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Texts 

Text S1: Virus infection and viral load quantification. 
BEAS-2B cells seeded into a 48 well-plate and pre-
exposed to WSM for 24 h, followed by co-exposure to 
H1N1 at multiplicity of infection of 0.5 at 48 h. After 
infection, total RNA was extracted from lysed cells using 
the RNAeasy Minni kit according to the manufacturer 
(Vazyme Biotech, Nanjing, China). Viral copy numbers for 
the HA and NP genes were then absolutely quantified on 
an ABI 7500 Fast System (Thermo Fisher, Waltham, MA, 
USA), employing the PrimerScript RT reagent (AG, 
Changsha, China) and SYBR green Real Time Quantitative 
RT-PCR kit (AG, Changsha, China). A standard curve was 
generated using ten-fold serial dilutions (from 1.0 × 102 to 
1.0 × 108 copies mL−1) of in-house plasmids. 

Text S2: Description of the PLS regression model. 
Partial least square regression model is widely employed 
to analyze high-dimensional and collinear dataset [1]. In 
this study, PLS regression was applied to identify 
chemical components associated with intracellular and 
extracellular viral infectivity. In PLS regression model, 
systematic variation in X is partitioned into a predictive 
component that correlates with Y. The optimal number of 
predictive components were determined through 
validation and permutation analyses. A 7-fold cross-
validation was performed, where R2 and Q2 represented 
the goodness and predictive accuracy, respectively. In 999 
permutation tests, both R2 and Q2 from the permuted 

models required to remain lower to than those from the 
original model, with Q2 intercept on the Y-axis remained 
less than zero [2]. 

Variable importance in projection (VIP) scores offer 
an effective approach for assessing the relative significance 
of X on Y. In this study, the VIP score was used to identify 
the importance of each variable to viral infectivity, with 
calculations performed as described previously [3]. 
Variables with VIP values exceeding 1 were considered to 
exert a substantial impact on cytotoxic outcomes. To 
further determine the direction of these relationships, the 
correlation coefficients between significant variables and 
the responses were examined, identifying whether they 
had a positive or negative associations. 

Text S3: Radom forest (RF) model. Radom forests 
model, an ensemble of decision trees based on the 
classification and regression tree (CART) algorithm, was 
employed to assess the impact of key chemical components 
of PM2.5 on disease outcomes [4]. RF regression model was 
constructed using the “RadomForestRegressor” from the 
“scikit-learn” library. The dataset was randomly split into a 
70% training set and a 30% test sets, with the final 
prediction derived by averaging the outputs of all 
individual trees. The hyperparameter optimization was 
performed using the “RamdomizedSearchCV” function 
from the “scikit-learn” library, which evaluated 100 
different combinations via 3-fold cross-validation. 

To quantify the relative significance of WSM 
chemical components to viral infectivity, we applied the 
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SHapley Additive explanation (SHAP) algorithm. This 
explainable machine learning approach, based on 
cooperative game theory, assesses feature importance by 
analyzing the marginal impacts of each variable on 
prediction of model [5,6]. The SHAP value for each 
variable was calculated using the following formula: 

𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + �𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

 
 

where 𝑥𝑥𝑖𝑖 , 𝑗𝑗  represents the value of feature 𝑗𝑗  in the 
sample 𝑖𝑖 , and 𝐾𝐾 denotes the total number of different 
features. 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑗𝑗)  is the SHAP value of feature 𝑥𝑥𝑖𝑖 , 𝑗𝑗 , 
indicating contribution of 𝑥𝑥𝑖𝑖 , 𝑗𝑗 to 𝑦𝑦𝑖𝑖 . The 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the 
average predicted viral entry efficiency, serving as the 
baseline value. A higher absolute value of |𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑗𝑗)| 
indicates a greater importance of 𝑥𝑥𝑖𝑖 , 𝑗𝑗 on this efficiency. 
The relative contribution of feature 𝑗𝑗 is then calculated 
based on the average absolute value of 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑗𝑗). 

Table S1. Samples collection and atmospheric meteorological conditions. 

Sample Date PM2.5 

(μg m−3) 
NO2 

(μg m−3) 
O3 

(μg m−3) 
SO2 

(μg m−3) 
T 

(°C) 
WS 

(m s−1) WD (°) RH 
(%) 

1 2022/10/25 64.5 / / / / / / / 
2 2022/10/27 65.6  / / / / / / / 
3 2022/11/1 29.2  / / / / / / / 
4 2022/11/29 31.7  19.0  21.2  7.5  25.8  2.0  47.2 76.4  
5 2022/12/8 45.3  29.6  38.8  7.7  16.6  1.8  214.3 58.6  
6 2022/12/29 51.0  25.5  82.0  9.1  13.9  2.6  229.9  42.9  
7 2023/1/3 39.6  20.3  59.4  5.6  14.7  2.6  230.1  57.4  
8 2023/1/4 43.1  30.9  42.8  5.7  14.8  1.6  227.7  59.1  
9 2023/2/16 66.2 19.5  67.4  4.5  14.1  1.5  227.9  50.4  

10 2023/2/21 71.3  20.1  140.4  7.2  19.4  1.6  246.4  43.9  
11 2023/3/19 62.4  45.0  84.0  9.8  25.2  2.5  124.1  64.7  
12 2023/3/22 61.0  43.2  35.2  8.0  24.3  2.6  81.6  77.1  

Table S2. The proportion of water-soluble organic matters, ions, and metals in WSM. 

Constituents Proportions (%, n = 12) 
WSOM 1.2 ± 0.2 
NO3− 28.3 ± 6.1 
SO42− 19.9 ± 4.5 
NH4+ 8.0 ± 3.1 
Ca2+ 6.0 ± 1.9 
Na+ 3.6 ± 3.3 
Cl− 2.2 ± 2.3 
K+ 1.8 ± 0.5 

Metals 1.2 ± 0.2 
Al 0.3 ± 0.1 
Fe 0.3 ± 0.1 
Cu 0.3 ± 0.1 
Zn 0.1 ± 0.0 
As 0.01 ± 0.0 
Cd 0.002 ± 0.0 

Table S3. The paired primer sequence used to qRT-PCR assays. 

Gene Primer Sequence (5′→3′) 
HA Forward GGACCTTGCTAAAACCCGGA 
HA Reverse GCGTTTGAGGTGATGATGCC 
NP Forward TGGATCCCAGGATGTGCTCT 
NP Reverse CTCCTTTGACTGCAGCACCT 

Table S4. Summary of cross-validation and overfitting results of PLS regression. 

Toxic Effects Number of Components 7-Fold Cross-Validation 999-Time Permutation 
R2Y Q2 R2Y Q2 

Cellular HA 3 0.76 0.10 0.83 −0.10 
Cellular NP 2 0.68 −0.13 0.72 −0.008 
Reduced HA 2 0.64 −0.20 0.73 −0.003 
Reduced NP 5 0.97 0.21 0.96 −0.006 
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Table S5. The markedly compounds associated with viral infectivity. 

Toxic Effects Positive Correlation Negative Correlation 
Cellular HA Sn, NO3−, Zn, As, Al K+, Hg, Br−, Mg2+, NO2−, SO42−, Cr, Cu 
Cellular NP Mg2+, Na+, Cl−, Cd, V Ba, Fe, Sb, Mn, Zn, NH4+ 

Reduced HA NO3−, Pb, Sn, Sb, Se, Mg2+, Cd SO42−, Ti, Mn, Ca2+, Na+, As 
Reduced NP Mg2+, NO3−, Pb, Se SO42−, Cd, As, Mn 

Table S6. Overview of machine learning model performance after three cross-validation. 

Toxic Effects RMSE MAE R2 
Cellular HA 0.29 0.21 0.65 
Cellular NP 0.15 0.13 0.61 

Reduced HA 0.02 0.01 0.85 
Reduced NP 0.02 0.02 0.95 
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