Supplementary Materials

In this Supplementary Information, we provide a detailed exposition of the analysis presented in
the main text. We derive corresponding rate equations from stochastic models based on a mean-
field assumption and identify the equilibrium triad frequencies analytically under certain parameter

conditions. We also present numerical results to complement our analysis.
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1. RATE EQUATIONS

Let L = (J;[ ) and Na = (]g ) denote the total numbers of links and triads in the network, respectively. We represent
the numbers of positive, negative, and neutral links by L7, where o € {+1,—1,0}, respectively. There are ten types
of triads up to permutation. We denote them by Ay (kK = 0,---,9) as illustrated in Figure 1 in the main text.
We also represent the number of type-k triads by Ni. The normalization constraint requires that L = > L% and
Na = ), Ni. We define these quantities in density form as well: p” = L?/L, n = Ni/Na. The key quantity to
work with is the average number of triads of type k that involves a link o, which we denote by NJ. For convenience,
we also define nf = N7 /(N — 2). We refer the reader to Table S1 for a list of symbols and notations.

It follows from the definition that

7o _ 3o+ 2N1 + 2Np + Ny + N + Ns
N -2 ’
s+ _ Nut2Ns 4+ Ni+ 3N + 2N7 + Ny
N -2 ’
;- _ Nt Nit 2N5 + Ny 4 2Ns + 3Ny
N -2 '

Therefore, the densities of neutral, positive, and negative links are given by

where we have defined

m0:3n0+2n1+2n2+n3+n4+n5,
mT =n; + 2nsg + ng + 3ng + 2n7 + ng,

m~ =ng + ng + 2ns5 + n7 + 2ng + 3ng.

Table S1. Description of the symbols and notations used in our mean-field analysis.

Symbol Description

L Total number of links

Na  Total number of triads

L°  Number of either positive, negative, or neutral links (o € {1,—1,0})

A Triad type k

N Number of type-k triads

p°  Frequency of o-links (p” = L7 /L)

ni  Frequency of type-k triads (nx = Ni/Na)

N Average number of type-k triads that are attached to a link o

ny  Average density of type-k triads that are attached to a link o (nf = Nf /(N — 2))

’

j4 Probability that a link changes its sign from o to o’
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Figure S1. Illustration of the probabilities of transition between different triad types in the focal-link model, derived from
the model definition. The probabilities {p5 },z,+ are obtained by summing all terms of the same color associated with the
corresponding arrows.
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Note that nj = 0 for combinations of k£ and ¢ that are not presented above. Both the focal-link and focal-triad models
are described by the notations introduced above. When described by rate equations, these two models differ only in
their transition probabilities.

Let pgl denote the probability that a link changes its sign from o to ¢’. In the focal-link model, considering all such
circumstances, we can describe the probabilities pg, in terms of triad densities. Accounting for all instances where a
link o transition to ¢’ (i.e., summing all probabilities of the same color in Figure S1), we obtain the full expressions

for pg’ as follows:
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Notice that they are all expressed in terms of the triad frequgncies Nk
The focal-triad model also allows for the probabilities pZ to be expressed in terms of triad densities; see also
Figure 4 in the main text. They are given by

+ . 1 1
Pg = No€ + K1 §n1—|—§n2—|—n3—|—n5 ,

1 1
Dy = No€ + K1 <n1 + -ng + n4) )

2 2
0 1 2 . 1
PL = k2 [m +ns3 + 5714 +ng + 5(1 —n)nr + gng}, (52)
1 1 2
pO_ = Ko [77,2 + 5714 +ns5 + 5(1 — 77)7?,7 + §n8 + (1 — ﬁ)n9:|,

Py =n(1 —p)ny,
pt =n(pn7 + ng).

Now that we have obtained both {ng}x, and {pJ },2o as functions of ny, we can derive corresponding rate
equations that govern the time evolution of the triad frequencies ny:

fo = nipS +nyp® —nd(pd +pp),
n1 = ngpg +nypt +ndpl +nip’ —n 7)) —=n8(pg + o)
fig = ndpy +nips +nfpd +n5p% —ny (0 +ph) — 03T +py),

) = n3(pg +py),
ng = nipg +nopg +ndpy +ngpl +ngpl +ngpl —ng (0 +p5) —nf (05 +p3) — ni(pg +po);
Ny = ngpa + anjr + ngpi + ngpg - nE(Pg +pF) - ”g(P(JJr + D0 )
fie = n3py +n7pt —nd (0} +p3),

Ty = ngpo_ +n2p5r +ng'p_7_ +n§pf —n; (p

fiz = nipg +ngpt +ndpl +nzpd —nd (0L +p

(S3)

O +p) —nf (% +p7),
—ng

fs = nipy +n8pg +nipy +ngpt —ng (0% +pT) —nd (0% +p7),

ng = ngpa + ng{pjr — ng(po, +p1).

It is worth noting that the above equations are closed with respect to the triad frequencies {ny}r=o, . 9, making
them ready for analysis. To examine whether the rate equations accurately predict the behavior of our stochastic
models, we refer the reader to Figure 5 in the main text, which presents results from stochastic simulations alongside
mean-field predictions.

Furthermore, it is crucial to understand how parameters influence triad frequencies at equilibrium. Figure S2 shows
equilibrium triad frequencies change with € and § for a fixed n in the focal-link model, and with ¢ and & for a fixed 7
in the focal-triad model. Likewise, Figure S3 shows equilibrium triad frequencies for different values of § and 7 given
a fixed € in the focal-link model, and % and 7 given a fixed € in the focal-triad model. We obtained these numerical
results by evolving Eq. S3.
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Figure S2.  Equilibrium triad frequencies as functions of € and ¢ (focal-link model) and é and & (focal-triad model). We
assumed the relation k2 = 1 — k1 so that & = k1. Parameters: n = 0.5, n = 0.5. Only no, n1,ns, ne¢ and r1,rs, rs are visualized.

We imposed §, & € [0.05,0.95] to avoid numerical instability.
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Figure S3. Equilibrium triad frequencies as functions of ¢ and n (focal-link model); & and 7 (focal-triad model). We assumed
the relation kg = 1 — k1 so that 4 = x;. Parameters: ¢ = 107°, é = 107°, and x2 = 0.5. Only no,n1,n3,n6 and 71, 73,76 are
visualized. We imposed 6,7, &, 7 € [0.04,0.96] to avoid numerical instability.



2. EQUILIBRIUM TRIAD FREQUENCIES

In this section, we present a method to obtain approximate equilibrium triad frequencies. As mentioned in the main
text, since Eq. S3 consists of ten variables and is highly nonlinear, exact equilibrium solutions are virtually impossible
to obtain. To tackle this difficulty, we develop an approximation method that can reduce the complexity of the ODE
system systematically and yield approximate equilibrium solutions in a self-consistent way. More specifically, assuming
certain parameter conditions, we solve the equations sequentially, instead of simultaneously, using a hierarchy of the
equilibrium triad frequencies and a separation of timescales.

When a system of interacting particles is in equilibrium, some explicit ansatzes are often assumed. As a first step
of the reduction, we assume the activation-limited regime, i.e., that a majority of links are inactive. In the activation-
limited regime, in which the frequencies of bottom-row triads are negligible compared to others, sign symmetry is
expected in both link and triad frequencies. More specifically, exchanging positive and negative links does not affect
the frequencies of triads that transform into each other. Under this assumption, the following relations hold:

ny =mnz, nN3="mns, Neg=T"Ng, N7 =T"Ng. (84)

It is easy to see that the relation p™ = p~ also holds in this scenario. These assumptions are easily justifiable because
when most links are inactive, the bottom-row triad configurations rarely exist, and those above the bottom row in
Figure S1 exhibit left-right symmetry in the way that the transition probabilities between different triad types are
specified. This also extends to the focal-triad model (see Figure 4 in the main text). In addition, equilibrium sign
symmetry With,respect to triad frequencies in the activation-limited regime leads to another set of conditions on the
probabilities pJ :

Py =1y, Py =0, pi=pl. (S5)
Here these equalities arise from the assumption that link and triad frequencies are sign symmetric. Plugging Eqs. S4
and S5 into Eqgs. S1 (or S2) yields the following two relations:

2’113 = Ny, 3n6 = nNr. (86)

We note that Eq. S6 holds in both the focal-link and focal-triad models. In short, within the activation-limited regime,
we can significantly reduce the complexity of the system—effectively from a ten-variable to a four-variable ODE system
described by only ng, n1, n3, and ng. We will later show that this method produces self-consistent predictions that
are in good agreement with stochastic simulation data, provided that the system is in the activation-limited regime.

Furthermore, when a majority of links are inactive, the frequencies of triad configurations should be in different
orders of magnitude, that is,

ng > ni, Ny > N3, N4, N5 > Ng, N7, Ng, Ng. (S7)

The above relation allows us to ignore “higher-order” terms when appropriate. This should also be accompanied by a
hierarchy of relaxation times for each variable: that is, ng reaches equilibrium faster than n; and ns; n; and no reach
equilibrium faster than ns, ng, and ns; and ns, n4, and ns reach equilibrium faster than ng, ny, ng and ng. This
timescale separation allows for certain variables to be eliminated sequentially. Therefore, we can approximately find
the steady state of the rate equations (Eq. S3), by solving them one by one, from top to bottom.



3. FOCAL-LINK MODEL: APPROXIMATE STEADY-STATE SOLUTION

We set out to compute approximate equilibrium solutions in the activation-limited regime, using the conditions
mentioned earlier. For convenience, we introduce the rescaled frequency 7y, define by

re= % k=1,....,9. (S8)
no

3.1. Approximate equilibrium frequency of A; triads

By setting ng = 0 in Eq. S3, we seek to find an approximate form of ;. Applying Eqs. S4 and S6, we find
niplm® = 3ngpgm™. (S9)

Unpacking the expressions and ignoring higher-order terms using Eq. S7 (i.e., terms with ny for k& < 3), we find that
the following quadratic equation holds approximately:

4(1 = 2€)r? + 3(1 — 2e — 26)r; — 9e = 0. (S10)
Given r1 > 0, we obtain

6e
(1 —2¢—26) + /(1 —2¢ —20)2 + 16(1 — 2¢)e

r x~

(S11)

The approximate relation above is valid only when € is small, provided the activation-limited regime. Case in point:
r1 tends to infinity as e approaches 1/2 from below for any ¢, which does not align with the assumption 79 = 0.

Equation S11 exhibits several noteworthy characteristics. First, in the small e-limit, the approximate r; behaves
asymptotically as

3¢ 6 =~0,
3
mo~{gVe =172 (S12)
3
~ 1.
1 o

Moreover, we find from Eq. S10 that as € tends to 0, it behaves as

0 5<1/2,
T Q 3(20 — 1) (513)
1 §>1/2

As mentioned in the main text, Eq. S13 implies that in the limit e — 0, a phase transition occurs at § = 1/2, which
we later confirm corresponds to the emergence of a giant component connected by active links. We could naively infer
this limiting behavior by simply substituting ¢ = 0 into Eq. S10. However, to formally preclude the trivial solution
(i.e., 1 = 0) in the supercritical regime, we should perform a power-series expansion for r; when solving Eq. (510),
provided that € is small.

3.2. Derivation of an approximate expression for r; using a power-series expansion

We expand 7 as 1, = 719 + €r11 + €2rig + - - - for small e. Substituting it into Eq. S10 gives
4(1 — 2€)(r10 + er11 + ri2 + )2 +3(1 — 2 — 26) (119 + er1y + €719+ -+ ) — 9e = 0.
We then collect terms by powers of e. For O(1), we have
4rfy +3(1 = 20)r10 = 0, (S14)
whose solution is

20 -1
0 = 0 or 10 = ¥ (815)



For O(e), we have
—8r% + 8r1or11 — 6r10 + 3(1 — 26)r11 —9 =0, (S16)
which has the solution

87“%0 + 67110+ 9

" R0+ 3(1— 20) (817)
given r1g9. Depending on the zeroth-order solution, it is
3 C3(26-1) 1 3
7"11—1_726 or rll_T—’_i—,—Q(s—l (818)
Piecing them back together, we find
T 3625 +O0(€?), or
= 320-1) [320-1) 1. 3 L O@) (519)
1 2 2 T 1| TS

When ¢ < 1/2, the first solution applies because € is strictly positive and 77 is nonnegative by construction, which
can be confirmed by taking only the leading-order terms into account. Likewise, when § > 1/2, the second solution
applies. Therefore, we conclude that for a fixed 6,

0 §<1/2,

R b)) §>1/2

as € — 0. We finally note that Eq. S19 is invalid when § = 1/2; however, Eq. S11 is sufficient to show that r; tends
to zero as € — 07 when § = 1/2.

3.3. Approximate equilibrium frequencies of A; and Ag triads

Similarly, we set n; = 0 to derive a closed-form equation for r3. Under the symmetry condition, we find
m* (3ng — 4n1)pg = m®(n1 — 4nz)pY. (S20)
Ignoring higher order terms (i.e., those with ng) yields
64(1 — &)r3 + [16(4 — 2¢ — 35 — 2n) + 24(2 — 26 — )] r3
+ [4(—1 — 46 + 66 — 2n)r7 + 6(65 — 12¢ + n)ry + 36€| r5 + [4(5¢ — 4)r + 3(5¢ — 1)r1] =0, (S21)
given rg. Similarly, we can obtain a closed-form expression for r¢. Setting ng = 0 yields

napgmt = 3n6p3_m0. (S22)

Here, we note that there is no term to neglect since there are no remaining terms of orders that are smaller than r¢.
Reorganizing the equation above gives the quadratic equation

36(1 —n)(3 + 4ry + 4r3)rg
+ [9(1 = 2€)ry + 12(1 — 2€)r7 + 12(5 — 26 — 60)r17r3 4+ 36(1 — € — O)rs + 24(2 — 26 — n)r3] rg
+ (r1 +4r3)rs(3e + 2r 5 + 2rsn) =0, (S23)
given r; and rs.

We employed symbolic computation to solve these algebraic equations sequentially. The results are presented in
Figure S4, which are qualitatively in good agreement with Figure S2 in the activation-limited regime.
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Here we show how the rescaled triad densities change with parameters, based on both our mean-field analysis and
numerical calculations, specifically focusing on the activation-limited regime. In fact, we obtain surprisingly simple
results given the complexity of the analysis. They are summarized as follows: for sufficiently small ¢,

ry =19 = 0(e%),
r3 =15 = 0(62(1), Ty = O(eza), (S24)
Te =T9 = O(€3a)7 T ="T8 = 0(6304)’

where the exponent a changes as

1 6 =0,
a(d) =< 1/2 0~ 1/2, (S25)
0 d=~1,

and the value of « drops sharply at § &~ 1/2. The different powers in the scaling laws for different rows of triads in
the diagram (Figure 1 in the main text) ensure that our approximation method works in a self-consistent manner.
See also Figure 6 in the main text for details.
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4. FOCAL-TRIAD MODEL: APPROXIMATE STEADY-STATE SOLUTION
4.1. Approximate equilibrium frequency of A; triads

Next, we analyze the focal-triad model using the same approach. It is the probabilities pg/ that distinguish the
focal-link and focal-triad models, allowing the focal-triad model to be analyzed in exactly the same way. Using the
same approximation method, we obtain a quadratic equation for r1 similar to Eq. S10, given by

4tior? + 3(kg — k1)r1 — 36 =0, (S26)
which has the valid solution

6€
(ke — K1) + \/9(@ —K1)%+ 48k9e

(S27)

r =

Notice that Eq. S27 does not blow up in the limit € — 1/2, which contrasts the focal-link model (see Eq. S10). This
equation also serves as a window into how r; depends on parameters. The é-scaling is given by

é k1 ~0, ko =1,
V3 -
r~ S 2R € k1= ke, (S28)
3|k1 — Ka|

k1~ 1, ko =0,
452

which corresponds to Eq. S12 in the focal-link model. Furthermore, a phase transition occurs in the limit € — 0 when
K1 = Ka, given that ko # 0. That is,

0 k1 < K2,
L — 9 3(k1 — K2) (S29)

K1 2> K2
4%2 ’

which corresponds to Eq. S13 in the focal-link model. This can be obtained more rigorously by performing a power-
series expansion on Eq. S26.

4.2. Derivation of an approximate expression for r; using an asymptotic expansion

Similar to the focal-triad model, we expand 1 as 71 = rig + éri1 + €2r12 + - - - and substitute it into Eq. S26, which
gives

4%32(7"10 + éri1 + €27‘12 + .- )2 =+ 3(/62 — Iil)(’l“l() + éri + €2T12 + - ) —36=0.

Collecting terms in powers of €, for O(1), we obtain

3(ke — K1)
=0 = . S30
710 or 7o 4/4:2 ( )
For O(€), we find, depending on the solution of r1¢,
1 1
i = or 1= . (S31)
Ko — K1 R1 — R2
Taken together, these results yield
L. 22
€+ O(€), or
Ko — K1
r = (832)
3(ke — 1
(h2 — 1) e+ 0(&),
4I<L2 R1 — R2

which implies Eq. S29 as ¢ — 0T, given that x; # k2 and kg # 0.



12

4.3. Approximate equilibrium frequencies of Az and Ag triads

Setting n; = 0 gives
m* (3ng — 4n1)pg = m®(n1 — 4n3)pl. (S33)
Reorganizing the equation and ignoring higher-order terms, we obtain the following cubic equation in r3:
32kor3 4 8 [(5kg — 4k )11 + 3(ko + K1)] 73

42 [2(—3/{1 + k2)rt + (951 + 3k — 8€)ry + Gé] r3
+ [—4(k1 + R2)r} + {3(k1 — K2) — 4€} r 4+ 3ér ] = 0. (S34)

Similarly, setting ng = 0 yields
napgm™ = 3nepm°. (S35)
Ignoring higher-order terms, we obtain the following quadratic equation in rg:
6ria(3 4 4ry + 4r3)(2 — 0)rg

+ 3 [8(k2 — k1)15 + 4(3K2 — K1)rirs + 2(3ka — 28)r5 + dkort + kot | 1
— (’/‘1 + 47‘3)7‘3(@ + K171 + 2/€1’r‘3) =0. (836)

Solving these equations using symbolic computation, we find that

rg =175 = O(€25), Ty = O(éw)7 (S37)
‘ )a T =1T8 = O(€3[3)’

where
1 K1 K Ka,
B(6)=q1/3 k1= ko, (S38)
0 K1 > Ka,

and [ changes rapidly around k1 = k3. See also Figure 6 in the main text.
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5. FREQUENCY OF IRRATIONAL UPDATES

In this section, we analyze how frequently irrational updates occur in each model and confirm that the focal-triad
model, as intended, substantially reduces the instances of irrational update events—including not only intentional
irrational updates but also incidental ones. For the definition of an irrational update and an illustrative example, see
Sec. ITA and Figure 3 in the main text. An irrational update is any transition event that is either Az — Ay, As — Ay,
Ay — Az, or Ay — As, whose rate of occurrence is calculated by pln; pfng, ping, or p;ni, respectively. Using
Egs. S1 and S2, we can calculate the average frequency of irrational transition events per unit time, which we denote
by I,, (m =1,2). In the focal-link model (m = 1), it is given by

1 1 2 1 1 1
I = (ng|r +ny) €3 + 5§n4 + 773717} + (ng; +n3) [63712 + 5§n4 + n(§n7 +ng)| - (S39)

In the focal-triad model (m = 2), it is given by

.2 _ (1
I, = (n?f +ny )ngm + (ng +n5)7 <3n7 + n9> . (S40)

Given the equilibrium triad frequencies ny, in the subcritical regime (i.e., § < 1/2 and k1 < k2) with sufficiently small
€ and €, it is guaranteed that I; is substantially larger than I since the bottom-row triads A7, Ag are significantly
less frequent than the triad types in the middle two rows Az, Ay, A5, due to the different orders of magnitude of ny
with respect to e (see Egs. S24 and S37). On the other hand, in the supercritical regime, in which the bottom-row
triads dominate, the difference between I; and I diminishes and becomes negligible.
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6. TIME-SERIES TRIAD FREQUENCIES WITH FULLY POLARIZED INITIAL STATES

Figure S5 shows how neutrality breaks complete balance in our models with fully polarized initial states. A strongly
polarized state, where most triads are balanced, may persist temporarily, but it eventually collapses into a transient
regime where balanced triads no longer dominate. These two examples in Figure S5 demonstrate that a slight shift
in parameter values can disrupt the initial balance and eventually lead to transient dynamics.

Note that it may not be sufficient to change only one of the parameter values to break the initial complete balance:
rather, the parameter values should be varied so that neutral links can emerge with positive probability from a
completely balanced state. For example, decreasing 7 from 1 alone does not break balance in the focal-triad model.
These cases are nonetheless negligible in the full parameter space.
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Figure S5. Time-series triad frequencies in (a) the focal-link model and (b) the focal-triad model, with fully polarized initial
states. Initially, the population consists of two equally sized factions where links within each faction are positive but links
between them are negative, i.e. a fully polarized state. Parameters: ¢ = 0.5, § = 1.0, n = 0.999 in the focal-link model, and
€ =0.5, k1 = 0.99, k2 = 0.01, 7 = 1.0 in the focal-triad model. The population size is N = 32 in both panels.
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