting
df$Month Name <- factor (month.abb[dfS$SMonth Num], levels = month levels)

Sort the data by Month and Year (important for geom tile rendering order)
df <- df[order (df$Month Num, dfS$Year),]

—-—-- B. Calculate Monthly Mean Baseline ---
Calculate the mean temperature for each month across all years using
aggregate ()

monthly means <- aggregate(Temp C ~ Month Name, data = df, FUN
na.action = na.omit)

names (monthly means) [names (monthly means) == "Temp C"] <-
"Monthly Mean Baseline"

mean,

Merge the calculated baseline back into the main dataframe
df <- merge(df, monthly means, by = "Month Name", all.x = TRUE)

-—— C. Calculate the Temperature Anomaly —---
Anomaly is the difference from the long-term monthly mean
dfSAnomaly <- df$Temp C - df$SMonthly Mean Baseline

Determine the absolute maximum anomaly for a symmetric color scale
max abs anomaly <- max(abs(df$Anomaly), na.rm = TRUE)

3. VISUALIZATION: CLIMATE STRIPES PLOT (ggplot2)

plot stripes <- ggplot(df, aes(x = Year, y = 1, fill = Anomaly)) +

Use geom tile to draw the colored rectangles (stripes)
geom tile(width = 1, height = 1) +

Facet the plot by Month Name

'free x' allows the x-axis to be shared across all months, which is
desired here

facet wrap(~Month Name, ncol = 3, strip.position = "top") +

Apply the Blue-to-Red color gradient centered at the baseline (0)
scale fill gradient2(

low = "#08519c", # Deeper Blue

mid = "white",

high = "#b10026", # Deeper Red
midpoint = 0,

limit = c(-max_abs_anomaly, max abs anomaly),

space = "Lab",

name = "Temperature Anomaly (°C)\n(vs. Monthly Long-Term Mean)"
) +

Set up a clean, minimal aesthetic
theme minimal (base size = 12) +

Customize titles and remove unnecessary axis elements for a classic
stripe look
labs (
title = "Monthly Climate Stripes: Visualizing Temperature Trends",
subtitle = paste ("Monthly Mean Temperature Anomaly from", min (df$Year),
"to", max (df$Year)),
= "Year",

XS

theme (
Remove y-axis elements entirely as they are not informative in a
stripe plot
axis.title.y = element blank(),
axis.text.y = element blank(),
axis.ticks.y = element blank(),

Minimize spacing between facets/stripes for the full effect
panel.spacing.x = unit(0.01, "lines"),

panel.spacing.y = unit (0.5, "lines"),

panel.grid = element blank(),

Title formatting

plot.title = element text (face = "bold", size = 18, hjust = 0.5, color
= "#2c3e50"),
plot.subtitle = element text (hjust = 0.5, color = "#7£8c8d"),

Ensure facets (month names) are displayed clearly
strip.text = element text (face = "bold"),

Legend at the bottom

legend.position = "bottom",
legend.title = element text (face = "bold"),
legend.key.width = unit (2, "cm")

) +

Customize x-axis breaks to avoid overcrowding
scale x continuous (breaks = seg(min(df$Year), max(df$Year), by = 10))

Display the plot
print (plot stripes)

