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The membranes were initially weighed in their dry
state prior to submersion in DI water for 24 h at normal
temperature. Then, surface-adhered water was carefully
removed using lint-free blotting paper to determine the
wet mass of the membranes. The water uptake of the
membranes was subsequently calculated using the
following equation.
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where Wup (g-m-2) represents the water uptake, Wet (g)
and Wary (g) means the membrane weight in the wet and
dry state, respectively, A is the area of the membrane.

The porosity of the membranes was quantified
through gravimetric measurements of dry membranes
and those saturated with ethylene glycol. The density of
the polymer was determined by testing with an electronic
density balance (FA2104]). The porosity of the membranes
was acquired by the following equation.
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where m1 and mo are the masses of the wetted and dried
membranes, respectively, while p1 and po are the densities
of ethylene glycol and polymer, respectively.

The apparent surface energy of the fabricated
membranes was determined using WCAs and diiodomethane
contact angles based on the following equations.
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where y represents apparent surface energy, with
subscripts | and m indicating the test liquid and
membrane, respectively. Superscripts d and p denote
dispersive and polar components, respectively. 0 refers to
the contact angles.

The thermal behavior and hydration states of the
nanofiber films were investigated using a differential
scanning calorimeter (Bruker DSC 3100SA, Germany).
Measurements were conducted under nitrogen
atmosphere with a heating rate of 5 °C/min across a
temperature range of -70 °C to 100 °C. Three distinct
hydration states were identified through thermal
analysis: free water, frozen bound water and non-frozen
bound water. The non-frozen water, exhibiting strong
hydrogen bonding with hydrophilic groups on the
membrane surface, critically influences the material’s
hydration capacity. Quantification of water states was
performed using the following equations:
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where mo and mi1 represent the dry mass and the wet mass
of the membranes after soaking in water for 24 h,
respectively. Ws (%) is the relative water absorption of the
membranes, Wg (%) and Was (%) represent the freezable
water fraction and non-freezable water fraction in the
membranes, respectively. AHs denotes the integrated
melting enthalpy derived from DSC thermograms, while
AHw=333.5 (J-g™1), corresponds to the theoretical enthalpy
of pure ice fusion.

2. Supplementary Figures

As the PDMS concentration increased from 2% to
8%, the permeance increased from 15,990 L-m-2-h-1-bar-!
to 22,308 L-m=2-h-1-bar-! and the separation efficiency
increased from 99.89% to 99.97%. However, further
increases in PDMS concentration led to a decrease in the
oil-water separation permeance and separation
efficiency. Therefore, PDMS concentration of 8% was
determined to be the optimal concentration for the
intermediate layer.
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Figure S1. Emulsion permeance and separation
efficiency of PAN-PP/PDMS/PAN-PP membrane.
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Figure S2. Speculated mechanisms of ring-opening-
reaction induced PEA/PEGDGE hybridization to realize
in-situ hydrophilization in PAN-based membranes.

Figure S3. (a) Schematic illustration of the PDMS/PAN-
PP membrane. SEM images of the PDMS/PAN-PP
membrane fabricated at different PDMS concentration
conditions of (b) 2%; (c) 5%, (d) 8%; (e) 10%; (f) 13%.

Figure S4. (a) Schematic illustration of the PAN-
PP/PDMS/PAN-PP membrane. SEM images of the
PAN-PP/PDMS/PAN-PP membrane fabricated at
different PDMS concentration conditions of (b) 2%;
(c) 5%; (d) 8%; (e) 10%; (f) 13%.
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Figure S5. Cross-sectional SEM image of the PDMS/PAN-PP membrane.
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Figure S6. (a) Cross-sectional SEM image of the PAN-PP/PDMS/PAN-PP membrane; (b) SEM image of the selective layer
on the PAN-PP fiber.
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Figure S7. Elemental mapping images of (a) PAN-PP and (b) PAN-PP/PDMS/PAN-PP membranes.
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Figure $8. Two-dimensional Raman surface scanning of (a) PDMS/PAN-PP and (b,c) PAN-PP/PDMS/PAN-PP membranes.
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Figure S9. Long separation cycle performance of (a) PAN-PP; (b) PDMS/PAN-PP and (c) PAN-PP/PDMS/PAN-PP
membranes; (d) The WCA and UOCA of the PAN-PP/PDMS/PAN-PP membrane before and after 20 separation cycles.

Table S1. The content of different forms of water in as-prepared membranes.

Membrane Ws (%) Wis (%) Whss (%)
PAN-PP 86.02 7.40 78.62
PDMS/PAN-PP 78.69 1.89 76.80
PAN-PP/PDMS/PAN-PP 95.85 13.00 82.85
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