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S1: Working Principles of Triboelectric Nanogenerators (TENGs)

When a TENG operates under external mechanical excitation, its output performance is typically
characterized by open-circuit voltage (V,.) and short-circuit current (/). Under normal conditions, the two
triboelectric electrodes remain electrically insulated. Due to the difference in work functions between the two
triboelectric layers, contact and friction between them induce the generation of equal but opposite charges on their
surfaces. These triboelectric charges establish a potential difference that drives current flow in the external circuit.

The operational principle of TENGs originates from Maxwell's equations, particularly the Maxwell-Ampere
law, expressed as follows:
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The term J; in Equation (S1) is defined as the Maxwell displacement current density. Unlike conductive

VxH=J + (S

electron current, displacement current arises from time-varying electric fields and the microscopic motion of bound
charges, driven by dielectric polarization in materials [1]. When the electric field intensity £ varies with time, it
generates a time-dependent electric displacement field D in space. Their relationship is given by the following
equation, where ¢, denotes the vacuum permittivity and P represents the polarization field induced by surface
static charges:

D=gFE +P (S2)

When two dissimilar materials come into contact and undergo friction, charge transfer occurs from the
material with lower electron affinity to the one with higher electron affinity due to differences in their electronic
potentials. This charge redistribution leads to the formation of static charges on the material surfaces. The
accumulation of static charges directly influences the dielectric polarization of the materials, i.e., the separation of
positive and negative charge centers within the material. In isotropic dielectrics, the polarization density induced
by surface static charges and the resulting displacement current are expressed in Equation (S3). The dynamic
variation of polarization in TENGs is the key mechanism for electrical energy generation.
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When the respective back electrodes are connected to an external circuit, these charges form conductive
pathways under the influence of the electric field. The voltage and current generated by TENGs typically manifest

as pulsed signals, with each friction event producing a corresponding pulse. Furthermore, the open-circuit voltage
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exhibits a linear relationship with the separation distance between the two electrodes. To maximize charge transfer
efficiency, the minimum separation distance should be minimized, ideally approaching zero. In contrast, the short-
circuit current is influenced by the effective contact area of the electrodes and the operational frequency. An
increase in contact area or working frequency signiﬁcantly enhances the short-circuit current.

V= ——[ oo ()] w;(f) (S4)
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The expressions for open-circuit voltage and short-circuit current are given in Equations (S4) and (S5),
respectively, where QO denotes the transferred charge quantity, S represents the effective contact area, d; and
d, are the thicknesses of the two triboelectric layers, ¢, , €., and &, are the relative permittivities of the two
triboelectric layers and air, x(£) is the separation distance between the opposing surfaces of the triboelectric
layers, and o is the surface charge density upon contact [2—4].

Figure S1. (a) SEM image of the surface of SF film; (b) SEM image of the cross-section of the SF film; (¢) SEM
image of the cross-section of the SF/graphene composite film.
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Figure S2. (a—f) Degradation test of silk fibroin/graphene composite films using deionized water for 63 days.
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Figure S3. Electric potential distribution of the SF-PTFE TENG without microstructure obtained from simulation.
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Figure S4. The maximum electric potential of TENG with different structures during (a) Separation and (b) Contact.
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Figure S5. Comparison bar diagram of maximum peak-to-peak open-circuit voltage and short-circuit current for
different microstructures with the density of 25 units/cm?.
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Figure S6. (a) Durability test of SF-PTFE TENG at a frequency of 2 Hz for 400 s; (b) Durability test of
SF/graphene-PTFE TENG with a concentration of 0.5 mg at a frequency of 2 Hz for 400 s.
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Figure S7. (a) Photograph of nine-grid format TENG recognition device; (b) Circuit diagram of the device
connected to Arduino Mega2560.
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Figure S8. (a—i) Identification of device voltages for numbers 1 to 9.
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Figure S9. (a) Uniform array of micro-pyramid structures with different densities of silk protein films; (b) Uniform
array of micro-arch structures with different densities of silk protein films.

Table S1. Comprehensive comparison of TENG output performance under different optimization conditions.

TENG Microstructure rGO Concentration l?&?;‘;:;% Peak-to-Peak Open- Peak-to-Peak Short-
Configuration  Density (Units/cm?) (mg) (Hz) Circuit Voltage (V) Circuit Current (nA)
Flat SF Film 0 0 2 33.06 2.90
4 0 2 51.60 10.22
SF Film with Micro- 9 0 2 60.53 11.62
Pyramid Array 16 0 2 72.19 12.50
25 0 2 86.20 13.73
4 0 2 111.94 4.04
SF Film with Micro- 9 0 2 150.04 6.09
Arch Array 16 0 2 196.13 8.80
25 0 2 224.00 12.74
0 2 224.00 12.74
0.25 2 236.50 13.60
0.50 2 267.24 16.59
0.75 2 274.00 17.80
SF/Graphene 25 1 2 288.60 20.06
Composite 0.5 1 238.80 9.80
0.5 2 267.24 16.59
0.5 3 281.58 21.40
0.5 4 306.16 28.20
0.5 5 318.40 31.60
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