Supplementary Materials

1. Sensor Design and Fabrication Strategies

Table S1. Advantages, limitations, cost, applications and detection & response ranges for different synthesis procedures on paper.

Synthesis Procedure	Advantages	Limitations	Scalability	Cost	Application	Detection Range	Response Time	Reference
Solution-coating of Co ₃ O ₄ and Fe ₂ O ₃ on paper	Selective, eco-friendly, disposable	Moderate sensitivity	High	Low	Air quality monitoring	0.25–2500 ppm	Not specified	[1]
Aerosol jet printing of PEDOT:PSS + flash lamp annealing	Fast, scalable, selective	Humidity interference	Very High	Moderate	Food spoilage monitoring	3–12 ppm	< 10 s	[2]
Drop-casting ZnTPP on CNT paper, hot- pressed	Room-temp operation, stable	Slow recovery (531 s)	Medium	Moderate	Industrial NH ₃ detection	Not specified (used 200 ppm)	162 s (response), 531 s (recovery)	[3]
Immersion of paper in mango leaf extract	Natural, non-toxic, smartphone-readable	Moderate reproducibility	Low-Medium	Very Low	Aquaculture wastewater	1.7–10 mg/L	10 min	[4]
Decoration with PPy/CNT/Pt nanocomposites	Twistable, washable, ultra-sensitive	Complex synthesis	Medium	Moderate	Wearable sensors, diagnostics	5 ppb–60 vol%	Not specified	[5]
In-situ polymerization of aniline on paper	Cost-effective, fast, flexible	Slight drift over time	High	Low	Environmental & industrial use	12–1000 ppm	9–30 s	[6]
Drop-casting CH ₃ NH ₃ PbX ₃ on paper	Dual-mode (color/electrical), low power	Degradation over time	High	Low	Breath analysis, pollution	Visual: ~10 ppm, Electrical: sub-ppm	Fast (not quantified)	[7]
Paper discs + bromothymol blue, 3D- printed reader	Portable, high precision reusable	' Calibration needed	Medium-High	Moderate	Wastewater & digesters	5–50 mg/L	~10 min	[8]

2. Applications and Implementation in the Real World

Table S2. Cost and accessibility.

	<u> </u>	
Method	Cost Per Test	Equipment Requirements
Paper-based colorimetric	<\$0.10-0.50	None; optional smartphone
Paper-based chemiresistive	~\$0.50–1.00	Low-power handheld reader
Nessler's reagent	~\$1.00–2.00	Spectrophotometer and reagents
Ion-selective electrodes	~\$2.00–5.00 (after capital cost)	pH/ISE meter; calibration solutions
Electrochemical gas sensors	~\$150–300 per device	Continuous monitoring instruments

Table S3. Portability and field usability.

Method	Portability	Field Suitability	Notes
Paper-based	Ultra-light, disposable, portable	Excellent	Compatible with smartphone readout; ideal for point-of-need
Nessler's reagent	Poor	Limited	Requires reagents, glassware, and waste disposal
Ion-selective electrodes	Moderate	Good	Requires calibration and maintenance; battery-powered
Electrochemical gas sensors	Good	Excellent	Rugged, continuous monitoring; higher cost

Table S4. Response and recovery time.

Method	Response/Recovery Time	Notes
Paper-based colorimetric	Visual response within ~1–3 min; slower recovery	Passive diffusion limits dynamics
Paper-based chemiresistive (CNT, WS2-PANI)	9–60 s response; 30–120 s recovery	Rapid surface adsorption/desorption; good repeatability
Nessler wet chemistry	~10–15 min including reagent mixing	Requires laboratory setup
Ion-selective electrodes	<1 minute response; stable continuous readout	Requires calibration and sample prep
Electrochemical gas sensors	~10–60 s response and recovery	Active sensing; continuous

Table S5. Detection sensitivity and dynamic range.

	-	-		
Method	LOD/Sensitivity	Dynamic Range	Reference	
Paper-based (colorimetric, anthocyanin/mango	$\sim 0.50-2.00 \text{ mg L}^{-1} \text{ (aqueous)};$	Aqueous: $1.7-10 \text{ mg L}^{-1}$;		
extract)	~3–12 ppm (gas) Gas: up to 500 ppm		[4,9]	
Paper-based (nanocomposites–WS ₂ -PANI, MXene, CNT hybrids)	~5 ppb to ~3 ppm	Gas: 5 ppb to 60% v/v	[5,10,11]	
Nessler's reagent (wet chemistry)	$\sim 0.01 \text{ mg L}^{-1} (10 \text{ ppb})$	Up to $\sim 10 \text{ mg L}^{-1}$ (aqueous)	Standard APHA protocols	
Ion-selective electrodes (ISE)	$\sim 0.05 \text{ mg L}^{-1} (50 \text{ ppb})$	$0.05-100 \text{ mg L}^{-1} \text{ (aqueous)}$	Commercial NH ₃ ISE datasheets	
Electrochemical gas sensors (industrial)	~1 ppm	0–1000 ppm	Industrial gas detectors (Honeywell, Figaro, Dräger)	

References

- 1. Rath, R.J.; Oveissi, F.; Shahrbabaki, Z.; et al. A Paper-Based Sensor Capable of Differentiating Ammonia and Carbon Dioxide Gas. *Mater. Today Commun.* **2023**, *35*, 105895. https://doi.org/10.1016/j.mtcomm.2023.105895.
- 2. Borghetti, M.; Cantù, E.; Ponzoni, A.; et al. Aerosol Jet Printed and Photonic Cured Paper-Based Ammonia Sensor for Food Smart Packaging. *IEEE Trans. Instrum. Meas.* **2022**, 71, 1–10. https://doi.org/10.1109/TIM.2022.3161695.
- 3. Xiong, Z.; Cai, S.; Zhang, Q.; et al. Binder-Free ZnTPP/CNT Paper for Room Temperature Ammonia Sensor and Mechanism Investigation. *IEEE Sens. J.* **2022**, *22*, 17706–17711. https://doi.org/10.1109/JSEN.2022.3194969.
- 4. Nadi, F.; Hossain, S.; Rahmat, R.F.; et al. Detection of Ammonia in Aquaculture Wastewater Using Mango Leaf Extract-Immobilized Paper Sensors and Smartphone Colorimetric Analysis. *Microchem. J.* **2024**, *207*, 112257. https://doi.org/10.1016/j.microc.2024.112257.

- 5. Du, L.; Feng, D.; Xing, X.; et al. Nanocomposite-Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection of 5 Ppb-60 v/v% Ammonia. *ACS Sens.* 2022, 7, 874–883. https://doi.org/10.1021/acssensors.1c02681.
- 6. Zhang, T.; Li, W.; Shi, Y.; et al. Polyaniline-Based Room Temperature Ammonia Gas Sensor Employing Hybrid Organic-Inorganic Substrate. *Mater. Chem. Phys.* **2022**, *288*, 126404. https://doi.org/10.1016/j.matchemphys.2022.126404.
- 7. Maity, A.; Mitra, S.; Das, C.; et al. Universal Sensing of Ammonia Gas by Family of Lead Halide Perovskites Based on Paper Sensors: Experiment and Molecular Dynamics. *Mater. Res. Bull.* **2021**, *136*, 111142. https://doi.org/10.1016/j.materresbull.2020.111142.
- 8. Vargas-Muñoz, M.A.; Morales, J.; Cerdà, V.; et al. Paper Sensor-Based Method Using a Portable 3D-Printed Platform and Smartphone-Assisted Colorimetric Detection for Ammonia and Sulfide Monitoring in Anaerobic Digesters and Wastewater. *Microchem. J.* **2023**, *188*, 108469. https://doi.org/10.1016/j.microc.2023.108469.
- 9. Haq, S.U.; Aghajamali, M.; Hassanzadeh, H. Cost-Effective and Sensitive Anthocyanin-Based Paper Sensors for Rapid Ammonia Detection in Aqueous Solutions. *RSC Adv.* **2021**, *11*, 24387–24397. https://doi.org/10.1039/D1RA04069C.
- 10. Wang, Z.; Yan, F.; Yu, Z.; et al. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. *ACS Sens.* **2024**, *9*, 1447–1457. https://doi.org/10.1021/acssensors.3c02558.
- 11. Kashyap, A.; Sarma, H.; Chakraborty, B.; et al. Selective and Sensitive Detection of Ammonia at Room Temperature by the WS₂-PANI Nanocomposite on a Flexible Paper-Based Sensor with Cost-Effective Chemically Expanded Graphite Ink Electrodes. *ACS Appl. Electron. Mater.* **2024**, *6*, 6916–6931. https://doi.org/10.1021/acsaelm.4c01273.