Supplementary Materials: Metabolomics and Lipidomics Study Reveals Metabolic Dysregulation in Epididymal Adipose Tissue of *db/db* Mice

Yi Ru^{1,†}, Li Xiang^{1,†}, Qing Shen^{2,3}, Xiuli Su^{1,4}, Aimin Xu^{2,3,5,*,‡}, and Zongwei Cai^{1,4,*,‡}

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China

² State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China

- ³ Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- ⁴ College of Science, Eastern Institute of Technology, Ningbo 315100, China
- ⁵ Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- * Correspondence: amxu@hku.hk (A.X.); zwcai@hkbu.edu.hk (Z.C.); Tel.: +852-3917-9754 (A.X.); +852-3411-7070 (Z.C.); Fax: +852-2816-2095 (A.X.)
- † These authors contributed equally to this work.
- [‡] These authors contributed equally to this work.

Received: 15 February 2025; Revised: 20 March 2025; Accepted: 14 May 2025; Published: 3 July 2025

Figure S1. Phenotypic characteristics of db/m + and db/db mice. (A) Body weight; (B) Fasting blood glucose; (C) Serum insulin levels; (D) Weight of epididymal adipose tissues; (E) Ratio of epididymal adipose mass to body weight; (F,G) Representative histological images (20×) of epididymal adipose tissues from db/m+ (F) and db/db (G) mice stained by H&E. The *p* value was calculated by t-student. **** *p* < 0.001.

Copyright: © 2025 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license (<u>https://creativecommons.org/licenses/by/4.0/</u>).

Publisher's Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figure S2. Overview of untargeted metabolomics and lipidomics results. (A) PCA score plot of detected metabolic features in both positive and negative ionization modes; (B) PCA score plot of detected lipids in both positive and negative ionization modes. Different colors represent different groups, and circles indicate the 95% confidence interval.

Figure S3. Targeted metabolomics analysis of metabolites in eWAT of db/db mice. (A) Long-chain acyl-carnitines; (B) Medium- and long-chain fatty acids. Data are presented as means \pm SEM (n = 10). The *p* value was calculated by t-student. * p < 0.05, **** p < 0.001.

Figure S4. Bubble plot analysis of the relative intensity of fatty-acyl chains in eWAT of db/db mice. (A) Ceramides; (B) Phosphatidylethanolamines. Bubble size represents the fold change significance, and different colors denote various fatty-acyl chains.

Table S1. Instrumental method for the analysis of non-targeted metabolomics using UHPLC-QE Orbitrap MS.

Instrument	Thermo Scientific UHPLC coupled to a Q	Exactive [™] Focus Hybrid Quadrupole-			
	Orbitrap ¹ ^m Mass	Spectrometer			
Analytical Column	ACQUITY UPLC HSS 13 column $(150 \times 2.1 \text{ mm} + 1.7 \text{ mm})$	Acquity BEH amide column $(150 \times 2.1 \text{ m} + 1.7 \text{ m})$			
	$(150 \times 2.1 \text{ mm}; 1.7 \mu\text{m})$	$(150 \times 2.1 \text{ mm}; 1.7 \mu\text{m})$			
Column Temperature (°C)	30	40			
		Phase A: 10 mM ammonium formate			
		and 0.125% formic acid in water			
Mobile Phases	Phase A: 0.1% formic acid in water	Phase B: 10 mM ammonium formate			
	Phase B: 0.1% formic acid in acetonitrile	and 0.125% formic acid in 95%			
		acetonitrile (acetonitrile/water,			
		v/v = 95/5)			
		0 min, 100% B;			
	0.0 min, 2% B;	2 min,100% B;			
	1.0 min, 2% B;	7.7 min, 70% B;			
Gradiant	19.0 min, 100% B;	9.5 min, 40% B;			
Gladient	21.0 min, 100% B;	10.3 min, 30% B;			
	21.1 min, 2% B;	12.3 min, 30% B;			
	25.0 min, 2% B;	14.8 min, 100% B;			
		20.0 min, 100% B;			
Flow rate (mL/min)	0.30				
Injection volume	10 µL	5 μL			
	Full scan 1	ll scan mode;			
	Resolution $= 35000;$				
	Scan range $(m/z) = 60-1000;$				
	Spray voltage $(kV) = 3.5$ (positive ionization mode), 2.5 (negative ionization				
MS parameters	mode):				
1	Sheath gas flow rate (arbitrary units) = 45 :				
	Auxiliary gas flow rate (arbitrary units) = 10 :				
	Auxiliary gas heater temperature ($^{\circ}C$) = 350:				
	Capillary temperati	$are (^{\circ}C) = 320.$			
	Full scan and parallel reaction	monitoring (PRM) mode;			
MS/MS Parameters	Collision energy $(eV) = 10, 20, 40;$				

Instrument	Thermo Scientific UHPLC cou Quadrupole-Orbiti	apled to a Q Exactive [™] Focus Hybrid rap [™] Mass Spectrometer
Analytical Column	CQUITY UPLC C18 column (1.7 Mil	μ m particles, 2.1 mm × 100 mm, Waters, ford, MA)
Column Temperature (°C)		50
Mobile Phases	Phase A: IPA/ACN (90:10, v/v) w for Phase B: ACN/H ₂ O (60:40, v/v) w for	ith 10 mM ammonium formate and 0.1% rmic acid ith 10 mM ammonium formate and 0.1% rmic acid
Gradient	0.0 n 1.0 n 2.0 n 7.0 n 9.0 n 17.0 n 19.0 r 20.0 r 24.0 r	hin, 30% A; hin, 30% A; hin, 45% A; hin, 70% A; hin, 85% A; hin, 100% A; hin, 100% A; min, 100%A; min, 30%A; min, 30%A;
Flow rate (mL/min)		0.26
Injection volume (µL)		10
MS parameters	Full Resolu Scan range Spray voltage (kV) = 3.5 (positive Sheath gas flow ra Auxiliary gas flow Auxiliary gas heate Capillary tem	scan mode tion = 35000; (m/z) = 60-1000; ionization mode), 2.5 (negative ionization mode); ate (arbitrary units) = 45; rate (arbitrary units) = 10; er temperature (°C) = 350; perature (°C) = 320;
MC/MC Damage at an	Full scan a	nd ddMS2 mode;
MS/MS Parameters	Collision ener	gv(eV) = 10, 20, 40;
Table S3. Instrumental	method for the analysis of acyl-carnitines us	ing UHPLC-QE Orbitrap MS.
Instrument	Thermo Scientific UHPLC coupled to a Orbitrap™ Ma	Spectrometer
Analytical Column	Luna C18 (2.1 mm i.d. \times 100 mm, 1.6 µm particle size, Phenomenex)	Syncronis HILIC column (2.1 mm id ×100 mm, 1.7 μm)
Column Temperature (°C)	30	30
Mobile Phases	Phase A: 0.1% formic acid in water Phase B: 0.1% formic acid in acetonitrile	Phase A: 10 mM ammonium acetate and 0.1% formic acid in water Phase B: 10 mM ammonium acetate and 0.2% formic acid in 95% acetonitrile (acetonitrile/water, v/v = 95/5)
Gradient	0.0 min, 2% B; 1.5 min, 2% B; 14.5 min, 100% B; 21.0 min, 100% B; 21.1 min, 2% B; 25.0 min, 2% B;	0 min, 90% B; 1.0 min,90% B; 9.0 min,30% B; 10.0 min, 30% B; 10.1 min, 90% B; 16.0 min, 90% B;
Flow rate (mL/min)	0	0.2
Injection volume (uL)	10	10
MS parameters	Parallel reaction Resolutio Spray voltage (kV) = 3.6kV Maximum injec Automated gain co Sheath gas flow rate Auxiliary gas flow rate	monitoring mode n = 30000; / (positive ionization mode); tion time: 100ms; ntrol (AGC): $5 \times 10^4;$ (arbitrary units) = 40; e (arbitrary units) = 10:

Table S2. Instrumental method for the analysis of lipidomics samples using UHPLC-QE Orbitrap MS.
--

4 of 11

Instrument	UltiMate 3000 liquid chromatography combined with triple quadrupole mass spectrometry (LC-QqQ-MS) (Thermo Fisher Scientific, MA,		
	U.S.A.).		
Analytical Column	Phenomenex polar C18 column (1.6 mm, 2.1 × 150 mm)		
Column Temperature (°C)	30		
Mahila Dhagag	Phase A: 0.01% formic acid in water		
Widdlie Pliases	Phase B: 0.01% formic acid in acetonitrile		
	0.0 min, 30% B;		
	0.5 min, 30% B;		
Caraliant	11.5 min, 100% B;		
Gradient	14.5 min, 100% B;		
	14.6 min, 30% B;		
	16.0 min, 30% B;		
Flow rate (mL/min)	0.25		
Injection volume (µL)	10		
	Selected reaction monitoring mode		
	Spray voltage $(kV) = 2.5 kV$ (positive ionization mode);		
MS a supre store	Sheath gas flow rate (arbitrary units) = 40 ;		
MS parameters	Auxiliary gas flow rate (arbitrary units) $= 10;$		
	Auxiliary gas heater temperature ($^{\circ}C$) = 320;		
	Capillary temperature ($^{\circ}C$) = 300:		

Table S4. Instrumental method for the analysis of fatty acids and TCA cycle metabolites using UHPLC-QqQ-MS.

Table S5. Identification of significantly altered metabolites in eWAT of *db/db* mice.

No.	Compounds	Class	Column	m/z	RT (min)	FC	<i>p</i> value
1	MG (20:4_0:0_0:0)	Acylglycerides	T3	379.2841	18.40	3.61	2.54E-05
2	MG (16:0_0:0_0:0)	Acylglycerides	T3	331.2841	17.37	15.58	2.49E-07
3	MG (18:3_0:0_0:0)	Acylglycerides	Т3	353.2690	17.43	15.50	7.43E-06
4	MG (22:5_0:0_0:0)	Acylglycerides	Т3	405.3006	18.67	77.55	6.53E-06
5	L-Proline	Amino acids and derivatives	Amide	116.0706	10.44	1.95	2.78E-05
6	1-Methylhistamine	Amino acids and derivatives	Amide	126.1025	8.20	0.54	5.34E-04
7	L-Cyclo(alanylglycyl)	Amino acids and derivatives	Amide	129.0658	8.98	1.51	1.66E-02
8	L-Norleucine	Amino acids and derivatives	Amide	132.1019	7.84	3.93	4.03E-03
9	D-Aspartic acid	Amino acids and derivatives	Amide	134.0447	9.89	1.90	3.38E-05
10	D-Glutamic acid	Amino acids and derivatives	Amide	148.0603	9.45	2.74	3.20E-04
11	Ne,Ne dimethyllysine	Amino acids and derivatives	Amide	175.1441	9.88	2.03	7.00E-03
12	Carnosine	Amino acids and derivatives	Amide	227.1139	10.26	0.17	1.18E-02
13	Prolylhydroxyproline	Amino acids and derivatives	Amide	229.1180	9.42	2.21	1.89E-03
14	Anserine	Amino acids and derivatives	Amide	241.1291	10.23	0.15	1.28E-04
15	Glutamyllysine	Amino acids and derivatives	Amide	276.1552	10.52	2.49	2.10E-03
16	Tyrosyl-Lysine	Amino acids and derivatives	Amide	310.1751	8.66	5.23	2.42E-03
17	4-Hydroxynonenal glutathione	Amino acids and derivatives	Amide	464.2047	8.67	3.64	6.35E-03
18	Glutamylleucine	Amino acids and derivatives	T3	261.1445	5.71	3.48	1.56E-03
19	Tiglylcarnitine (C5:1-CN)	Fatty acids and derivatives	Amide	244.1540	6.77	6.11	4.97E-05
20	2-Methylbutyroylcarnitine (2- Me-C4-CN)	Fatty acids and derivatives	Amide	246.1699	6.53	3.58	8.45E-05
21	Malonylcarnitine	Fatty acids and derivatives	Amide	248.1125	9.28	2.94	5.12E-05
22	Hydroxybutyrylcarnitine (C4- OH-CN)	Fatty acids and derivatives	Amide	248.1490	8.28	8.56	8.28E-05
23	Hydroxyisovaleroyl carnitine (isoC5-OH-CN)	Fatty acids and derivatives	Amide	262.1646	8.02	3.28	1.30E-07
24	Benzoylcarnitine	Fatty acids and derivatives	Amide	266.1388	6.76	2.39	1.85E-05
25	Phenethyl decanoate	Fatty acids and derivatives	Amide	277.2160	0.98	0.23	3.02E-03
26	Octadecanamide	Fatty acids and derivatives	Amide	284.2947	0.95	0.52	6.86E-03
27	12(13)-epoxy-6Z,9Z- octadecadienoic acid	Fatty acids and derivatives	Amide	295.2265	0.99	0.20	4.46E-03
28	2-Phenylpropyl isobutyrate	Fatty acids and derivatives	Amide	207.1384	1.01	2.55	1.29E-02
29	4-Oxododecanedioic acid	Fatty acids and derivatives	Т3	243.1233	8.62	11.87	7.06E-03
30	(±)12,13-DiHOME (12,13- OH-C12)	Fatty acids and derivatives	Т3	313.2381	13.98	0.31	9.36E-04
31	Pantothenic acid	Organic acids	Amide	220.1177	3.33	0.55	2.75E-03
32	4-Guanidinobutanoic acid	Organic acids	Amide	146.0923	8.24	2.73	4.87E-05
33	3,4,5,6-Tetrahydrohippuric acid	Organic acids	Amide	184.0965	3.34	0.54	5.41E-03
34	N1-Acetylspermidine	Organic acids	Amide	188.1754	9.57	2.09	1.36E-05

.

35	Piperidine	Others	Т3	86.0964	2.35	2.66	2.48E-03
36	FAD	Others	Т3	786.1634	5.70	0.57	6.47E-04
37	Thymine	Others	Amide	127.0500	8.69	2.02	1.73E-03
38	Glucosamine 6-phosphate	Others	Amide	260.0526	10.31	4.56	1.04E-06
39	3-Dehydrosphinganine	Others	Amide	300.2894	1.01	0.64	1.22E-02
40	LysoPE (18:0 0:0)	Phospholipids	Т3	482.3241	17.22	1.37	1.52E-03
41	LysoPC (18:1 0:0)	Phospholipids	Т3	522.3558	15.61	0.62	3.91E-03
42	LysoPE (20:4 0:0)	Phospholipids	Т3	502.2928	14.51	0.74	2.74E-03
43	LysoPE (16:1 0:0)	Phospholipids	Т3	452.2774	14.18	0.24	1.49E-08
44	LysoPC (20:3 0:0)	Phospholipids	Т3	546.3558	15.23	0.40	3.41E-04
45	LysoPE (16:0 0:0)	Phospholipids	Т3	454.2930	15.35	0.75	1.24E-04
46	LysoPI (20:4 0:0)	Phospholipids	Т3	621.3039	14.50	0.59	8.56E-05
47	LysoPI (18:1 0:0)	Phospholipids	Т3	597.3039	16.19	1.53	5.88E-03
48	LysoPS (16:0 0:0)	Phospholipids	Т3	496.2677	15.41	1.72	6.85E-03
49	LysoPI (16:0 0:0)	Phospholipids	Т3	571.2881	15.49	0.60	9.69E-03
50	LysoPE (22:6 0:0)	Phospholipids	Т3	524.2773	14.81	0.46	4.43E-06
51	PE (16:1_18:2)	Phospholipids	Amide	714.5077	5.76	0.40	1.96E-02
52	PC (16:0 16:1)	Phospholipids	Amide	732.5532	5.07	0.73	7.43E-03
53	SM (d18:1 20:1)	Phospholipids	Amide	757.6212	6.50	0.44	3.59E-03
54	SM (d16:1 22:0)	Phospholipids	Amide	759.6378	6.50	0.34	4.00E-03
55	PE (20:3 18:3)	Phospholipids	Amide	764.5215	5.41	0.47	7.73E-03
56	PE (16:0_22:5)	Phospholipids	Amide	766.5396	5.07	0.59	1.80E-02
57	PS (18:2 18:0)	Phospholipids	Amide	788.5419	6.86	2.78	3.01E-03
58	Adenosine monophosphate	Purine nucleotides	Т3	348.0705	5.70	0.59	3.58E-03
59	Xanthine	Purine nucleotides	Т3	153.0408	1.94	0.40	3.44E-03
60	Uracil	Purine nucleotides	Т3	113.0346	2.36	0.34	1.83E-03
61	ADP-glucose	Purine nucleotides	Т3	588.0746	1.59	0.46	6.67E-04
62	Hypoxanthine	Purine nucleotides	Amide	137.0457	4.98	0.55	1.38E-02
63	Adenosine	Purine nucleotides	Amide	268.1037	4.98	0.33	1.87E-02
64	Inosine	Purine nucleotides	Amide	269.0876	7.22	0.38	9.42E-04
65	Progesterone	Steroids and derivatives	Т3	315.2320	15.34	3.77	1.73E-06
66	Testosterone enanthate	Steroids and derivatives	Т3	401.3053	19.98	1.94	1.48E-03
67	Testosterone Propionate	Steroids and derivatives	Т3	345.2425	19.98	2.15	9.78E-04
68	Corticosterone	Steroids and derivatives	T3	347.2222	11.04	8.11	7.33E-04
69	Pregnanetriol	Steroids and derivatives	T3	337.2731	18.50	22.53	1.16E-06
70	Calcidiol	Steroids and derivatives	Amide	401.3422	0.96	2.11	2.90E-03

Notes: FC represents fold changes; m/z represents mass-to-charge ratio; RT represents retention time.

Table S6. Detailed information of acyl carnitines detected in eWAT of db/db	mice.
--	-------

NO.	Compounds	Abbreviations	R.T.	Parent/Product ions (<i>m/z</i>)
1	Carnitine	C0-CN	7.18/7.62	162.1/85.0
2	Acetyl-carnitine	C2-CN	6.17	204.1/85.0
3	Butyryl-carnitine	C4-CN	6.75	232.1/85.0
4	Crotonyl-carnitine	C4:1-CN	6.56	230.1/85.0
5	Valeryl-carnitine	C5-CN	8.48/8.56	246.2/85.0
6	2-Methylcrotonoyl-carnitine	2-Me-C4:1-CN	7.91	244.2/85.0
7	Hydroxyl valeryl-carnitine	C5-OH-CN	6.51	262.2/85.0
8	Hexanoyl-carnitine	C6-CN	9.64	260.2/85.0
9	Hydroxyl hexanoyl-carnitine	C6-OH-CN	7.87	276.2/85.0
10	Octenoyl-carnitine	C8:1-CN	11.26	286.2/85.0
11	Hydroxyl octanoyl-carnitine	C8-OH-CN	10.5	304.2/85.0
12	Decanoyl-carnitine	C10-CN	13.58	316.2/85.0
13	Decenoyl-carnitine	C10:1-CN	13.2	314.2/85.0
14	Dodecanoyl-carnitine	C12-CN	14.77	344.3/85.0
15	Dodecenoyl-carnitine	C12:1-CN	14.3	342.3/85.0
16	Tetradecanoyl-carnitine	C14-CN	15.47	372.3/85.0
17	Tetradecenoyl-carnitine	C14:1-CN	15.19	370.3/85.0
18	Hydroxyl tetradecenoyl-carnitine	C14:1-OH-CN	14.6	386.3/85.0
19	Hydroxyl tetradecanoyl-carnitine	C14-OH-CN	15.05	388.2/85.0
20	Tetradecandienoyl-carnitine	C14:2-CN	14.58	368.3/85.0
21	Hydroxyl tetradecandienoyl-carnitine	C14:2-OH-CN	14.15	384.3/85.0
22	Palmitoyl-carnitine	C16-CN	16.12	400.3/85.0
23	Hexadecenoyl-carnitine	C16:1-CN	15.68	398.3/85.0
24	Hydroxyl hexadecenoyl-carnitine	C16:1-OH-CN	15.23	414.3/85.0
25	Hexadecadienylcarnitine	C16:2-CN	15.33	396.3/85.0
26	Hydroxyl Hexadecanoyl-carnitine	C16-OH-CN	15.64	416.3/85.0

Health Metab. 2025, 2(3), 1 https://doi.org/10.53941/hm.2025.100016

27	Octadecanoyl-carnnitine	C18-CN	16.51	428.4/85.0
28	Hydroxyl stearoyl-carnitine	C18-OH-CN	16.13	444.4/85.0
29	Hydroxyl oleoyl-carnitine	C18:1-OH-CN	15.86	442.3/85.0
30	Linoleoyl-carnitine	C18:2-CN	15.93	424.3/85.0
31	Hydroxyl linoleoyl-carnitine	C18:2-OH-CN	11.8	495.3/85.0
32	Linoleyl carnitine	C18:3-CN	15.66	422.3/85.0
33	Arachidyl carnitine	C20-CN	16.85	456.2/85.0
34	Oleyl-carnitine	C18:1	16.15	426.4/85.0
35	Octadecanoyl-carnnitine	C18	16.51	428.4/85.0

Notes: R.T. represents retention time.

Table S7. Detailed information of fatty acids and TCA cycle metabolites detected in eWAT of *db/db* mice.

NO.	Compounds	Abbreviations	R.T.	Parent/Product ions (<i>m/z</i>)
1	Acetic acid	C2	3.22	193.9/136.8
2	Propanoic acid	C3	4.22	208.0/136.8
3	Malonic acid	C3_DC	5.72	373.0/177.8
4	3-hydroxypropionic acid	3_OH_C3	2.87	224.1/136.8
5	Butyric acid	C4	5.27	222.0/136.8
6	2-hydroxybutyric acid	2_OH_C4	3.47	238.1/136.8
7	3-hydroxyisobutyric acid	3_OH_isoC4	2.97	262.2/85.0
8	Valeric acid	C5	6.32	236.0/136.8
9	Isovaleric acid	iso_C5	6.45	236.0/136.8
10	5-hydroxyvaleric acid	5_OH_C5	3.64	252.1/136.8
11	Adipic acid	C6_DC	5.96	415.0/261.9
12	3-methylhexanoic acid	3_Me_C6	6.47	264.1/136.8
13	Decanoic acid	C10	9.94	306.12/136.8
14	Lauric acid	C12	11.08	334.2/136.8
15	Dodecanedioic acid	C12_DC	8.54	499.4/136.8
16	Myristic acid	C14	12.12	362.2/136.8
17	Palmitic acid	C16	13.08	390.3/136.8
18	Palmitelaidic acid	C16:1	12.37	388.2/136.8
19	Hexadecadienoic acid	C16:2	11.77	386.2/136.8
20	Hexadecatrienoic acid	C16:3	11.44	384.2/136.8
21	Stearic acid	C18	14.12	418.3/136.8
22	Oleic acid	C18:1	13.41	416.8/136.8
23	Linoleic acid	C18:2	12.63	414.8/136.8
24	Linolenic acid	C18:3	12.05	414.3/136.8
25	Arachidic acid	C20	14.89	446.3/136.8
26	Arachidonic acid	C20:4	12.52	438.2/136.8
27	Eicosapentaenoic acid	C20:5	12.01	436.2/136.8
28	Docosahexaenoic acid	C22:6	12.39	434.2/136.8
29	Malic acid	N.A.	5.13	405.1/153.8
30	Succinic acid	N.A.	5.55	387.1/233.9
31	Fumaric acid	N.A.	6.15	387.1/233.8
32	Isocitric acid	N.A.	6.58	596.1/233.9
33	Citric acid	N.A.	6.92	596.1/221.9
34	Oxaloacetic acid	N.A.	8.71	536.0/136.8
35	α-Ketoglutaric acid	N.A.	8.66	550.1/232.9

Notes: R.T. represents retention time.

Table S8. Identification of significantly changed lipids in eWAT of *db/db* mice.

No.	Lipids	Class	R.T.	m/z	FC	<i>p</i> value
1	AcCa (20:3)	AcCa	5.98	450.3578	1.87	6.40E-03
2	AEA (18:0)	AEA	5.49	328.3210	1.68	6.15E-03
3	AEA (18:2)	AEA	3.54	324.2897	1.53	2.74E-02
4	Cer (d17:1 16:0)	Cer	9.31	524.5037	0.36	1.63E-05
5	Cer (d18:1 19:0)	Cer	10.52	624.5572	1.25	4.65E-02
6	Cer (d18:1 ² 1:0)	Cer	10.95	652.5885	0.58	2.17E-02
7	Cer (d18:1 22:0)	Cer	11.14	622.6133	0.60	4.11E-03
8	Cer (d18:1 22:1)	Cer	10.76	664.5885	1.55	2.75E-02
9	Cer (d18:1 ² 3:0)	Cer	11.32	636.6289	0.51	1.70E-04
10	Cer (d18:1 ^{24:0})	Cer	11.49	650.6446	0.30	1.81E-05
11	$Cer(d18:1^24:1)$	Cer	11.11	648.6289	0.47	2.07E-03
12	Cer (d18:1 ^{25:0})	Cer	11.66	664.6602	0.33	5.36E-04
13	Cer (d18:2_16:0)	Cer	8.99	536.5037	2.37	7.89E-05
14	Cer (d18:2 18:0)	Cer	9.70	564.5350	2.94	4.27E-06
15	Cer (d18:2 ² 0:0)	Cer	10.28	592.5663	2.00	6.95E-06
16	Cer (d18:2 ² 1:0)	Cer	10.53	650.5729	1.35	4.46E-02
17	$Cer(d18:2^{-}24:1)$	Cer	10.71	646.6133	0.61	3.46E-03
18	Cer (m18:0 16:0)	Cer	10.10	524.5401	3.10	1.43E-08
19	Cer(m18:018:0)	Cer	10.61	552.5714	3.18	7.85E-07
20	Cer (m18:0_20:0)	Cer	11.05	580.6027	1.65	6.78E-03
21	Cer(m18:0 ^{24:0})	Cer	11.75	636.6653	0.45	1.35E-04
22	Cer (m18:1 16:0)	Cer	9.51	522.5245	4.71	2.12E-11
23	$Cer(m18:1^20:4)$	Cer	10.10	570.5245	0.49	3.21E-04
24	Cer (m18:1 ^{24:0})	Cer	11.41	634.6497	0.54	1.62E-03
25	Cer (m18:1 ^{24:1})	Cer	11.00	632.6340	0.38	1.96E-05
26	DG (12:0 18:2)	DG	8.85	554.4779	1.54	8.50E-04
27	DG (14:0 ¹ 8:3)	DG	8.97	580.4936	0.70	9.46E-03
28	DG (16:0 12:0)	DG	9.44	530.4779	1.88	2.03E-04
29	DG (16:0 18:1)	DG	10.59	595.5296	1.87	4.32E-04
30	DG (16:1 ¹ 8:2)	DG	9.63	608.5249	1.54	5.18E-03
31	DG (16:1 ^{18:3})	DG	9.11	606.5092	1.50	1.91E-02
32	DG (18:1 ¹ 2:0)	DG	9.47	556.4936	1.76	6.26E-04
33	DG (18:1_14:0)	DG	10.08	584.5249	1.51	1.28E-02
34	DG (18:1_18:1)	DG	10.59	638.5718	2.05	5.39E-03
35	DG (18:1_18:2)	DG	10.17	636.5562	2.07	1.91E-03
36	DG (18:1_20:3)	DG	10.27	662.5718	2.79	5.14E-04
37	DG (18:2_22:6)	DG	9.31	682.5405	3.75	9.62E-04
38	DG (20:3_18:2)	DG	10.03	660.5562	4.33	4.62E-05
39	Hex1Cer (d18:1_16:0)	Hex1Cer	9.13	700.5722	0.50	3.10E-03
40	Hex1Cer (d18:1_16:0+O)	Hex1Cer	8.97	716.5671	1.43	1.30E-02
41	Hex1Cer (d18:1_18:0)	Hex1Cer	9.80	728.6035	0.16	2.46E-06
42	Hex1Cer (d18:1_20:0+O)	Hex1Cer	10.23	772.6297	0.33	1.20E-03
43	Hex1Cer (d18:1_22:0)	Hex1Cer	10.79	784.6661	0.22	1.17E-05
44	Hex1Cer (d18:1_22:0+O)	Hex1Cer	10.69	800.6610	0.28	9.03E-05
45	Hex1Cer (d18:1_22:1)	Hex1Cer	10.69	782.6504	0.28	2.32E-04
46	Hex1Cer (d18:1_23:0)	Hex1Cer	10.98	842.6727	0.24	1.54E-04
47	Hex1Cer (d18:1_24:0)	Hex1Cer	11.16	812.6974	0.13	6.41E-05
48	Hex1Cer (d18:1_24:0+O)	Hex1Cer	11.08	828.6923	0.18	1.53E-05
49	Hex1Cer (d18:1_24:1)	Hex1Cer	10.74	810.6817	0.17	4.35E-05
50	Hex1Cer (d18:1_24:2)	Hex1Cer	10.32	808.6661	0.18	2.12E-05
51	Hex1Cer (d18:2_24:0+O)	Hex1Cer	10.64	826.6767	0.34	2.54E-04
52	Hex1Cer (d36:1)	Hex1Cer	9.81	772.5944	0.12	3.67E-04
53	Hex1Cer (d42:3)	Hex1Cer	10.33	852.6570	0.21	1.26E-03
54	Hex1Cer (t20:0_18:1)	Hex1Cer	10.23	816.6206	0.37	1.24E-02
55	Hex1Cer (t40:1)	Hex1Cer	10.69	844.6519	0.33	8.77E-03
56	Hex1Cer (t42:1)	Hex1Cer	11.08	872.6832	0.23	5.04E-03
57	Hex1Cer (t42:2)	Hex1Cer	10.64	870.6676	0.45	2.08E-02
58	LPC (16:0)	LPC	3.24	540.3307	0.63	1.40E-02
59	LPC (18:0)	LPC	4.54	524.3711	2.21	1.00E-02
60	LPC (20:3)	LPC	4.57	546.3554	2.25	6.46E-03

61	LPC (22:3)	LPC	5.73	574.3867	0.48	7.48E-06
62	LPC (24:0)	LPC	7.83	608.4650	0.58	1.93E-04
63	PC (14:0 22:4)	PC	8.50	782.5694	0.69	7.12E-03
64	PC (15:0 16:0)	PC	9.24	720.5538	0.31	1.55E-04
65	PC (16:0 14:0)	PC	8.87	750.5291	0.42	1.39E-05
66	PC(16.0, 16.0)	PC	9.58	778 5604	0.54	8 84E-05
67	$PC(16:0_{-}16:0)$	PC	8 94	776 5447	0.63	2.91E-04
68	$PC(16:0_18:1)$	PC	9.61	804 5760	0.09	3.52E-02
60	PC(16:0=20:4)	PC	0.35	812 5811	0.77	7.37E-05
70	$PC(16.1e^{-20.4})$	PC	9.35	768 5002	0.47	7.37E-03
70	$DC(10.16_{20.3})$	PC	9.54	206 5017	0.08	4.09E-02
71	$PC(18:0_10:0)$	PC DC	10.15	800.3917	0.31	2.13E-02
72	$PC(18:0_20:3)$	PC	9.85	830.00/3	1./1	1.45E-05
/3	PC (18:0_20:4)	PC	9.59	854.591/	1.54	1.35E-04
/4	PC (18:0_22:5)	PC	9.57	880.6073	1.28	5.9/E-03
75	PC (18:0_22:6)	PC	9.39	878.5917	0.76	8.14E-03
76	PC (18:1_24:0)	PC	11.35	916.7012	0.19	2.98E-03
77	PC (18:1e_16:0)	PC	9.95	790.5967	0.45	2.00E-03
78	PC (18:1e_16:1)	PC	9.48	744.5902	0.47	6.64E-05
79	PC (18:2_22:6)	PC	8.13	874.5604	0.31	1.19E-06
80	PC (20:0_18:3)	PC	9.85	812.6164	2.86	1.90E-08
81	PC (20:1_14:1)	PC	9.05	758.5694	1.26	3.22E-02
82	PC (20:3_22:1)	PC	10.37	866.6633	0.49	3.72E-02
83	PC (21:0e)	PC	6.30	566.4180	1.34	1.36E-02
84	PC (22:5_18:2)	PC	8.52	832.5851	1.97	1.42E-04
85	PC (30:0)	PC	8.86	706.5381	0.49	1.48E-04
86	PC (30:0e)	PC	9.32	692.5589	0.30	4.88E-05
87	PC (30:1)	PC	8.15	704.5225	0.70	1.88E-02
88	PC (32:0)	PC	9.57	734.5694	0.66	1.22E-02
89	PC (32:0e)	PC	9.96	720.5902	0.32	4.32E-05
90	PC (32:1)	PC	8.95	732.5538	0.72	9.03E-03
91	PC (33:0)	PC	9.88	748.5851	0.33	1.42E-04
92	PC(34:0e)	PC	10.47	748.6215	0.23	6.38E-05
93	PC(34.1e)	PC	9.95	746 6058	0.57	7.95E-03
94	PC(34.3)	PC	8 36	756 5538	1.36	2 44E-02
95	PC(34.4)	PC	8 77	754 5381	0.38	5.37E-07
96	PC(36.2e)	PC	10.06	772 6215	0.27	1.91E-04
97	PC (36:3)	PC	9.00	784 5851	1.69	9.23E-06
08	PC(36.5)	PC	9.09	780 5538	1.09	9.23E-00 4.61E-03
00	PC(36:5a)	PC	9.03	766.5745	1.41	1.01E-03
100	PC(30.3e)	PC	9.22	700.3743	1.50	1.01E-02 2.00E.02
100	PC(30.0)	PC	11.02	//0.5501	0.36	2.00E-02
101	PC(38:0)	PC DC	11.02	010.0033	1.63	1.13E-02
102	PC(38:1)	PC	10.62	810.04//	0.47	2.31E-03
105	PC (38:4)	PC	9.39	810.0007	2.40	5.99E-07
104	PC(38:5)	PC	8.95	808.3831	1.01	0.90E-03
105	PC (38:56)	PC	9.85	/94.0038	0.59	8.34E-03
106	PC(38:7)	PC	7.98	804.5538	0.69	1.51E-02
107	PC (38:/e)	PC	8.67	790.5745	1.64	3.03E-03
108	PC (40:1)	PC	11.01	844.6790	0.26	2.63E-03
109	PC (40:3)	PC	11.02	840.6477	3.13	1.22E-04
110	PC (40:6)	PC	9.38	834.6007	1.37	8.78E-03
111	PC (40:6e)	PC	9.34	820.6215	2.05	5.57E-03
112	PC (40:8)	PC	8.14	830.5694	0.61	5.82E-04
113	PC (42:1)	PC	11.35	872.7103	0.17	1.33E-03
114	PC (42:3)	PC	10.65	868.6790	0.25	1.65E-04
115	PC (44:11)	PC	7.95	880.5851	2.16	4.47E-04
116	PE (12:0_22:0)	PE	10.29	720.5538	0.44	1.05E-03
117	PE (14:0_20:4)	PE	8.46	712.4912	1.49	3.04E-05
118	PE (14:0p_20:4)	PE	8.72	696.4963	0.73	4.84E-03
119	PE (16:0_16:1)	PE	9.13	688.4923	0.37	5.06E-05
120	PE (16:0 18:1)	PE	9.78	716.5236	0.70	1.52E-02
121	PE (16:0p 16:1)	PE	9.47	674.5119	0.48	7.29E-06
122	PE (16:0p 18:1)	PE	10.06	702.5432	0.66	4.18E-03
123	PE (16:0p 20:4)	PE	9.43	724.5276	1.25	4.90E-02

124	PE (16:0p 22:4)	PE	9.86	752.5589	0.47	1.79E-03
125	PE (16:1 16:1)	PE	8.42	688.4912	0.15	2.24E-07
126	PE (16:1 18:2)	PE	8.56	712,4923	0.40	2.35E-06
127	PE(16:1-20:4)	PE	8.40	736.4923	0.37	1.22E-05
128	PE(16.1 22.6)	PE	8 17	760 4923	0.18	2.17E-09
120	PE(16:1e - 16:1)	PF	9.48	672 4974	0.10	2.17E 07 8.04E-07
120	$PE(16:1e_{-}22:4)$	PE	9.91	750 5443	0.37	1.08E-02
130	$PE(16.1c_22.4)$	DE	9.91 8.75	70.5445	1.56	6.01E.03
122	$DE(10.1p_{20.4})$		10.20	712.5119	0.48	0.01E-03
132	PE(18.0-10.0)		10.29	710.3392	0.46	1./0L-02
133	PE (18.0 20.1)	PE DE	10.72	772.3802	0.29	3.09E-07
134	$PE(18:0_20:3)$	PE	9.99	/08.3349	1.08	7.09E-03
135	PE (18:0_22:4)	PE	10.13	/94.5/05	0.60	3.61E-02
136	PE (18:0_22:6)	PE	9.55	790.5392	0.57	7.51E-05
137	PE (18:0p_18:1)	PE	10.55	/30.5/45	0.25	2.22E-05
138	PE (18:0p_20:1)	PE	10.96	758.6058	0.12	1.59E-05
139	PE (18:0p_22:4)	PE	10.37	780.5902	0.27	5.48E-06
140	PE (18:0p_22:6)	PE	9.83	776.5589	0.41	1.07E-05
141	PE (18:1_18:1)	PE	9.88	744.5538	1.72	1.41E-03
142	PE (18:1_22:6)	PE	8.91	788.5236	0.29	5.04E-07
143	PE (18:1e_16:0)	PE	10.56	702.5443	0.33	3.25E-02
144	PE (18:1e_18:1)	PE	10.56	728.5600	0.24	6.00E-03
145	PE (18:1e_22:4)	PE	10.38	778.5756	0.31	1.71E-05
146	PE (18:1e 22:6)	PE	9.83	774.5443	0.32	2.87E-06
147	PE(18:1p 18:1)	PE	10.07	728.5589	0.40	1.64E-04
148	PE (18:1p 20:4)	PE	9.44	750.5432	1.53	4.25E-03
149	PE (18:2 22:6)	PE	8.31	786.5079	0.26	1.40E-07
150	PE (18:3e 22:6)	PE	8.73	770.5130	0.24	4.42E-03
151	PE(20:0p 22:6)	PE	10.34	804.5902	0.35	7.26E-05
152	PE(20.1 - 20.4)	PE	9 74	794 5694	1 41	1 37E-02
152	PE(20.1 = 22.6)	PE	10.35	802 5756	0.39	1.37E-06
154	$PE(20.16_{22.0})$	PE	8 31	788 5225	0.35	2 27E-05
155	$DG(18.1 \ 18.1)$	PG	8 72	700.5225	2.26	2.27E-03
155	DC (18.1 18.1)		0.72	700 5502	2.20	2.40E-05
150	$PG(10.1_{10.2})$	PG	0.1 <i>3</i> 9.1 <i>4</i>	790.3393	2.00	5.50E-00
157	$PG(10.1_{10.2})$		0.14	705 5192	2.07	4./0L-03
158	$PG(18:1_20:4)$	PG	8.00	795.5182	3.38	1.08E-03
159	$PG(18:2_18:2)$	PG	7.55	/88.5436	2.36	1.//E-04
160	PG (18:2_18:2)	PG	/.54	/69.5025	1.95	3.3/E-03
161	PG (22:6_22:6)	PG	6.85	865.5025	0.59	5.12E-03
162	PG (28:3)	PG	7.95	659.3930	1.49	1.76E-02
163	PI (16:0_20:4)	PI	8.36	876.5597	3.11	1.84E-04
164	PI (18:0_20:4)	PI	9.11	887.5644	4.48	1.50E-05
165	PI (18:1_20:4)	PI	8.39	902.5753	4.98	1.08E-06
166	PI (18:1_20:4)	PI	8.39	883.5342	2.28	6.93E-03
167	PS (18:0_18:2)	PS	9.30	786.5291	2.06	3.94E-02
168	PS (18:0_20:4)	PS	9.18	810.5291	3.19	7.78E-04
169	SM (d17:0_23:3)	SM	9.66	783.6375	1.53	1.23E-03
170	SM (d18:1_21:0)	SM	10.46	773.6531	1.78	8.35E-04
171	SM (d18:1_23:0)	SM	10.88	801.6844	1.55	1.76E-02
172	SM (d18:1_24:3)	SM	10.68	809.6531	5.43	7.80E-10
173	SM (d32:1)	SM	8.06	675.5436	2.57	9.44E-05
174	SM (d33:1)	SM	8.50	689.5592	1.40	1.74E-02
175	SM (d34:0)	SM	9.20	705.5905	2.56	3.78E-07
176	SM (d34:1)	SM	8.89	703.5749	2.94	1.98E-05
177	SM (d34:2)	SM	8.16	701.5592	5.31	1.72E-11
178	SM (d36:0)	SM	9.87	733.6218	2.09	2.36E-05
179	SM (d36:1)	SM	9.64	731.6062	3.37	2.30E-09
180	$SM(d36\cdot2)$	SM	8 98	729 5905	717	7.57E-13
181	SM (d36·3)	SM	8 35	727 5749	7 64	2.42E-08
182	SM (d36·4)	SM	8 86	725 5597	4 05	4 00F-05
183	SM (436.5)	SM	8 16	723.5392	6.27	4 67E-00
18/	SM (427.1)	SM	0.10	780 6127	1.60	1.0/1-02 1.2/15 02
104	$S_{1}(u_{2}, 1)$	SIVI	7.74 10.22	107.0121	1.00	1.24E-02 1 56E 06
105	SIM (429.2)	SIVI	0.66	157.05/5	2.23 5 57	1.00E-00
100	SIVI (US0.2)	SIVI	9.00	131.0210	5.57	1.000-09

187	SM (d40:1)	SM	10.68	787.6688	1.61	2.66E-03
188	SM(d40:2)	SM	10.23	785.6531	2.59	7.85E-06
189	SM (d41:1)	SM	10.89	845.6753	1.51	2.46E-02
190	SM (d41:2)	SM	10.47	799.6688	2.87	1.84E-04
191	SM (d42:4)	SM	9.67	809.6531	2.33	8.63E-07
192	SM (d43:1)	SM	11.25	829.7157	2.25	6.57E-05
193	SM (d43:2)	SM	10.83	827.7001	2.80	3.23E-04
194	SM (d43:4)	SM	10.88	823.6688	7.00	2.67E-04
195	SM (d44:5)	SM	10.63	835.6688	2.93	1.68E-06
196	SM (t18:0_16:1)	SM	8.66	719.5698	5.35	1.39E-07
197	SM (t18:0_24:3)	SM	10.00	827.6637	5.83	6.38E-08
198	SM (t42:2)	SM	10.47	829.6793	3.67	2.35E-06
199	TG (10:0_10:0_12:0)	TG	10.09	600.5198	4.95	1.64E-03
200	TG (10:0_12:0_12:0)	TG	10.59	628.5511	4.74	3.64E-03
201	TG (16:0_10:0_18:2)	TG	11.75	764.6763	3.23	1.97E-02
202	TG (16:0_12:0_14:0)	TG	12.06	740.6763	3.85	6.13E-04
203	TG (16:0_12:0_18:1)	TG	12.36	794.7232	2.24	3.37E-03
204	TG (16:0_12:0_18:2)	TG	12.06	792.7076	2.83	3.85E-03
205	TG (16:0_14:0_14:0)	TG	12.39	768.7076	1.98	5.58E-03
206	TG (16:0_14:0_18:2)	TG	12.35	820.7389	1.83	1.75E-02
207	TG (16:0_16:0_18:3)	TG	11.25	829.7280	1.63	1.62E-03
208	TG (16:1_16:1_16:1)	TG	12.05	818.7232	2.11	2.56E-02
209	TG (18:1_12:0_12:0)	TG	11.72	738.6606	2.53	2.71E-02
210	TG (18:1_12:0_14:0)	TG	12.04	766.6919	3.69	1.24E-03

Notes: FC represents fold changes; m/z represents mass-to-charge ratio; R.T. represents retention time.