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Text S1: Virus infection and viral load quantification.
BEAS-2B cells seeded into a 48 well-plate and pre-
exposed to WSM for 24 h, followed by co-exposure to
H1N1 at multiplicity of infection of 0.5 at 48 h. After
infection, total RNA was extracted from lysed cells using
the RNAeasy Minni kit according to the manufacturer
(Vazyme Biotech, Nanjing, China). Viral copy numbers for
the HA and NP genes were then absolutely quantified on
an ABI 7500 Fast System (Thermo Fisher, Waltham, MA,
USA), employing the PrimerScript RT reagent (AG,
Changsha, China) and SYBR green Real Time Quantitative
RT-PCR kit (AG, Changsha, China). A standard curve was
generated using ten-fold serial dilutions (from 1.0 x 102 to
1.0 x 108 copies mL-1) of in-house plasmids.

Text S2: Description of the PLS regression model.
Partial least square regression model is widely employed
to analyze high-dimensional and collinear dataset [1]. In
this study, PLS regression was applied to identify
chemical components associated with intracellular and
extracellular viral infectivity. In PLS regression model,
systematic variation in X is partitioned into a predictive
component that correlates with Y. The optimal number of
predictive components were determined through
validation and permutation analyses. A 7-fold cross-
validation was performed, where R2? and Q2 represented
the goodness and predictive accuracy, respectively. In 999
permutation tests, both Rz and Q2 from the permuted

models required to remain lower to than those from the
original model, with Q2 intercept on the Y-axis remained
less than zero [2].

Variable importance in projection (VIP) scores offer
an effective approach for assessing the relative significance
of X on Y. In this study, the VIP score was used to identify
the importance of each variable to viral infectivity, with
calculations performed as described previously [3].
Variables with VIP values exceeding 1 were considered to
exert a substantial impact on cytotoxic outcomes. To
further determine the direction of these relationships, the
correlation coefficients between significant variables and
the responses were examined, identifying whether they
had a positive or negative associations.

Text S3: Radom forest (RF) model. Radom forests
model, an ensemble of decision trees based on the
classification and regression tree (CART) algorithm, was
employed to assess the impact of key chemical components
of PM2s on disease outcomes [4]. RF regression model was
constructed using the “RadomForestRegressor” from the
“scikit-learn” library. The dataset was randomly split into a
70% training set and a 30% test sets, with the final
prediction derived by averaging the outputs of all
individual trees. The hyperparameter optimization was
performed using the “RamdomizedSearchCV” function
from the “scikit-learn” library, which evaluated 100
different combinations via 3-fold cross-validation.

To quantify the relative significance of WSM
chemical components to viral infectivity, we applied the
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SHapley Additive explanation (SHAP) algorithm. This
explainable machine learning approach, based on
cooperative game theory, assesses feature importance by
analyzing the marginal impacts of each variable on
prediction of model [5,6]. The SHAP value for each
variable was calculated using the following formula:

where x;,j represents the value of feature j in the
sample i,and K denotes the total number of different
features. f(x;j) is the SHAP value of feature x;j,
indicating contribution of x;,j to y;. The yp.e is the
average predicted viral entry efficiency, serving as the
baseline value. A higher absolute value of |f(x;, /)l

i) The relative contribution of feature j is then calculated
4 based on the average absolute value of f(x;,j).

Yi = Ypase T

K indicates a greater importance of x;,j on this efficiency.
=

Table S1. Samples collection and atmospheric meteorological conditions.

PM:zs NO:z 03 SO: T WS o RH
Sample DAt (ugm) (ugm?) (ugm?) (gm3) (0 msy PO ()

1 2022/10/25 64.5 / / / / / / /
2 2022/10/27 65.6 / / / / / / /
3 2022/11/1 29.2 / / / / / / /
4 2022/11/29 31.7 19.0 21.2 7.5 25.8 2.0 47.2 76.4
5 2022/12/8 45.3 29.6 38.8 7.7 16.6 1.8 214.3 58.6
6 2022/12/29 51.0 25.5 82.0 9.1 13.9 2.6 2299 42.9
7 2023/1/3 39.6 20.3 59.4 5.6 14.7 2.6 230.1 57.4
8 2023/1/4 43.1 30.9 42.8 5.7 14.8 1.6 227.7 59.1
9 2023/2/16 66.2 19.5 67.4 4.5 141 1.5 2279 50.4

10 2023/2/21 71.3 20.1 140.4 7.2 19.4 1.6 246.4 43.9

11 2023/3/19 62.4 45.0 84.0 9.8 25.2 2.5 124.1 64.7

12 2023/3/22 61.0 43.2 35.2 8.0 24.3 2.6 81.6 77.1

Table S2. The proportion of water-soluble organic matters, ions, and metals in WSM.
Constituents Proportions (%, n =12)

WSOM 1.2+£0.2

NOs- 283=*6.1

S042- 199 +45

NHa4* 8.0x3.1

Caz+ 6.0x19

Na* 3.6+33

Cl- 22%23

K* 1.8+0.5

Metals 1.2+0.2

Al 03+0.1

Fe 0.3x0.1

Cu 0.3x0.1

Zn 0.1+0.0

As 0.01+£0.0
Cd 0.002 + 0.0

Table S3. The paired primer sequence used to qRT-PCR assays.
Gene Primer Sequence (5'-3")
HA Forward GGACCTTGCTAAAACCCGGA
HA Reverse GCGTTTGAGGTGATGATGCC
NP Forward TGGATCCCAGGATGTGCTCT
NP Reverse CTCCTTTGACTGCAGCACCT
Table S4. Summary of cross-validation and overfitting results of PLS regression.

Toxic Effects Number of Components 7-;20‘:(1 Cross-Valldat(lztz)n 12?: -Time Permutat:lozn
Cellular HA 3 0.76 0.10 0.83 -0.10
Cellular NP 2 0.68 -0.13 0.72 -0.008
Reduced HA 2 0.64 -0.20 0.73 -0.003
Reduced NP 5 0.97 0.21 0.96 -0.006




Table S5. The markedly compounds associated with viral infectivity.

Toxic Effects Positive Correlation Negative Correlation
Cellular HA Sn, NO3-, Zn, As, Al K+, Hg, Br-, Mg2+, NO2-, SO42-, Cr, Cu
Cellular NP Mg2?+, Na*, Cl-, Cd, V Ba, Fe, Sb, Mn, Zn, NH4*
Reduced HA NOs-, Pb, Sn, Sb, Se, Mg?+, Cd S042-, Ti, Mn, Ca?*, Na*, As
Reduced NP Mg?+, NO3-, Pb, Se S042-, Cd, As, Mn

Table S6. Overview of machine learning model performance after three cross-validation.

Toxic Effects RMSE MAE R2
Cellular HA 0.29 0.21 0.65
Cellular NP 0.15 0.13 0.61
Reduced HA 0.02 0.01 0.85
Reduced NP 0.02 0.02 0.95
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