
Supplementary Materials

In this Supplementary Information, we provide a detailed exposition of the analysis presented in
the main text. We derive corresponding rate equations from stochastic models based on a mean-
field assumption and identify the equilibrium triad frequencies analytically under certain parameter
conditions. We also present numerical results to complement our analysis.
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1. RATE EQUATIONS

Let L =
(
N
2

)
and N∆ =

(
N
3

)
denote the total numbers of links and triads in the network, respectively. We represent

the numbers of positive, negative, and neutral links by Lσ, where σ ∈ {+1,−1, 0}, respectively. There are ten types
of triads up to permutation. We denote them by ∆k (k = 0, · · · , 9) as illustrated in Figure 1 in the main text.
We also represent the number of type-k triads by Nk. The normalization constraint requires that L =

∑
σ L

σ and
N∆ =

∑
k Nk. We define these quantities in density form as well: ρσ = Lσ/L, nk = Nk/N∆. The key quantity to

work with is the average number of triads of type k that involves a link σ, which we denote by Nσ
k . For convenience,

we also define nσ
k = Nσ

k /(N − 2). We refer the reader to Table S1 for a list of symbols and notations.

It follows from the definition that

L0 =
3N0 + 2N1 + 2N2 +N3 +N4 +N5

N − 2
,

L+ =
N1 + 2N3 +N4 + 3N6 + 2N7 +N8

N − 2
,

L− =
N2 +N4 + 2N5 +N7 + 2N8 + 3N9

N − 2
.

Therefore, the densities of neutral, positive, and negative links are given by

ρ0 =
m0

3
, ρ+ =

m+

3
, ρ− =

m−

3
,

where we have defined

m0 = 3n0 + 2n1 + 2n2 + n3 + n4 + n5,

m+ = n1 + 2n3 + n4 + 3n6 + 2n7 + n8,

m− = n2 + n4 + 2n5 + n7 + 2n8 + 3n9.

Table S1. Description of the symbols and notations used in our mean-field analysis.

Symbol Description

L Total number of links

N∆ Total number of triads

Lσ Number of either positive, negative, or neutral links (σ ∈ {1,−1, 0})

∆k Triad type k

Nk Number of type-k triads

ρσ Frequency of σ-links (ρσ = Lσ/L)

nk Frequency of type-k triads (nk = Nk/N∆)

Nσ
k Average number of type-k triads that are attached to a link σ

nσ
k Average density of type-k triads that are attached to a link σ (nσ

k = Nσ
k /(N − 2))

pσ
′

σ Probability that a link changes its sign from σ to σ′
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Figure S1. Illustration of the probabilities of transition between different triad types in the focal-link model, derived from

the model definition. The probabilities {pσ
′

σ }σ ̸=σ′ are obtained by summing all terms of the same color associated with the
corresponding arrows.

Then, we find

n0
0 =

3n0

m0
,

n0
1 =

2n1

m0
, n+

1 =
n1

m+
,

n0
2 =

2n2

m0
, n−

2 =
n2

m− ,

n0
3 =

n3

m0
, n+

3 =
2n3

m+
,

n0
4 =

n4

m0
, n+

4 =
n4

m+
, n−

4 =
n4

m− ,

n0
5 =

n5

m0
, n−

5 =
2n5

m− ,

n+
6 =

3n6

m+
,

n+
7 =

2n7

m+
, n−

7 =
n7

m− ,

n+
8 =

n8

m+
, n−

8 =
2n8

m− ,

n−
9 =

3n9

m− .

Note that nσ
k = 0 for combinations of k and σ that are not presented above. Both the focal-link and focal-triad models

are described by the notations introduced above. When described by rate equations, these two models differ only in
their transition probabilities.

Let pσ
′

σ denote the probability that a link changes its sign from σ to σ′. In the focal-link model, considering all such

circumstances, we can describe the probabilities pσ
′

σ in terms of triad densities. Accounting for all instances where a
link σ transition to σ′ (i.e., summing all probabilities of the same color in Figure S1), we obtain the full expressions

for pσ
′

σ as follows:
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

p+0 = n0ϵ+ n1
2

3
δ + n3

1

3
η + n5

1

3
η,

p−0 = n0ϵ+ n2
2

3
δ + n4

1

3
η,

p0+ = n1
1

3
(1− 2ϵ) + n3

2

3
(1− δ) + n4

1

3
(1− δ) + n6(1− η) + n7

2

3
(1− η) + n8

1

3
(1− η),

p0− = n2
1

3
(1− 2ϵ) + n4

1

3
(1− δ) + n5

2

3
(1− δ) + n7

1

3
(1− η) + n8

2

3
(1− η) + n9(1− η),

p−+ = n1
1

3
ϵ+ n4

1

3
δ + n7

2

3
η,

p+− = n2
1

3
ϵ+ n4

1

3
δ + n7

1

3
η + n9η.

(S1)

Notice that they are all expressed in terms of the triad frequencies nk.
The focal-triad model also allows for the probabilities pσ

′

σ to be expressed in terms of triad densities; see also
Figure 4 in the main text. They are given by



p+0 = n0ϵ̂+ κ1

(
1

2
n1 +

1

2
n2 + n3 + n5

)
,

p−0 = n0ϵ̂+ κ1

(
1

2
n1 +

1

2
n2 + n4

)
,

p0+ = κ2

[
n1 + n3 +

1

2
n4 + n6 +

2

3
(1− η̂)n7 +

1

3
n8

]
,

p0− = κ2

[
n2 +

1

2
n4 + n5 +

1

3
(1− η̂)n7 +

2

3
n8 + (1− η̂)n9

]
,

p−+ = η̂(1− p)n7,

p+− = η̂(pn7 + n9).

(S2)

Now that we have obtained both {nσ
k}k,σ and {pσ′

σ }σ ̸=σ′ as functions of nk, we can derive corresponding rate
equations that govern the time evolution of the triad frequencies nk:



ṅ0 = n+
1 p

0
+ + n−

2 p
0
− − n0

0(p
+
0 + p−0 ),

ṅ1 = n0
0p

+
0 + n−

2 p
+
− + n+

3 p
0
+ + n−

4 p
0
− − n+

1 (p
0
+ + p−+)− n0

1(p
+
0 + p−0 ),

ṅ2 = n0
0p

−
0 + n+

1 p
−
+ + n+

4 p
0
+ + n−

5 p
0
− − n−

2 (p
0
− + p+−)− n0

2(p
+
0 + p−0 ),

ṅ3 = n0
1p

+
0 + n−

4 p
+
− + n+

6 p
0
+ + n−

7 p
0
− − n+

3 (p
0
+ + p−+)− n0

3(p
+
0 + p−0 ),

ṅ4 = n0
1p

−
0 + n0

2p
+
0 + n+

3 p
−
+ + n−

5 p
+
− + n+

7 p
0
+ + n−

8 p
0
− − n−

4 (p
0
− + p+−)− n+

4 (p
0
+ + p−+)− n0

4(p
+
0 + p−0 ),

ṅ5 = n0
2p

−
0 + n+

4 p
−
+ + n+

8 p
0
+ + n−

9 p
0
− − n−

5 (p
0
− + p+−)− n0

5(p
+
0 + p−0 ),

ṅ6 = n0
3p

+
0 + n−

7 p
+
− − n+

6 (p
0
+ + p−+),

ṅ7 = n0
3p

−
0 + n0

4p
+
0 + n+

6 p
−
+ + n−

8 p
+
− − n−

7 (p
0
− + p+−)− n+

7 (p
0
+ + p−+),

ṅ8 = n0
4p

−
0 + n0

5p
+
0 + n+

7 p
−
+ + n−

9 p
+
− − n−

8 (p
0
− + p+−)− n+

8 (p
0
+ + p−+),

ṅ9 = n0
5p

−
0 + n+

8 p
−
+ − n−

9 (p
0
− + p+−).

(S3)

It is worth noting that the above equations are closed with respect to the triad frequencies {nk}k=0,...,9, making
them ready for analysis. To examine whether the rate equations accurately predict the behavior of our stochastic
models, we refer the reader to Figure 5 in the main text, which presents results from stochastic simulations alongside
mean-field predictions.
Furthermore, it is crucial to understand how parameters influence triad frequencies at equilibrium. Figure S2 shows

equilibrium triad frequencies change with ϵ and δ for a fixed η in the focal-link model, and with ϵ̂ and κ̂ for a fixed η̂
in the focal-triad model. Likewise, Figure S3 shows equilibrium triad frequencies for different values of δ and η given
a fixed ϵ in the focal-link model, and κ̂ and η̂ given a fixed ϵ̂ in the focal-triad model. We obtained these numerical
results by evolving Eq. S3.
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Figure S2. Equilibrium triad frequencies as functions of ϵ and δ (focal-link model) and ϵ̂ and κ̂ (focal-triad model). We
assumed the relation κ2 = 1−κ1 so that κ̂ = κ1. Parameters: η = 0.5, η̂ = 0.5. Only n0, n1, n3, n6 and r1, r3, r6 are visualized.
We imposed δ, κ̂ ∈ [0.05, 0.95] to avoid numerical instability.
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Figure S3. Equilibrium triad frequencies as functions of δ and η (focal-link model); κ̂ and η̂ (focal-triad model). We assumed
the relation κ2 = 1 − κ1 so that κ̂ = κ1. Parameters: ϵ = 10−5, ϵ̂ = 10−5, and κ2 = 0.5. Only n0, n1, n3, n6 and r1, r3, r6 are
visualized. We imposed δ, η, κ̂, η̂ ∈ [0.04, 0.96] to avoid numerical instability.
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2. EQUILIBRIUM TRIAD FREQUENCIES

In this section, we present a method to obtain approximate equilibrium triad frequencies. As mentioned in the main
text, since Eq. S3 consists of ten variables and is highly nonlinear, exact equilibrium solutions are virtually impossible
to obtain. To tackle this difficulty, we develop an approximation method that can reduce the complexity of the ODE
system systematically and yield approximate equilibrium solutions in a self-consistent way. More specifically, assuming
certain parameter conditions, we solve the equations sequentially, instead of simultaneously, using a hierarchy of the
equilibrium triad frequencies and a separation of timescales.

When a system of interacting particles is in equilibrium, some explicit ansatzes are often assumed. As a first step
of the reduction, we assume the activation-limited regime, i.e., that a majority of links are inactive. In the activation-
limited regime, in which the frequencies of bottom-row triads are negligible compared to others, sign symmetry is
expected in both link and triad frequencies. More specifically, exchanging positive and negative links does not affect
the frequencies of triads that transform into each other. Under this assumption, the following relations hold:

n1 = n2, n3 = n5, n6 = n9, n7 = n8. (S4)

It is easy to see that the relation ρ+ = ρ− also holds in this scenario. These assumptions are easily justifiable because
when most links are inactive, the bottom-row triad configurations rarely exist, and those above the bottom row in
Figure S1 exhibit left-right symmetry in the way that the transition probabilities between different triad types are
specified. This also extends to the focal-triad model (see Figure 4 in the main text). In addition, equilibrium sign
symmetry with respect to triad frequencies in the activation-limited regime leads to another set of conditions on the
probabilities pσ

′

σ :

p+0 = p−0 , p0+ = p0−, p−+ = p+−. (S5)

Here these equalities arise from the assumption that link and triad frequencies are sign symmetric. Plugging Eqs. S4
and S5 into Eqs. S1 (or S2) yields the following two relations:

2n3 = n4, 3n6 = n7. (S6)

We note that Eq. S6 holds in both the focal-link and focal-triad models. In short, within the activation-limited regime,
we can significantly reduce the complexity of the system—effectively from a ten-variable to a four-variable ODE system
described by only n0, n1, n3, and n6. We will later show that this method produces self-consistent predictions that
are in good agreement with stochastic simulation data, provided that the system is in the activation-limited regime.

Furthermore, when a majority of links are inactive, the frequencies of triad configurations should be in different
orders of magnitude, that is,

n0 ≫ n1, n2 ≫ n3, n4, n5 ≫ n6, n7, n8, n9. (S7)

The above relation allows us to ignore “higher-order” terms when appropriate. This should also be accompanied by a
hierarchy of relaxation times for each variable: that is, n0 reaches equilibrium faster than n1 and n2; n1 and n2 reach
equilibrium faster than n3, n4, and n5; and n3, n4, and n5 reach equilibrium faster than n6, n7, n8 and n9. This
timescale separation allows for certain variables to be eliminated sequentially. Therefore, we can approximately find
the steady state of the rate equations (Eq. S3), by solving them one by one, from top to bottom.
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3. FOCAL-LINK MODEL: APPROXIMATE STEADY-STATE SOLUTION

We set out to compute approximate equilibrium solutions in the activation-limited regime, using the conditions
mentioned earlier. For convenience, we introduce the rescaled frequency rk, define by

rk =
nk

n0
, k = 1, · · · , 9. (S8)

3.1. Approximate equilibrium frequency of ∆1 triads

By setting ṅ0 = 0 in Eq. S3, we seek to find an approximate form of r1. Applying Eqs. S4 and S6, we find

n1p
0
+m

0 = 3n0p
+
0 m

+. (S9)

Unpacking the expressions and ignoring higher-order terms using Eq. S7 (i.e., terms with nk for k ≤ 3), we find that
the following quadratic equation holds approximately:

4(1− 2ϵ)r21 + 3(1− 2ϵ− 2δ)r1 − 9ϵ = 0. (S10)

Given r1 > 0, we obtain

r1 ≃ 6ϵ

(1− 2ϵ− 2δ) +
√

(1− 2ϵ− 2δ)2 + 16(1− 2ϵ)ϵ
. (S11)

The approximate relation above is valid only when ϵ is small, provided the activation-limited regime. Case in point:
r1 tends to infinity as ϵ approaches 1/2 from below for any δ, which does not align with the assumption ṅ0 = 0.

Equation S11 exhibits several noteworthy characteristics. First, in the small ϵ-limit, the approximate r1 behaves
asymptotically as

r1 ∼


3ϵ δ ≈ 0,

3

2

√
ϵ δ = 1/2,

3

4
δ ≈ 1.

(S12)

Moreover, we find from Eq. S10 that as ϵ tends to 0, it behaves as

r1 →


0 δ ≤ 1/2,

3(2δ − 1)

4
δ ≥ 1/2.

(S13)

As mentioned in the main text, Eq. S13 implies that in the limit ϵ → 0, a phase transition occurs at δ = 1/2, which
we later confirm corresponds to the emergence of a giant component connected by active links. We could naively infer
this limiting behavior by simply substituting ϵ = 0 into Eq. S10. However, to formally preclude the trivial solution
(i.e., r1 = 0) in the supercritical regime, we should perform a power-series expansion for r1 when solving Eq. (S10),
provided that ϵ is small.

3.2. Derivation of an approximate expression for r1 using a power-series expansion

We expand r1 as r1 = r10 + ϵr11 + ϵ2r12 + · · · for small ϵ. Substituting it into Eq. S10 gives

4(1− 2ϵ)(r10 + ϵr11 + ϵ2r12 + · · · )2 + 3(1− 2ϵ− 2δ)(r10 + ϵr11 + ϵ2r12 + · · · )− 9ϵ = 0.

We then collect terms by powers of ϵ. For O(1), we have

4r210 + 3(1− 2δ)r10 = 0, (S14)

whose solution is

r10 = 0 or r10 =
3(2δ − 1)

4
. (S15)
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For O(ϵ), we have

−8r210 + 8r10r11 − 6r10 + 3(1− 2δ)r11 − 9 = 0, (S16)

which has the solution

r11 =
8r210 + 6r10 + 9

8r10 + 3(1− 2δ)
, (S17)

given r10. Depending on the zeroth-order solution, it is

r11 =
3

1− 2δ
or r11 =

3(2δ − 1)

2
+

1

2
+

3

2δ − 1
. (S18)

Piecing them back together, we find

r1 =


3ϵ

1− 2δ
+O(ϵ2), or

3(2δ − 1)

4
+

[
3(2δ − 1)

2
+

1

2
+

3

2δ − 1

]
ϵ+O(ϵ2).

(S19)

When δ < 1/2, the first solution applies because ϵ is strictly positive and r1 is nonnegative by construction, which
can be confirmed by taking only the leading-order terms into account. Likewise, when δ > 1/2, the second solution
applies. Therefore, we conclude that for a fixed δ,

r1 →


0 δ ≤ 1/2,

3(2δ − 1)

4
δ ≥ 1/2,

as ϵ → 0+. We finally note that Eq. S19 is invalid when δ = 1/2; however, Eq. S11 is sufficient to show that r1 tends
to zero as ϵ → 0+ when δ = 1/2.

3.3. Approximate equilibrium frequencies of ∆3 and ∆6 triads

Similarly, we set ṅ1 = 0 to derive a closed-form equation for r3. Under the symmetry condition, we find

m+(3n0 − 4n1)p
+
0 = m0(n1 − 4n3)p

0
+. (S20)

Ignoring higher order terms (i.e., those with n6) yields

64(1− δ)r33 + [16(4− 2ϵ− 3δ − 2η) + 24(2− 2δ − η)] r23

+
[
4(−1− 4δ + 6ϵ− 2η)r21 + 6(6δ − 12ϵ+ η)r1 + 36ϵ

]
r3 +

[
4(5ϵ− 4)r21 + 3(5ϵ− 1)r1

]
= 0, (S21)

given r0. Similarly, we can obtain a closed-form expression for r6. Setting ṅ6 = 0 yields

n3p
+
0 m

+ = 3n6p
0
+m

0. (S22)

Here, we note that there is no term to neglect since there are no remaining terms of orders that are smaller than r6.
Reorganizing the equation above gives the quadratic equation

36(1− η)(3 + 4r1 + 4r3)r
2
6

+
[
9(1− 2ϵ)r1 + 12(1− 2ϵ)r21 + 12(5− 2ϵ− 6δ)r1r3 + 36(1− ϵ− δ)r3 + 24(2− 2δ − η)r23

]
r6

+ (r1 + 4r3)r3(3ϵ+ 2r1δ + 2r3η) = 0, (S23)

given r1 and r3.
We employed symbolic computation to solve these algebraic equations sequentially. The results are presented in

Figure S4, which are qualitatively in good agreement with Figure S2 in the activation-limited regime.
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Here we show how the rescaled triad densities change with parameters, based on both our mean-field analysis and
numerical calculations, specifically focusing on the activation-limited regime. In fact, we obtain surprisingly simple
results given the complexity of the analysis. They are summarized as follows: for sufficiently small ϵ,

r1 = r2 = O(ϵα),

r3 = r5 = O(ϵ2α), r4 = O(ϵ2α),

r6 = r9 = O(ϵ3α), r7 = r8 = O(ϵ3α),

(S24)

where the exponent α changes as

α(δ) ≈


1 δ ≈ 0,

1/2 δ ≈ 1/2,

0 δ ≈ 1,

(S25)

and the value of α drops sharply at δ ≈ 1/2. The different powers in the scaling laws for different rows of triads in
the diagram (Figure 1 in the main text) ensure that our approximation method works in a self-consistent manner.
See also Figure 6 in the main text for details.
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4. FOCAL-TRIAD MODEL: APPROXIMATE STEADY-STATE SOLUTION

4.1. Approximate equilibrium frequency of ∆1 triads

Next, we analyze the focal-triad model using the same approach. It is the probabilities pσ
′

σ that distinguish the
focal-link and focal-triad models, allowing the focal-triad model to be analyzed in exactly the same way. Using the
same approximation method, we obtain a quadratic equation for r1 similar to Eq. S10, given by

4κ2r
2
1 + 3(κ2 − κ1)r1 − 3ϵ̂ = 0, (S26)

which has the valid solution

r1 =
6ϵ̂

3(κ2 − κ1) +
√
9(κ2 − κ1)2 + 48κ2ϵ̂

. (S27)

Notice that Eq. S27 does not blow up in the limit ϵ̂ → 1/2, which contrasts the focal-link model (see Eq. S10). This
equation also serves as a window into how r1 depends on parameters. The ϵ̂-scaling is given by

r1 ∼



ϵ̂ κ1 ≈ 0, κ2 ≈ 1,
√
3

2
√
κ2

√
ϵ̂ κ1 = κ2,

3|κ1 − κ2|
4κ2

κ1 ≈ 1, κ2 ≈ 0,

(S28)

which corresponds to Eq. S12 in the focal-link model. Furthermore, a phase transition occurs in the limit ϵ̂ → 0 when
κ1 = κ2, given that κ2 ̸= 0. That is,

r1 →


0 κ1 ≤ κ2,

3(κ1 − κ2)

4κ2
κ1 ≥ κ2,

(S29)

which corresponds to Eq. S13 in the focal-link model. This can be obtained more rigorously by performing a power-
series expansion on Eq. S26.

4.2. Derivation of an approximate expression for r1 using an asymptotic expansion

Similar to the focal-triad model, we expand r1 as r1 = r10 + ϵ̂r11 + ϵ̂2r12 + · · · and substitute it into Eq. S26, which
gives

4κ2(r10 + ϵ̂r11 + ϵ̂2r12 + · · · )2 + 3(κ2 − κ1)(r10 + ϵ̂r11 + ϵ̂2r12 + · · · )− 3ϵ̂ = 0.

Collecting terms in powers of ϵ̂, for O(1), we obtain

r10 = 0 or r10 =
3(κ2 − κ1)

4κ2
. (S30)

For O(ϵ̂), we find, depending on the solution of r10,

r11 =
1

κ2 − κ1
or r11 =

1

κ1 − κ2
. (S31)

Taken together, these results yield

r1 =


1

κ2 − κ1
ϵ̂+O(ϵ̂2), or

3(κ2 − κ1)

4κ2
+

1

κ1 − κ2
ϵ̂+O(ϵ̂2),

(S32)

which implies Eq. S29 as ϵ → 0+, given that κ1 ̸= κ2 and κ2 ̸= 0.
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4.3. Approximate equilibrium frequencies of ∆3 and ∆6 triads

Setting ṅ1 = 0 gives

m+(3n0 − 4n1)p
+
0 = m0(n1 − 4n3)p

0
+. (S33)

Reorganizing the equation and ignoring higher-order terms, we obtain the following cubic equation in r3:

32κ2r
3
3 + 8 [(5κ2 − 4κ1)r1 + 3(κ2 + κ1)] r

2
3

+ 2
[
2(−3κ1 + κ2)r

2
1 + (9κ1 + 3κ2 − 8ϵ̂)r1 + 6ϵ̂

]
r3

+
[
−4(κ1 + κ2)r

3
1 + {3(κ1 − κ2)− 4ϵ̂} r21 + 3ϵ̂r1

]
= 0. (S34)

Similarly, setting ṅ6 = 0 yields

n3p
+
0 m

+ = 3n6p
0
+m

0. (S35)

Ignoring higher-order terms, we obtain the following quadratic equation in r6:

6κ2(3 + 4r1 + 4r3)(2− η̂)r26

+ 3
[
8(κ2 − κ1)r

2
3 + 4(3κ2 − κ1)r1r3 + 2(3κ2 − 2ϵ̂)r3 + 4κ2r

2
1 + 3κ2r1

]
r6

− (r1 + 4r3)r3(ϵ̂+ κ1r1 + 2κ1r3) = 0. (S36)

Solving these equations using symbolic computation, we find that
r1 = r2 = O(ϵ̂β),

r3 = r5 = O(ϵ̂2β), r4 = O(ϵ̂2β),

r6 = r9 = O(ϵ̂3β), r7 = r8 = O(ϵ̂3β),

(S37)

where

β(δ) =


1 κ1 ≪ κ2,

1/3 κ1 = κ2,

0 κ1 ≫ κ2,

(S38)

and β changes rapidly around κ1 = κ2. See also Figure 6 in the main text.
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Figure S4. Equilibrium rescaled triad frequencies rk derived analytically using our approximation method (k = 1, 3, 6). The
corresponding equations are Eqs. S11, S21, and S23 for the focal-link model (top row panel), and Eqs. S27, S34, and S36 for
the focal-triad model (bottom row panel). We used symbolic computation to find r3 and r6. Parameters: ϵ ∈ [10−5, 0.49], δ ∈
[0, 1], η = 0.5 (focal-link model); ϵ̂ ∈ [10−5, 0.5], κ̂ ∈ [0, 1], η̂ = 0.5, κ2 = 1− κ1 (focal-triad model).
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5. FREQUENCY OF IRRATIONAL UPDATES

In this section, we analyze how frequently irrational updates occur in each model and confirm that the focal-triad
model, as intended, substantially reduces the instances of irrational update events—including not only intentional
irrational updates but also incidental ones. For the definition of an irrational update and an illustrative example, see
Sec. IIA and Figure 3 in the main text. An irrational update is any transition event that is either ∆3 → ∆4, ∆5 → ∆4,
∆4 → ∆3, or ∆4 → ∆5, whose rate of occurrence is calculated by p−+n

+
3 , p

+
−n

−
5 , p

+
−n

−
4 , or p

−
+n

+
4 , respectively. Using

Eqs. S1 and S2, we can calculate the average frequency of irrational transition events per unit time, which we denote
by Im (m = 1, 2). In the focal-link model (m = 1), it is given by

I1 = (n+
3 + n−

4 )

[
ϵ
1

3
n1 + δ

1

3
n4 + η

2

3
n7

]
+ (n−

4 + n−
5 )

[
ϵ
1

3
n2 + δ

1

3
n4 + η(

1

3
n7 + n9)

]
. (S39)

In the focal-triad model (m = 2), it is given by

I2 = (n+
3 + n−

4 )η̂
2

3
n7 + (n−

4 + n−
5 )η̂

(
1

3
n7 + n9

)
. (S40)

Given the equilibrium triad frequencies nk, in the subcritical regime (i.e., δ < 1/2 and κ1 < κ2) with sufficiently small
ϵ and ϵ̂, it is guaranteed that I1 is substantially larger than I2 since the bottom-row triads ∆7,∆9 are significantly
less frequent than the triad types in the middle two rows ∆3,∆4,∆5, due to the different orders of magnitude of nk

with respect to ϵ (see Eqs. S24 and S37). On the other hand, in the supercritical regime, in which the bottom-row
triads dominate, the difference between I1 and I2 diminishes and becomes negligible.
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6. TIME-SERIES TRIAD FREQUENCIES WITH FULLY POLARIZED INITIAL STATES

Figure S5 shows how neutrality breaks complete balance in our models with fully polarized initial states. A strongly
polarized state, where most triads are balanced, may persist temporarily, but it eventually collapses into a transient
regime where balanced triads no longer dominate. These two examples in Figure S5 demonstrate that a slight shift
in parameter values can disrupt the initial balance and eventually lead to transient dynamics.

Note that it may not be sufficient to change only one of the parameter values to break the initial complete balance:
rather, the parameter values should be varied so that neutral links can emerge with positive probability from a
completely balanced state. For example, decreasing η̂ from 1 alone does not break balance in the focal-triad model.
These cases are nonetheless negligible in the full parameter space.
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Figure S5. Time-series triad frequencies in (a) the focal-link model and (b) the focal-triad model, with fully polarized initial
states. Initially, the population consists of two equally sized factions where links within each faction are positive but links
between them are negative, i.e. a fully polarized state. Parameters: ϵ = 0.5, δ = 1.0, η = 0.999 in the focal-link model, and
ϵ̂ = 0.5, κ1 = 0.99, κ2 = 0.01, η̂ = 1.0 in the focal-triad model. The population size is N = 32 in both panels.
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