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Supporting Information S1:  
Extended Materials & Methods. 
Based on the text in the Appendix of Poorter et al. (2022a) 

 

Note that we adhered as closely as feasible to the procedures used by 

Poorter et al. (2019) and Poorter et al. (2022b) in analyzing plant responses to 

light and [CO2]. 

 

A. Experiments considered. 

 We collected data from published experiments in physiology, 

horticulture, agronomy, forestry and ecology where plants were exposed to 

varying CO2 concentrations, light levels, temperatures or water availability 

during a substantial part of their experimental life. We considered experiments 

with autotrophic plant species that have leaves, stems and roots, considering 

the caudex of rosette plants as well as the leaf sheaths of grasses as analogous 

to stems. Different experiments followed varied protocols for pre-growing 

plants, depending on the species’ growth rate and seed mass. In some cases, 

seeds were planted, and pots were directly placed under different levels of the 

environmental factor of interest. In other cases, plants were first grown under 

standard conditions and the experiment began 1–4 weeks later. For slower-

growing tree seedlings, plants may have been pre-grown for one or two 

seasons before being placed under different environmental conditions. There 

is also considerable variation in the duration of experiments, ranging from less 

than two weeks up to over a year. We focused on experiments where plants 

had sufficient time to acclimate to the environmental factor under study. As a 

rule of thumb, we included experiments where treatments lasted for more 

than two weeks, and plants developed over 80% of their biomass under those 

treatments. However, it is important to note that not all experimental reports 

provided all the necessary information.  

 Experiments in which plants were only exposed to different levels of 

the environmental factor of interest in the generative phase were not 

considered. We included experiments conducted in growth chambers, 

glasshouses, open top chambers (OTC's) and Free-Air Carbon dioxide 

Enrichment facilities (FACE). We also considered experiments in the field 

carried out on monocultures. Following the classification of Körner (2006), we 

excluded measurements of plants in natural ecosystems. Studies with 

interspecific competition were also excluded. In cases of factorial combinations 

with other environmental factors (e.g. ozone, UV-B, water, salinity), we 

selected the combination of conditions in which control plants performed best. 

Data from plants in the vegetative, flowering and fruiting stage were included; 

however, most traits were measured during the plant’s vegetative phase.  

 

B. Measurements considered 

We considered data for stomatal density (SD) and stomatal index (SI). 

To stay consistent with the plant’s physiology, we summed the SD’s reported 

for the abaxial and adaxial sides of the leaf, and averaged the SI’s for both sides. 

We did not analyze responses of the adaxial and abaxial sides separately. 

However, when data were available for only one side of the leaf, we used those 

values.  

 

C. Collecting the data 

Data were sourced from tables, graphs (digitized with Engauge digitizer v. 
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12.1), supplemental material and additional data provided by the authors. As 

mentioned above, all data collected were averages from one or preferably 

more harvests, aimed at excluding most plant-to-plant and day-to-day 

variability. No attempt was made to weight data points based on the number 

of plants observed or the variability around the mean. This was partly 

because such information was not always available or clear in the data 

sources. We chose to adopt a more inclusive approach, as it allows us to draw 

broader conclusions based on more independent observations. A second 

consideration is that variability tends to be greater in certain species, such as 

wild (tree) species, compared to others, like genetically uniform crop species 

(see Poorter & Garnier, 1996). We did not want the data from wild species to 

have less weight in the analysis. Thirdly, we also included data from 

experiments where only two growth chambers or glasshouses were used and 

CO2 treatments as well as plants were regularly switched. While these 

experiments are often criticized for pseudo-replication, due to potential 

unaccounted differences between chambers (Filion et al., 2000), we reasoned 

that these additional differences would introduce random variation in CO2 

responses, and would be averaged out in a meta-analysis across multiple 

experiments. To integrate the extra information from experiments carried out 

with different genotypes or cultivars, or in somewhat different experiments 

within a single publication, but without giving those genotypes/experiments 

too much weight, we limited the inclusion to a maximum of three genotypes 

and/or experiments per publication. Similarly, while we included data from 

experiments with different species, we restricted the number to no more 

than 10 species per experiment. When more than 10 species were reported, 

we selected the species that were most phylogenetically diverse. 

D. Calculations and Statistics 

Scaling across experiments. Because there is large species-to-species 

variation with regard to the absolute phenotypic values, we focused on 

analyzing relative responses. The procedure was largely as outlined in Poorter 

et al. (2010). Since different experiments subjected plants to varying levels of 

the environmental factors of interest, we identified the level which is often 

included in published experiments. This level, which we used as our reference 

level for the subsequent normalizations, was 450 ppm for CO2 experiments, 8 

mol m-2 d-1 for the Daily Light Integral (DLI), 20 °C for the 24h averaged 

temperature, and the water availability where plants were growing best in 

drought stress experiments. In principle, the exact value of the reference level 

does not affect the analysis, as long as it falls within the range of most 

experiments. For each species/experiment combination (‘case’), we 

interpolated to estimate what the value of the phenotypic trait would have 

been at the reference level, based on data from the two adjacent levels of the 

environmental factor.   

In less than 1% of the experiments (with the exact number depending 

on the trait under consideration), the reference level was not included within 

the range of the experiment. These experiments, often including extreme 

treatments, are very relevant for establishing the dose-response curve (DRC) 

across the full range of the environmental factor. To include these data, we 

first fitted a Loess curve (local polynomial regression) through the 99% of the 

data that could simply be scaled versus the environmental factor of interest. 

For the experiments that did not include the reference level, we used the 

phenotypic trait value of the treatment closest to the reference value. We then 

determined from the Loess curve what the estimated across-species value of 
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the response ratio was at that specific level. We assumed that this value was 

also the response ratio for the phenotypic trait at the level closest to the 

reference level for the species/experiment combination under consideration. 

We subsequently scaled all other treatments of the same species/experiment 

combination relative to this ‘anchor point’. Finally, we removed the anchor 

point that was used to anchor the full species/experiment combination to the 

fitted Loess curve, as it no longer provided independent information after the 

anchoring process.   

Data curation. Errors in the database could result from various 

sources, including mistakes by authors during the experiments, errors in data 

evaluation, errors during the writing of the manuscript, and misstep during our 

digitization process, or missteps during our calculations. Systematic errors that 

are a consequence of erroneously reporting wrong units (e.g. mm rather than 

m) do not influence scaled values, as all values were analyzed proportionally, 

normalized to 1 at the reference level of the environmental factor. However, 

systematic errors such as other mistakes in the calculations, or mislabeling of 

variables (e.g. calculating Leaf Mass per Area, but misidentifying it as Specific 

Leaf Area, which actually is the inverse) poses a more significant issue. In case 

of doubt, we contacted the original authors for clarification, and changed the 

data when the authors indicated that something had gone wrong. For all cases, 

we calculated the overall slope of the scaled phenotypic traits against the 

environmental factor of interest. Data from cases showing the most extreme 

responses, i.e. those with the most positive and most negative slopes, were 

rechecked manually. Subsequently, the 1% of species/experiment 

combinations with the highest and the 1% with the most negative slope were 

excluded from the analysis to ensure robustness. As a result, the dose-

response curves presented here are based on 98% of the total data initially 

collected, reflecting the most reliable and consistent subset of information. 

Dose-response curves.  Avoiding a-priori assumptions about data 

distribution and form of the relationship, we first summarized overall 

relationships as well as normal ranges by binning all the scaled points in 10 

groups, based on deciles with respect to the levels of the environmental factor 

of interest. If fewer than 10 observations were available in each bin, we used 

proportionally fewer bins. For each bin, we then calculated the median 

environmental level for all data points, as well as the median and the 10th, 

25th, 75th and 90th percentile for the scaled phenotypic trait values. The dose-

response curves with the median values per bin visually provide information 

on the amount of data on which they are based (by the number of bins used) 

as well as the information density along the dose-response curve (by means of 

the distance in the x-axis direction among the medians). Fo further quantitative 

use, smoothed dose-response curves were derived using all individual data 

points, which were grown and measured between 0-2000 ppm, 0 – 60 mol m-2 

day-1, 5 – 35 °C, or the scaled biomass from 0.1 – 1 for water -stressed and 

control plants.  We did so by means of quantile regression (package 

“Quantreg”; Koenker et al. 2021), focusing on median values, so as to minimize 

the effect of outlying observations and avoid assumptions about the 

distribution of the data. We tested four potential models to describe the 

relationship between the phenotypic trait Y and the environmental variable X.  

First a null model of no relationship between Y, and X: 

 

Y = a       (1) 
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where a is the overall mean value of the trait.  

Second a linear one: 

 

Y = a + b.X      (2) 

 

A simple model describing a straight-line relationship where b represents the 

rate of change in Y for a unit increase in X. 

Third, a quadratic relationship: 

 Y = a + bX + cX2      (3) 

For many traits the relationship saturated at higher levels. Therefore, we finally 

used a three-parameter monomolecular equation as applied in Poorter et al. 

(2019): 

 Y = a(1 - b. e^(-cX))     (4) 

This model describes a saturating response, as often observed for biological 

traits under increasing environmental stressors. It includes three parameters: 

a: the asymptotic maximum value of the trait; b: a scaling factor determining 

the extent of response; c: the rate constant describing the speed of saturation. 

To identify the best-fitting model, the Akaike Information Criterion 

(AIC) was calculated for each equation. The corrected version, AICc, was used 

to account for smaller sample sizes. Model selection was performed using the 

R package MuMIn, which ranks models based on their AICc values, with lower 

values indicating better fit (Bartón, 2024).  

In no case did the decile plots show a relationship with a local minimum 

or maximum.   

 

Plasticity Index (PI). The plasticity index provides a standardize 

measure of the phenotypic response of a trait across a specified section of the 

dose-response curve. Following the outline of Poorter et al. (2010), the PI was 

calculated as the ratio of the maximum to minimum values of the phenotypic 

trait within defined ranges: 200-1200 ppm in case of CO2, 1 – 50 mol m-2 d-1 for 

light, 5-35 °C for temperature, and 0.1 – 1 for relative size in case of water 

supply. The ranges were chosen to be as broad as possible, while avoiding 

strong extrapolations, particularly for traits with limited data coverage. For 

traits exhibiting negative slopes, the PI was multiplied by -1. The PI thus reflects 

the fold-change between the highest and lowest value of the fitted dose-

response curve, using a unified scale for positive and negative trends. The 

advantage of the expression of plasticity as a ratio is that for variables that are 

multiplicatively related, plasticity indices can be multiplied as well. Note that 

this is not a plasticity index in the traditional sense where the response of a 

given genotype or species is characterized. Rather, this indicates the 

phenotypic changes observed across a wide range of plant species, under the 

assumption that all types of species have been equally well-measured over the 

range of environmental levels considered. 

 

Consistency Index (CI). To describe how consistent the responses 

were, we considered in what percentage of the cases (case = one species or 

genotype measured at various levels of an environmental factor in a specific 

experiment as described in a specific publication) the plants had a higher value 
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for that trait at the highest level applied compared to the lowest level. For 

those cases where the trait values for a specific case were reported identical at 

the highest and lowest level, we added half of that number to the positive 

cases, and the other half to the negative cases. CI values close to 50% indicate 

inconsistent responses, where the trait shows no clear directional changes 

across cases, or strong differences in direction across different species. In 

contrast, values near 0% or 100% represent highly consistent responses, with 

traits consistently decreasing or increasing, respectively, as the environmental 

factor increases. Note that some traits can have a low PI, but still change in a 

highly consistent manner.  

Reliability Index (RI). The Reliability Index (RI) assesses the confidence 

in the dose-response curves  by integrating four key factors. First, the range of 

experimental levels contributes significantly, with broader ranges (e.g., 100–

2000 ppm for CO₂) resulting in higher reliability compared to narrower ranges 

(e.g., 350–700 ppm). Second, the number of observations strengthens the 

reliability, as more data points enhance the robustness of the curve. Third, the 

number of species studied increases the generalizability of the response; for 

instance, observations across 300 species are more robust than those based on 

only two species. Fourth, the variability of the data around the fitted curve is 

critical; lower variability improves the confidence in the derived DRC. Each of 

these factors was scaled on a 0–9 scale, and their average was used to calculate 

the RI, providing a standardized measure of confidence in the presented DRCs. 

Higher RI values indicate greater reliability. 

All data were analyzed with version 4.1.3 of R (R Core Team, 2022).  
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Supplemental information 2:  
References used for the meta-analysis, listed per 
environmental factor. 
References are listed for each of the environmental factors considered 
separately. Full details on the references can be found in the accompanying 
paper. 
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Supporting information S3: 
Detailed figures of the responses of stomatal density and 
index to [CO2], Daily Light Integral, Temperature and Water 
availability. 
 
Figures show the scaled responses for herbaceous (blue dots) and woody (red 
dots) separately, and for all data the interquartile range (shaded area), the 
10th and 90th percentile (dotted lines), the median value for each 10% of the 
subsequent data (black line) and the overall fitted relationship (brown line) 
over the range considered for the Plasticity Index. The dotted line shows for 
comparison a Loess curve fitted over all datapoints. Other information 
provided in the graphs is explained in Fig. S0. 
 
 



0 500 1000 1500 2000

0.0

0.5

1.0

1.5

2.0

[CO2]  (ppm)

LM
A

  (
sc

al
ed

)
Fig.  S0 : Explanation of summary plots 
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Fig.  S01 : Summary plot of  Stomatal Density  vs. [CO2]

# of obs. = 660  (h: 64%)
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Fig.  S02 : Summary plot of  Stomatal Index vs. [CO2] 
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Fig.  S03 : Summary plot of  Stomatal Density vs. Daily Light Integral  

# of obs. = 360  (h: 49%)
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Fig.  S04 : Summary plot of  Stomatal Index  vs. Daily Light Integral

# of obs. = 130  (h: 70%)
# of spec. = 30  (h: 62%)
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Fig.  S05 : Summary plot of  Stomatal Density  vs. Temperature

# of obs. = 150  (h: 53%)
# of spec. = 35  (h: 50%)
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Fig.  S06 : Summary plot of  Stomatal Index vs. Temperature 

# of obs. = 10  (h: 50%)
# of spec. = 5  (h: 67%)
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fit =  None
pseudo r2  =  −0.20
MAE =  0.141
% increases =  57
PIR1  = −1.37

Range = 13 − 30  
Reliability =  1

a =  1.218
b =  −0.0105

WoHeGroup
2.48−2.16PI

PIR2  = −1.29
PIR3  = −1.29
20−11−2024



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0 

  Water availability (rel. units)

St
om

at
al

 D
en

si
ty

  (
sc

al
ed

)
Fig.  S07 : Summary plot of  Stomal Density  vs. Water Availability

# of obs. = 110  (h: 53%)
# of spec. = 35  (h: 53%)
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Fig.  S08 : Summary plot of  Stomatal Index  vs. Water Availability

# of obs. = 30  (h: 62%)
# of spec. = 10  (h: 58%)
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fit =  None
pseudo r2  =  −0.01
MAE =  0.050
% increases =  62
PIR1  = 1.01

Range = 0.25 − 1.0  
Reliability =  2

a =  0.9912
b =  0.00879

WoHeGroup
1.041.01PI

PIR2  = 1.00
PIR3  = 1.00

20−11−2024



Poorter at al., Supporting info to: Environmental effects on Stomatal Density and Stomatal Index                   22 

 

Supporting information S4: 
Responses of various functional groups of species. 
 
Plasticity Indices (PI) per functional group, along with the number of 
observations (n), the form of the Dose-response curve (DRC form), and the 
parameters of the fit (a, b and c). Data are given for both Stomatal Density 
and Stomatal Index. PI differences between groups have not been tested for 
significance, unless mentioned in the text. 
 



Stomatal Density Stomatal Index
Functional groups PI n Regform a b c PI n Regform a b c

CO2 All species -1.07 654 lin 1.031 -6.596E-05 - -1.12 223 lin 1.053 -1.124E-04 -
Herbaceous -1.05 418 lin 1.022 -4.525E-05 - -1.04 145 lin 1.021 -3.704E-05 -
Woody -1.14 225 lin 1.056 -1.231E-04 - -1.13 69 lin 1.052 -1.159E-04 -
Herb-C3-Annuals -1.03 199 lin 1.014 -3.214E-05 - 1.01 50 lin 0.997 1.388E-05 -
Herb-C3-Perennials -1.07 118 lin 1.030 -6.761E-05 - -1.26 52 lin 1.092 -2.140E-04 -
Herb-C3 -1.06 324 lin 1.028 -6.187E-05 - -1.04 106 lin 1.021 -3.704E-05 -
Herb-C4 -1.01 94 lin 1.015 -1.038E-05 - -1.01 39 lin 1.013 -1.170E-05 -
Herb-C3-Monocots -1.03 135 lin 1.017 -3.369E-05 - 1.03 34 lin 0.991 2.857E-05 -
Herb-C3-Dicots -1.02 174 lin 1.008 -1.686E-05 - -1.02 64 lin 1.011 -1.708E-05 -
Herb-C3-noN2Fixing -1.05 277 lin 1.020 -4.371E-05 - -1.04 88 lin 1.022 -3.811E-05 -
Herb-C3-N2Fixing -1.08 47 lin 1.036 -7.930E-05 - -1.21 18 lin 1.080 -1.782E-04 -
Woody -1.13 223 lin 1.055 -1.226E-04 - -1.13 69 lin 1.052 -1.159E-04 -
Woody-Deciduous -1.06 94 lin 1.031 -5.719E-05 - -1.14 35 lin 1.058 -1.238E-04 -
Woody-Evergreen -1.14 102 lin 1.055 -1.230E-04 - -1.12 30 lin 1.051 -1.130E-04 -
Woody-Angiosperms -1.16 151 lin 1.066 -1.422E-04 - -1.27 47 lin 1.105 -2.271E-04 -
Woody-Gymnosperms -1.12 60 lin 1.048 -1.069E-04 - -1.11 14 lin 1.045 -9.960E-05 -
Woody-noN2Fixing -1.12 201 lin 1.049 -1.076E-04 - -1.13 65 lin 1.053 -1.170E-04 -
Woody-N2Fixing -1.36 22 lin 1.130 -2.832E-04 - 1.31 4 lin 0.870 2.889E-04 -

DLI All species 1.93 358 sat 1.476 0.526 0.06731 1.96 127 sat 1.285 0.553 0.11747
Herbaceous 2.07 175 sat 1.459 0.571 0.09146 1.76 89 sat 1.206 0.497 0.14102
Woody 1.95 183 sat 1.585 0.536 0.04805 2.54 38 sat 1.480 0.669 0.09477
Herb-C3-Annuals 2.38 119 sat 1.623 0.631 0.06938 2.06 72 sat 1.909 0.600 0.02910
Herb-C3-Perennials 1.84 32 sat 1.605 0.507 0.04534 1.79 11 sat 1.098 0.497 0.11293
Herb-C3 2.27 151 sat 1.607 0.609 0.06813 1.79 83 sat 1.237 0.502 0.12445
Herb-C4 1.19 21 sat 1.101 0.179 0.10178 - 6 - - - -
Herb-C3-Monocots 1.62 21 sat 1.288 0.421 0.09073 1.26 11 sat 1.593 0.439 0.00839
Herb-C3-Dicots 2.37 130 sat 2.169 0.666 0.02787 2.10 72 sat 1.855 0.599 0.03258
Herb-C3-noN2Fixing 2.18 104 sat 1.418 0.604 0.10887 1.66 64 sat 1.134 0.483 0.19354
Herb-C3-N2Fixing 2.45 45 sat 15.538 0.949 0.00170 3.47 19 sat 25.308 0.972 0.00158
Woody 1.95 179 sat 1.583 0.536 0.04847 2.54 38 sat 1.480 0.669 0.09477
Woody-Deciduous 1.56 39 sat 1.416 0.399 0.04870 2.58 9 sat 1.665 0.665 0.05799
Woody-Evergreen 2.20 121 sat 1.938 0.624 0.03142 2.52 23 sat 1.467 0.667 0.09663
Woody-Angiosperms 1.90 176 sat 1.493 0.519 0.05870 2.52 36 sat 1.467 0.667 0.09663
Woody-Gymnosperms 1.98 5 sat 5.841 0.859 0.00370 - 0 - - - -
Woody-noN2Fixing 2.06 159 sat 1.706 0.572 0.04142 2.54 38 sat 1.480 0.669 0.09477
Woody-N2Fixing 1.58 20 sat 1.541 0.444 0.02905 - 0 - - - -



Temperature Group PI n Regform a b c PI n Regform a b c
All species 1.54 152 lin 0.710 1.402E-02 - -1.37 10 none 1.218 -0.011 -
Herbaceous 1.37 80 lin 0.790 1.039E-02 - -2.16 5 none 1.482 -0.024 -
Woody 2.00 66 lin 0.553 2.209E-02 - 2.48 5 none 0.445 0.029 -
Herb-C3-Annuals 1.27 65 lin 0.835 7.886E-03 - - 1 - - - -
Herb-C3-Perennials 1.89 10 lin 0.569 1.986E-02 - -1.66 2 none 1.390 -0.017 -
Herb-C3 1.41 75 lin 0.762 1.118E-02 - -2.22 3 none 1.491 -0.025 -
Herb-C4 -1.04 5 lin 1.056 -1.326E-03 - -17.38 2 none 3.092 -0.084 -
Herb-C3-Monocots 1.76 24 lin 0.632 1.823E-02 - -1.66 2 none 1.390 -0.017 -
Herb-C3-Dicots 1.24 51 lin 0.859 7.052E-03 - - 1 - - - -
Herb-C3-noN2Fixing 1.58 43 lin 0.701 1.498E-02 - -1.66 2 none 1.390 -0.017 -
Herb-C3-N2Fixing 1.08 32 lin 0.947 2.653E-03 - - 1 - - - -
Woody 1.88 50 lin 0.587 2.026E-02 - - 3 - - - -
Woody-Deciduous 2.40 41 lin 0.454 2.749E-02 - - 3 - - - -
Woody-Evergreen 1.45 9 lin 0.791 1.281E-02 - - 0 - - - -
Woody-Angiosperms 2.01 64 lin 0.549 2.224E-02 - 2.48 5 none 0.445 0.029 -
Woody-Gymnosperms 1.31 2 lin 2.428 -1.103E-01 - - 0 none - - -
Woody-noN2Fixing 1.88 50 lin 0.587 2.026E-02 - - 3 none - - -
Woody-N2Fixing - 0 - - - - - 0 none - - -

Water availability Group PI n Regform a b c PI n Regform a b c
All species 1.14 106 none 0.871 0.129 - 1.01 32 none 0.991 0.009 -
Herbaceous 1.13 56 none 0.877 0.123 - 1.01 20 none 0.991 0.009 -
Woody 1.32 48 none 0.744 0.256 - 1.04 12 none 0.962 0.038 -
Herb-C3-Annuals 1.14 32 none 0.871 0.129 - 1.01 14 none 0.991 0.009 -
Herb-C3-Perennials -1.38 20 none 1.398 -0.398 - 1.05 4 none 1.060 0.053 -
Herb-C3 1.09 52 none 0.915 0.085 - -1.05 18 none 1.054 -0.054 -
Herb-C4 1.25 4 none 0.786 0.214 - 1.06 2 none 0.941 0.059 -
Herb-C3-Monocots 1.09 25 none 0.915 0.085 - -1.34 6 none 1.353 -0.353 -
Herb-C3-Dicots 1.13 27 none 0.877 0.123 - 1.12 12 none 0.886 0.114 -
Herb-C3-noN2Fixing 1.14 45 none 0.871 0.129 - -1.14 16 none 1.143 -0.143 -
Herb-C3-N2Fixing -1.53 7 none 1.562 -0.562 - 1.12 2 none 0.886 0.114 -
Woody 1.38 43 none 0.710 0.290 - 1.21 7 none 0.818 0.182 -
Woody-Deciduous -1.03 19 none 1.033 -0.033 - 1.25 5 none 0.789 0.211 -
Woody-Evergreen 1.41 22 none 0.696 0.304 - - 0 - - - -
Woody-Angiosperms 1.32 46 none 0.744 0.256 - 1.04 12 none 0.962 0.038 -
Woody-Gymnosperms -1.13 2 none 1.134 -0.134 - - 0 - - - -
Woody-noN2Fixing 1.41 38 none 0.696 0.304 - 1.21 4 none 0.818 0.182 -
Woody-N2Fixing -1.59 5 none 1.626 -0.626 - 1.04 3 none 0.962 0.038 -
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