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Abstract: In this study, we investigate electromagnetic and Dirac test field perturbations
of a charged regular black hole arising from quantum gravity effects, commonly referred
to as the Frolov black hole, a regular (nonsingular) black hole solution. We derive the
master wave equations for massless electromagnetic and Dirac perturbations and solve
them using the standard Wentzel-Kramers-Brillouin (WKB) method along with Padé
Averaging. From these solutions, we extract the dominant and overtone quasinormal
mode (QNM) frequencies along with the associated grey-body factors, highlighting the
deviations introduced by quantum gravity corrections compared to the classical case of
Reissner–Nordström black hole. Furthermore, we analyze the Unruh-Verlinde temperature
of this spacetime, providing quantitative estimates of how quantum gravity effects influence
both quasinormal ringing and particle emission in nonsingular black hole models.
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1. Introduction

The General Theory of Relativity (GR), our modern understanding of gravitation, has enjoyed remarkable
success for over a century, passing numerous experimental and observational tests with great precision. Nevertheless,
under certain extreme conditions, GR predicts its own breakdown. For instance, the celebrated singularity theorems
of R. Penrose and S.W. Hawking [1,2] demonstrate that spacetime singularities are inevitable within black holes. In
these regimes, quantum effects cannot be neglected, signaling that classical GR is no longer sufficient. It is also
known that at high densities of matter, quantum effects become important, and the matter pressure may be able to
counterbalance gravitational collapse, and it seems reasonable that when matter reaches Planck density, which is the
onset of quantum gravity effects, and there would be enough pressure as to prevent the formation of a singularity.
This situation has motivated the derivation and study of non-singular or regular black holes.

The question of how general relativity might avoid the formation of spacetime singularities is both long
standing and of more than purely formal interest. In 1968, Bardeen presented the first example of a regular black
hole—a spacetime with an event horizon but free of singularities, while still obeying the weak energy conditions [3].
Although conceptually important, Bardeen’s solution lacked for many years a clear physical interpretation because it
is not a vacuum solution of Einstein’s equations. To obtain it, one must either introduce some form of external matter
or consider modifications to gravity. In fact, Bardeen achieved this geometry by positing an ad hoc stress–energy
tensor that is finite everywhere, falls off at infinity, and satisfies the weak energy conditions. Bardeen’s construction
inspired numerous subsequent models exploring the mechanisms by which singularities might be avoided. Several
alternative regular black hole solutions have since appeared in the literature, particularly within theories where
gravity couples to nonlinear electrodynamics [4,5]. Notably, Dymnikova proposed a black hole whose interior is
described by a de Sitter core smoothly matching a Schwarzschild exterior [6]. Further developments and variations
of regular black-hole spacetimes have continued to be investigated in many works [7–10].

Regular black holes can be broadly grouped according to the geometry near their center: those featuring a de
Sitter (dS) core and those with a Minkowski-like core. Well-known dS-core solutions include the Bardeen black
hole, the Hayward black hole [11], and the Frolov black hole [12]. In contrast, regular black holes with a Minkowskian
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interior are typically described using exponential-type potentials, as discussed in Refs. [13–21].
V. L. Frolov constructed several metrics under a set of intuitive assumptions aimed at finding non-singular black-

hole geometries without altering general relativity itself. Extending his analysis to the charged case, Frolov introduced
variants such as a modified Hayward solution. In his framework, a characteristic length parameter α0 (denoted l in the
original paper) is tied to a critical energy scale µ through α0 = µ−1. Thus, alongside the black hole mass, the parameter
α0 sets the scale at which departures from Einstein’s equations become important. More precisely, this scale is reached
when α−2

0 is comparable to the curvature scalarR. Frolov also argued that one may continue to employ the usual metric
tensor gµν , while acknowledging a separate quantum-gravity length λ, significantly smaller than α0, where such effects
dominate. These considerations ensure that the resulting spacetime remains regular even at r = 0.

In this work, our goal is to investigate some of the fundamental observable characteristics of quantum-corrected
black holes. One of the most important such characteristics is the spectrum of quasinormal modes, these are the
damped oscillations that dominate the ringdown phase of a perturbed spacetime at intermediate to late times [22,23].
These frequencies are often referred to as the “fingerprints” of a black hole, as they are independent of the specific
perturbation that excites them and depend entirely on the underlying geometry of the spacetime. Another essential
quantity we study is the set of grey-body factors, which determine the fraction of Hawking radiation that can tunnel
through the black hole’s effective potential barrier and propagate to infinity, which might be detected by a distant
observer [24–26]. We also study the Unruh temperature, which arises due to the response of an accelerating observer
in a vacuum. An observer undergoing constant acceleration perceives the vacuum as a thermal bath of particles with
a characteristic temperature and in the context of black holes, the Unruh temperature serves as a local notion of
temperature near the horizon proportional to their acceleration [27,28]. These quantities provide critical information
about the near-horizon geometry and the nature of quantum corrections. Besides, from an observational perspective,
most current experimental data arise from the detection of gravitational waves emitted by coalescing black holes
and from electromagnetic observations of their surrounding environments. However, both approaches still leave a
wide parameter space open for the interpretation of black hole near-horizon physics, as these regimes remain poorly
constrained and subject to significant uncertainties.

The stability of Frolov black holes has previously been investigated by computing QNMs under scalar
perturbations [29]. In Ref. [30], the authors investigated the properties of QNMs for a probe massless scalar
field in the background of Frolov BH in the eikonal limit. In this work, we aim to extend this analysis to
electromagnetic and Dirac field perturbations, examining both the fundamental quasinormal mode and the first
overtone during the ringdown phase. In addition, we compute the associated greybody factors, which quantify
the transmission probability of Hawking radiation through the black hole’s effective potential barrier and directly
influence its emission spectrum. Such a comprehensive analysis provides deeper insights into the near-horizon
geometry and potential quantum gravity effects encoded in the QNM spectrum. More importantly, the possibility of
detecting quasinormal ringing signatures from black holes has been proposed in the context of future space-based
gravitational-wave observatories, such as LISA, which will be capable of probing these frequencies with high
precision as discussed in in Refs. [31,32]. Consequently, our results may offer a window into testing quantum
gravity corrections to black hole spacetimes through gravitational wave observations.

The paper has been organized in the following manner: In Section 2, we describe the Frolov Black Hole metric,
in Section 3, we work out the perturbation equations for the electromagnetic and Dirac field cases, in Section 4 we
describe the WKB method and compute the QNM frequencies for the given perturbations in Tables 1–8. In Section 5
we compute the grey-body factors associated with the Frolov BH and in Section 6 we work out the Unruh-Verlinde
temperature and compare how quantum corrections modify the standard results.

Table 1. Quasinormal mode frequencies ω for the massless electromagnetic field perturbations for the fundamental
mode (n = 0), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0.
We set M = 1 and l = 2.

q α0 6th Order WKB (Padé), (n = 0) 8th Order WKB (Padé), (n = 0)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.457595 −0.0950048i 0.457594 −0.0950038i

0.2 0.0 0.460828 −0.0952257i 0.460828 −0.0952258i

0.2 0.1 0.461245 −0.0950674i 0.461245 −0.0950674i

0.4 0.2 0.473106 −0.0950677i 0.473106 −0.0950678i

0.6 0.3 0.496867 −0.0939648i 0.496867 −0.093965i

0.8 0.4 0.54452 −0.084335i 0.544521 −0.0843349i
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Table 2. Quasinormal mode frequencies ω for the massless electromagnetic field perturbations for the first overtone
(n = 1), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0.
We set M = 1 and l = 2.

q α0 6th Order WKB (Padé), (n = 1) 8th Order WKB (Padé), (n = 1)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.436533 −0.290727i 0.436522 −0.290724i

0.2 0.0 0.439932 −0.291343i 0.439932 −0.291343i

0.2 0.1 0.440478 −0.290827i 0.440477 −0.290827i

0.4 0.2 0.453322 −0.290489i 0.453324 −0.290491i

0.6 0.3 0.478945 −0.28627i 0.478945 −0.28627i

0.8 0.4 0.521604 −0.256562i 0.521576 −0.256573i

Table 3. Quasinormal mode frequencies ω for the massless electromagnetic field perturbations for the fundamental
mode (n = 0), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and
α0. We set M = 1 and l = 3.

q α0 6th Order WKB (Padé), (n = 0) 8th Order WKB (Padé), (n = 0)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.656899 −0.0956163i 0.656899 −0.0956162i

0.2 0.0 0.661439 −0.0958322i 0.661439 −0.0958324i

0.2 0.1 0.66199 −0.0956758i 0.66199 −0.0956758i

0.4 0.2 0.678516 −0.0956705i 0.678516 −0.0956705i

0.6 0.3 0.711544 −0.0945891i 0.711544 −0.0945891i

0.8 0.4 0.778514 −0.0852404i 0.778515 −0.0852402i

Table 4. Quasinormal mode frequencies ω for the massless electromagnetic field perturbations for the first overtone
(n = 1), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0.
We set M = 1 and l = 3.

q α0 6th Order WKB (Padé), (n = 1) 8th Order WKB (Padé), (n = 1)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.641736 −0.289731i 0.641735 −0.28973i

0.2 0.0 0.646396 −0.290355i 0.646396 −0.290354i

0.2 0.1 0.647034 −0.289862i 0.647034 −0.289862i

0.4 0.2 0.664249 −0.289673i 0.664249 −0.289674i

0.6 0.3 0.698578 −0.285969i 0.698578 −0.285969i

0.8 0.4 0.762154 −0.257542i 0.762149 −0.257543i

Table 5. Quasinormal mode frequencies ω for the massless Dirac field perturbations for the fundamental mode
(n = 0), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0.
We set M = 1 and |k| = 2.

q α0 6th Order WKB (Padé), (n = 0) 8th Order WKB (Padé), (n = 0)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.380054 −0.0963853i 0.380051 −0.0963904i

0.2 0.0 0.38268 −0.0965934i 0.382675 −0.0966004i

0.2 0.1 0.382981 −0.0964316i 0.382977 −0.0964365i

0.4 0.2 0.392473 −0.096383i 0.392468 −0.0963857i

0.6 0.3 0.411318 −0.0951834i 0.411291 −0.095181i

0.8 0.4 0.447367 −0.0859194i 0.447366 −0.0859201i
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Table 6. Quasinormal mode frequencies ω for the massless Dirac field perturbations for the first overtone (n = 1),
obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0. We set
M = 1 and |k| = 2.

q α0 6th Order WKB (Padé), (n = 1) 8th Order WKB (Padé), (n = 1)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.355778 −0.297269i 0.355769 −0.297303i

0.2 0.0 0.35858 −0.297826i 0.358571 −0.297842i

0.2 0.1 0.359029 −0.297324i 0.359024 −0.297324i

0.4 0.2 0.369693 −0.29662i 0.369687 −0.296612i

0.6 0.3 0.390698 −0.29152i 0.390255 −0.29184i

0.8 0.4 0.41957 −0.262825i 0.419348 −0.263346i

Table 7. Quasinormal mode frequencies ω for the massless Dirac field perturbations for the fundamental mode
(n = 0), obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0.
We set M = 1 and |k| = 3.

q α0 6th Order WKB (Padé), (n = 0) 8th Order WKB (Padé), (n = 0)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.574094 −0.0963048i 0.574094 −0.0963048i

0.2 0.0 0.578015 −0.0965155i 0.578015 −0.0965156i

0.2 0.1 0.578467 −0.0963577i 0.578467 −0.0963577i

0.4 0.2 0.592637 −0.0963316i 0.592636 −0.0963317i

0.6 0.3 0.620832 −0.0952188i 0.620831 −0.095218i

0.8 0.4 0.676997 −0.086072i 0.676996 −0.0860717i

Table 8. Quasinormal mode frequencies ω for the massless Dirac field perturbations for the first overtone (n = 1),
obtained using the 6th and 8th order WKB methods with Padé Averaging for various values of q and α0. We set
M = 1 and |k| = 3.

q α0 6th Order WKB (Padé), (n = 1) 8th Order WKB (Padé), (n = 1)

Re(ω) Im(ω) Re(ω) Im(ω)

0.0 0.0 0.557015 −0.292715i 0.557015 −0.292715i

0.2 0.0 0.56107 −0.293314i 0.561071 −0.293315i

0.2 0.1 0.561614 −0.292812i 0.561614 −0.292813i

0.4 0.2 0.576534 −0.292511i 0.576534 −0.29251i

0.6 0.3 0.606124 −0.288564i 0.606113 −0.288563i

0.8 0.4 0.658189 −0.260521i 0.658168 −0.260649i

2. The Frolov Black Hole Metric

A Frolov black hole can be viewed as a charged extension of the Hayward BH, first proposed in Ref. [12]. Its
spacetime geometry is given by

ds2 = −f(r) dt2 + dr2

f(r)
+ r2dθ2 + r2 sin2 θ dϕ2, (1)

where

f(r) = 1− (2Mr − q2)r2

r4 + (2Mr + q2)α2
0

, (2)

with M the black-hole mass. The central region of a Frolov BH behaves as if it were endowed with an effective
cosmological constant Λ = 3/α2

0, where α0 represents the Hubble length. This Hubble length functions as a form
of “universal hair” and is subject to the bound [11]:
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α0 ≤
√

16

27
M. (3)

Meeting this condition implies that quantum-gravity effects become significant. For convenience we setM = 1

in what follows, with no loss of generality.
The charge parameter q introduces a specific black-hole “hair” and satisfies 0 ≤ q ≤ 1. When q = 0, the

Frolov BH reduces to the Hayward solution, whereas setting α0 = 0 recovers the Reissner–Nordström (RN)
geometry. If both q = 0 and α0 = 0, the metric further simplifies to the Schwarzschild solution.

Figures 1–3 illustrate the metric function f(r) for various choices of q and α0. As an example, consider q = 0,
which corresponds to the Hayward BH. Starting from the Schwarzschild case and increasing α0, the Hayward
geometry develops a pair of horizons. Further increasing α0 up to the upper limit given by Equation (3) leads to the
formation of a black hole with double horizons.

α₀ = 0

α₀ = 0.2

α₀ = 0.4

α₀ = 0.6

α₀ = 0.76

2 4 6 8 10
r

-0.5

0.5

1.0

f(r)

Figure 1. The metric function f(r) as a function of r for various values of α0 and with a fixed q = 0 Increasing α0

shifts the curve upward and modifies the horizon structure.

α₀ = 0

α₀ = 0.2

α₀ = 0.4

α₀ = 0.6

α₀ = 0.76

0.5 1.0 1.5 2.0 2.5 3.0
r

-2

2

4

6

f(r)

Figure 2. The metric function f(r) as a function of r for various values of α0 and with a fixed q = 0.5 Increasing
α0 shifts the curve upward and modifies the horizon structure.

https://doi.org/10.53941/ijgtp.2026.100001 5 of 19

https://doi.org/10.53941/ijgtp.2026.100001


Pathrikar Int. J. Gravit. Theor. Phys. 2026, 1(1), 1

α₀ = 0

α₀ = 0.2
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α₀ = 0.6
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Figure 3. The metric function f(r) as a function of r for various values of α0 and with a fixed q = 1 Increasing α0

shifts the curve upward and modifies the horizon structure.

3. Perturbation Equations

The parameter q appearing in the metric need not be interpreted uniquely as an electric charge; it may instead
be associated with an effective or topological charge arising from non-electromagnetic sources, which justifies
treating the electromagnetic field considered here as a test field. Therefore, we present below the field equations for
the test electromagnetic and Dirac field perturbations in the given curved background.

The general covariant equation for an electromagnetic field is given by

1√
−g

∂µ
(
Fρσg

ρνgσµ
√
−g
)
= 0, (4)

where Fρσ = ∂ρAσ−∂σAρ andAµ is the electromagnetic four-potential. It is worth noting that electromagnetic per-
turbations are treated in the test-field approximation, with backreaction effects and coupled gravito-electromagnetic
perturbations neglected.

The vector potential Aµ can be expanded in terms of four-dimensional vector spherical harmonics (see
Ref. [33]) as

Aµ(t, r, θ, ϕ) =
∑
ℓ,m




0

0

aℓm(t, r) sin−1 θ ∂ϕYℓm
−aℓm(t, r) sin θ ∂θYℓm

+


fℓm(t, r)Yℓm
hℓm(t, r)Yℓm
kℓm(t, r)∂θYℓm
kℓm(t, r)∂ϕYℓm


 , (5)

where ℓ is the angular quantum number and m is the azimuthal number. The first column has parity (−1)ℓ+1 and
the second has parity (−1)ℓ.

After separation of variables, the perturbation equations reduce to a Schrödinger-like wave equation of the form

d2ΨEM

dr2∗
+
[
ω2 − VEM(r∗)

]
ΨEM = 0, (6)

where r∗ is the tortoise coordinate, which is defined as:

r∗ =

∫
dr

f(r)
, (7)

The effective potential for electromagnetic perturbations is given by

VEM(r) = f(r)
ℓ(ℓ+ 1)

r2
. (8)
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Similarly, we work out the field equations for the Dirac perturbations. For a general curved background
spacetime, the massless Dirac equation reads

γaeµa (∂µ + Γµ)Ψ = 0, (9)

where γa are the Dirac matrices, eµa is the inverse of the tetrad eaµ with gµν = ηabe
a
µe

b
ν , and ηab is the Minkowski

metric. The spin connections Γµ are given by

Γµ =
1

8

[
γa, γb

]
eνaebν;µ, ebν;µ = ∂µebν − Γα

µνebα (10)

To separate the Dirac equation, we choose the tetrad

eaµ = diag

(√
f,

1√
f
, r, r sin θ

)
. (11)

Substituting this tetrad into Equation (9), the Dirac equation becomes

γ0√
f

∂ψ

∂t
+
√
f γ1

(
∂

∂r
+

1

r
+

1

4f

df

dr

)
ψ

+
γ2

r

(
∂

∂θ
+

1

2
cot θ

)
ψ +

γ3

r sin θ

∂ψ

∂φ
= 0

(12)

Defining the rescaled perturbation ψ = f−1/4ϕ, the equation becomes

γ0√
f

∂ϕ

∂t
+
√
f γ1

(
∂

∂r
+

1

r

)
ϕ

+
γ2

r

(
∂

∂θ
+

1

2
cot θ

)
ϕ+

γ3

r sin θ

∂ϕ

∂φ
= 0

(13)

The Pauli matrices σi are defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (14)

Invoking the tortoise coordinate from Equation (7) and the ansatz for the Dirac spinor

ϕ(t, r, θ, φ) =

i
G(±)(r)

r
χ±
jm(θ, φ)

F (±)(r)

r
χ∓
jm(θ, φ)

 e−iωt, (15)

where χ±
jm are spinor spherical harmonics given by

χ+
jm =


√

j+m
2j Y

m−1/2
ℓ√

j−m
2j Y

m+1/2
ℓ

 , j = ℓ+
1

2
, (16)

and

χ−
jm =


√

j+1−m
2j+2 Y

m−1/2
ℓ

−
√

j+1+m
2j+2 Y

m+1/2
ℓ

 , j = ℓ− 1

2
. (17)

Here Y m±1/2
ℓ (θ, φ) are the usual spin-weighted spherical harmonics. We proceed with the separation of

variables by using a property of the spinor spherical harmonics. The angular operator appearing in Equation (13)
acts on χ±

jm as an eigenvalue operator. In particular, the spinor harmonics satisfy the following relation, which
allows the angular dependence of the Dirac equation to be separated:
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−i


∂

∂θ
+ 1

2 cot θ
1

sin θ

∂

∂φ

− 1

sin θ

∂

∂φ
−
(
∂

∂θ
+ 1

2 cot θ

)

(χ±

jm

χ∓
jm

)

= i

(
k± 0

0 k±

)(
χ±
jm

χ∓
jm

)
.

(18)

[(
0 −ω

ω 0

)(
F±

G±

)
− ∂

∂r∗

(
F±

G±

)

+
√
f

k±
r 0

0 −k±
r

(F±

G±

)]
= 0.

(19)

The cases (+) and (−) in the functions can be put together after some matching, and the equation can be
decoupled as

d2F

dr2∗
+
(
ω2 − V1

)
F = 0, (20)

d2G

dr2∗
+
(
ω2 − V2

)
G = 0. (21)

After separation of variables, the Dirac equation reduces to a Schrödinger-like wave equation of the form

d2Ψs

dr2∗
+
[
ω2 − Vs(r)

]
Ψs = 0, (22)

where r∗ is the tortoise coordinate and Vs(r) is the effective potential for the Dirac perturbation. In our case, the
potential takes the form

V±1/2(r) =
√
f
|k|
r2

(
|k|
√
f ± r

2

df

dr
∓ f

)
, (23)

where |k| = 1, 2, 3, . . . is the total angular momentum quantum number. As shown in Ref. [34], for a generic
spherically symmetric spacetime, the two potentials V+1/2(r) and V−1/2(r) are isospectral, i.e., they yield identical
quasinormal mode spectra.

In our analysis, we therefore work exclusively with V+1/2(r), which is also more convenient for semi-analytic
methods such as the WKB approximation.

4. WKB Method and QNM Frequencies

The computation of QNM frequencies reduces to solving an eigenvalue problem for the perturbation equation,
subject to well-defined boundary conditions. These conditions are chosen to represent a physical response of the
spacetime to a transient disturbance. We impose

ψ(r∗) ∼ e±iωr∗ , r∗ → ±∞, (24)

where r∗ is the tortoise coordinate. The choice e+iωr∗ at r∗ → +∞ corresponds to a purely outgoing wave at
spatial infinity, while e−iωr∗ at r∗ → −∞ represents a purely ingoing wave at the event horizon. Physically, these
conditions encode the idea that no radiation can emerge from behind the horizon and that all perturbations detected
far away are purely outgoing. They describe the characteristic “ringdown” stage of a black hole’s response, which is
the phase that follows after any external source of perturbation has ceased [35]. These boundary conditions select
a discrete set of complex frequencies ω = ωR + iωI , where ωR represents the oscillation frequency and ωI < 0

encodes the damping rate.
The evolution of the test field perturbations in the Frolov BH background is governed by the master equation,

d2ψ

dx2
+Q(x)ψ = 0, (25)
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where x is the tortoise coordinate r∗, and Q(x) is defined as

Q(x) = ω2 − Veff(r∗). (26)

The functional form of Q(x) influences the structure of the effective potential in the master equation; the
actual decay or growth of perturbations is determined only after specifying the appropriate initial data and boundary
conditions which are discussed above.

To compute the QNM frequencies and analyze the stability of the Frolov black hole under given test field
perturbations, we use the WKB approximation. This semi-analytic technique is particularly well-suited for potentials
with a barrier-like structure, as is the case here, where the Regge–Wheeler (RW) potential governs the evolution of
perturbations (see Figures 4–7).

-20 -10 10 20 30
r*

0.05

0.10

0.15

0.20

V(r)

Figure 4. The variation of V (r) with the tortoise coordinate r∗ for varying values of α0 = 0 (red), 0.2 (blue), 0.4
(green), 0.76 (purple) taking q = 0.2, l = 2, M = 1 for the massless electromagnetic perturbations.

-20 -10 10 20 30
r*

0.05

0.10

0.15

0.20

0.25

V(r)

Figure 5. The variation of V (r) with the tortoise coordinate r∗ for different values of q = 0 (red), 0.3 (blue), 0.6
(green) with fixed angular momentum number l = 2, and α0 = 0.2 for the massless electromagnetic perturbations,
taking M = 1.
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Figure 6. The variation of V (r) with the tortoise coordinate r∗ for the Dirac field perturbations with |k| = 2 and
varying α0 = 0 (red), 0.2 (blue), 0.4 (green), 0.5 (orange) and M = 1.
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0.15

0.20

V(r)

Figure 7. The variation of V (r) with the tortoise coordinate r∗ for the Dirac field perturbations with |k| = 2,
considering different values of q = 0 (red), 0.3 (blue), 0.6 (green), 0.8 (orange), and α = 0.2, M = 1.

The Schrödinger-like equation in curved spacetime was first solved using the WKB method by Schutz and
Will in 1985 [36]. Iyer and Will subsequently extended the formalism to third order in 1987 [37], significantly
improving its precision. Later, Konoplya extended the method up to sixth order [38]. While higher-order WKB
schemes generally improve accuracy, the WKB expansion itself is asymptotic and may fail to converge at higher
orders. To mitigate this limitation, one typically employs Padé approximants, following Matyjasek and Opala [39],
which enhance the convergence properties of the WKB series. It is worth noting that the results obtained at very high
orders, such as the thirteenth, sometimes deviate significantly from those at lower orders due to error amplification
and lack of convergence [40].

In this work, we focus primarily on the sixth and eighth-order WKB approximations, which strikes a good
balance between accuracy and computational simplicity. The general WKB expression for the frequencies can be
expressed as an expansion around the eikonal limit, as follows
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ω2 = V0 +A2(K
2) +A4(K

2) +A6(K
2) + · · ·

− iK
√
−2V ′′

0

(
1 +A3(K

2) +A5(K
2) +A7(K

2) + · · ·
) (27)

where the matching conditions for the QNM imply a quantization condition,

K = n+
1

2
, n = 0, 1, 2, . . . (28)

with n being the overtone number. Here, V0 denotes the value of the effective potential at its maximum, V ′′
0

represents the second derivative of the potential at this point with respect to the tortoise coordinate, and Ai for
i = 2, 3, 4, . . . signify the ith-order WKB correction terms.

To improve the accuracy of higher-order WKB calculations, we follow the Padé averaging procedure presented
in Ref. [41]. Within this approach, one introduces a WKB polynomial Pk(ε) by inserting a formal order-counting
parameter ε into the right-hand side of the WKB expansion, such that

Pk(ε) = V0 +A2(K
2) ε2 +A4(K

2) ε4 +A6(K
2) ε6 + · · ·

− iK
√
−2V ′′

0

(
ε+A3(K

2) ε3 +A5(K
2) ε5 + · · ·

)
,

(29)

where the polynomial order k coincides with the order of the WKB approximation, and a formal bookkeeping
parameter ε is introduced to organize the WKB expansion as an asymptotic series and to keep track of successive
orders in the WKB approximation. The squared quasinormal frequency is obtained by setting ε = 1,

ω2 = Pk(1). (30)

We consider a family of the Padé approximants P ñ
m̃(ε) for the polynomial Pk(ε) near ε = 0 with ñ+ m̃ = k,

P ñ
m̃(ε) =

Q0 +Q1ε+ · · ·+Qñε
ñ

R0 +R1ε+ · · ·+Rm̃εm̃
, (31)

so that P ñ
m̃(ε)− Pk(ε) = O(εk+1). The squared frequency is approximated by evaluating the rational function at

ε = 1,
ω2 ≈ P ñ

m̃(1).

Different choices of (ñ, m̃) therefore give a family of approximations {ωñ/m̃} at the same WKB order.
To form a reasonable estimate for order k we use the (ad-hoc) averaging recipe:

(1) Compute the set of Padé results ωñ/m̃ with ñ+ m̃ = k.
(2) Define the central value ω(c)

k (roughly ñ ≈ m̃) and the mean of central values ω(m)
k .

(3) Identify the r = ⌊(k + 1)/3⌋ pairs of closest values and compute the averages ω(1)
k , ω

(2)
k , . . ..

(4) Adopt as the order-k estimate ωk the mean of those r closest values and estimate the error by the sample
standard deviation Sk of the same set.

This procedure typically improves the accuracy compared to the non-Padé WKB result and provides an
internal error estimate via. For details, explicit formulas, examples and caveats (including cases where some Padé
approximants produce outliers and when extra turning points spoil the WKB applicability) see [41].

However, the presence of extremely large higher-order terms can lead to numerical instabilities, as observed for
the twelfth-order approximation. Our analysis shows that for the electromagnetic and the Dirac perturbation case, we
have employed the sixth-order WKB approximation. To ensure numerical consistency, we have also cross-checked
our results with higher-order values as well as the Padé Averaged results [42], specifically the eighth-order for the
electromagnetic, and for the Dirac case. The outcomes from different orders are found to be in good agreement
across all the considered values of the parameters in the metric. In this work, we implement the WKB formalism
using the publicly available numerical package developed by R.A. Konoplya [43].

As we can see, Table 1 lists the fundamental-mode QNMs for the massless electromagnetic perturbation
(l = 2) computed with 6th- and 8th-order WKB with Padé averaging. Both WKB orders produce very similar values
for Re(ω) and Im(ω), indicating excellent agreement between the two orders of the method for these parameters.
As the charge q or the BH parameter α0 is increased, the real part of the frequency shifts upward and the modes
oscillate faster while the magnitude of the imaginary part decreases, i.e., modes begin to damp more slowly, and
thus the damping times lengthen. The table therefore demonstrates that introducing charge and parameter stiffen the
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effective potential and prolong the decay time of the fundamental electromagnetic mode.
Similarly, Table 2 reports the first overtone (n = 1) for the electromagnetic field at l = 2. The overtone

behaves qualitatively like the fundamental mode with respect to q and α0 (increasing Re(ω) and decreasing the
absolute damping), but it displays the expected overtone characteristics: relative to the fundamental the overtone
is more strongly damped (more negative Im(ω)) and shows slightly greater sensitivity to the WKB order. This
increased sensitivity for n = 1 is a known property of WKB approaches and is visible here as marginally larger
differences between the 6th- and 8th-order Padé results compared with the fundamental.

In Table 3 we compute the fundamental electromagnetic QNMs for l = 3. Compared with the l = 2

fundamental (Table 1), higher multipole index results in larger Re(ω) and a larger magnitude of Im(ω), consistent
with a steeper and narrower effective potential at larger l. The dependence on q and α0 follows the same pattern
seen before: raising either parameter increases the oscillation frequency and reduces the damping rate. Agreement
between the 6th- and 8th-order Padé-averaged WKB remains close, supporting numerical stability for these higher
multipoles in the parameter ranges shown. The first overtone for l = 3 in Table 4 again shows the overtone features,
it is more strongly damped and typically has a somewhat different real and imaginary parts compared to n = 0.
Parameter trends with respect to q and α0 remain consistent with the the analysis of the previous tables.

In Table 5 we list fundamental modes for massless Dirac perturbations with |k| = 2. Qualitatively the Dirac
spectrum mirrors the electromagnetic case: increasing q or α0 pushes Re(ω) upward and decreases the damping
rate Im(ω) in magnitude, i.e. oscillations become faster and longer-lived as the parameters increase. The 6th- and
8th-order WKB–Padé results are in close agreement for the fundamental Dirac mode, indicating that the chosen
WKB orders are sufficiently accurate for these modes and parameter ranges, and similarly, we have Table 6 where
the first overtone of the Dirac field at |k| = 2 shows that overtone pattern, i.e, the real part of the frequencies is
slightly lower than n = 0 case. The parameter dependence is consistent with the other tables; both q and α0 reduce
damping magnitude and increase oscillation frequency. Practically, this means Dirac overtones also become longer
lived and somewhat higher in frequency with increased charge or the BH parameter.

Finally we have the Table 7 for Dirac perturbations at |k| = 3 (fundamental) both the real and imaginary
parts are larger in magnitude compared to |k| = 2, consistent with the multipole hierarchy: larger angular index
corresponds to a higher frequency, faster decaying response. The monotone trends with q and α0 persist here as well.
The 6th- and 8th-order WKB–Padé columns remain in good agreement, reinforcing confidence in the computed
fundamental-mode values at these multipoles.

The first overtone for |k| = 3 in Table 8 exhibits the standard behavior relative to the fundamental: increased
damping and a characteristic shift of the real part consistent with overtone structure. Here it is observed that
increasing q or α0 increases the oscillation frequency and reduces the damping rate in magnitude. Differences
between 6th- and 8th-order results are slightly larger here than for fundamentals, but do not change the qualitative
conclusions drawn from the table.

Across all Tables, the QNM spectra exhibit a clear and consistent pattern: the real part of the frequency Re(ω)
increases with both the electric charge q and the regularization parameter α0, while the imaginary part Im(ω)

becomes less negative, indicating slower damping and longer-lived perturbations. Increasing the angular index
(l or |k|) raises both the oscillation frequency and the damping magnitude. The close agreement between the 6th-
and 8th-order WKB–Padé results for the fundamental modes confirms the reliability and numerical stability of the
method, while the expected mild sensitivity for higher overtones remains within acceptable limits. These results
suggest that the inclusion of charge and parameter effects modifies the effective potential of the underlying BH
geometry, producing higher frequencies and longer lived oscillations.

It is important to note that in the present analysis, we have restricted our computations to the modes satisfying
n < l (or n < |k| for Dirac perturbations) and have not considered the special case l = n = 0, since the WKB
method is applicable only when l ≥ n. Furthermore, for higher overtone numbers (n ≥ l), the WKB method
progressively loses accuracy due to the breakdown of the eikonal approximation and the increasing influence of
the inner potential well at smaller radii. In such regimes, more robust numerical approaches such as time-domain
integration, continued-fraction (Leaver) methods, or the asymptotic iteration method are required to obtain reliable
QNM frequencies. We leave this direction of research for future investigations.

5. Grey-Body Factors

Grey-body factors quantify the fraction of the initial Hawking radiation that successfully transmits through the
effective potential barrier surrounding the black hole, rather than being reflected back toward the event horizon.
To compute this quantity, we apply Hawking’s semiclassical formula, now modified with a grey-body factor, to
estimate the radiation flux that reaches a distant observer.
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As discussed in the literature, the contribution of gravitons to the total radiation flux is negligible, for instance,
in the Schwarzschild case, gravitons account for less than 2% of the emitted radiation [44]. Consequently, grey-body
factors for test fields are sufficient to characterize the radiation spectrum. Moreover, these factors can be more
influential than the Hawking temperature itself in determining the intensity of the observed flux [45].

To compute the grey-body factors, we analyze the wave equation under scattering boundary conditions that
allow for an incident wave from spatial infinity. Owing to the symmetry of the scattering problem, this is equivalent
to studying a wave incident from the horizon. The appropriate boundary conditions for the field Ψ(r∗) are given by

Ψ(r∗) =

e
−iωr∗ +Reiωr∗ , r∗ → +∞,

T e−iωr∗ , r∗ → −∞,
(32)

where R and T are the reflection and transmission coefficients, respectively.
Because the effective potential has a single barrier-like peak and falls off monotonically toward both infinities,

the WKB approximation [38] can be reliably applied to compute R and T . Since ω2 is real, where R and T are
the complex reflection and transmission amplitudes, respectively. The normalization condition ensuring energy
conservation is

|T |2 + |R|2 = 1. (33)

From the reflection coefficient, the transmission coefficient for each multipole number ℓ can be obtained as

|Γℓ|2 = 1− |Rℓ|2 = |Tℓ|2, (34)

where Γℓ represents the grey-body factor.
In our analysis, we employ the higher-order WKB formula [39,41] to obtain a precise estimate of the reflection

and transmission coefficients. This approach, however, becomes unreliable at very low frequencies, where almost
all of the wave is reflected and the contribution to the total energy flux is negligible. In this regime, we follow the
standard approach of extrapolating the WKB result to small ω.

According to Refs. [37,38], the reflection coefficient takes the form

|R| =
(
1 + e−2iπK

)−1/2
(35)

where K is numerically determined from Equation (27).
Here, we would like to emphasize that in the QNM problem, the boundary conditions of purely ingoing waves

at the event horizon and purely outgoing waves at spatial infinity lead to a discrete set of complex frequencies
through a quantization condition. In contrast, the computation of grey-body factors corresponds to a scattering
problem with real frequencies, where incident, reflected, and transmitted waves are allowed. In this case, the same
WKB expansion evaluated near the maximum of the effective potential determines the parameter K in Equation (35).

We employ the 6th order approximation for calculating grey-body factors without using Padé resummation,
because it is not straightforward for grey-body factors, unlike the case of QNMs. The grey-body factors shown
in Figures 8 and 9 represent the transmission probability Γ(ω) for radiation to tunnel through the curvature-
induced potential barrier of the Frolov black hole and reach spatial infinity. In both figures, the curves display the
characteristic step-like profile of barrier scattering:

Γ(ω) ≈ 0 (ω ≪ V 1/2
max), Γ(ω) → 1 (ω ≫ V 1/2

max),

showing that low-frequency waves are strongly reflected, while high-frequency waves penetrate the barrier almost freely.
A clear multipole hierarchy is visible in both figures. As ℓ (electromagnetic case) or |k| (Dirac case) increases, the

transmission curves shift toward higher frequencies. Higher multipole moment strengthens the centrifugal contribution
to the effective potential, raising and widening the barrier and thus suppressing tunneling at a given frequency.

When comparing the two figures, the Dirac field exhibits a transmission curve that is slightly shifted toward
lower frequencies relative to the electromagnetic case. In particular, for comparable multipole indices, the Dirac
grey-body factors rise from near zero and approach unity at smaller values of ω. This behavior originates from the
spin-dependent structure of the effective potentials: while the electromagnetic potential is directly proportional
to f(r)ℓ(ℓ+ 1)/r2, the Dirac potential contains additional terms involving derivatives of the metric function. As
seen from the effective potential profiles discussed earlier, the peak of the Dirac potential is generally lower than
that of the electromagnetic potential for similar angular indices as shown in Figures 4–7. A lower barrier height
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allows fermionic waves to tunnel through the spacetime more easily, so the transition from reflection-dominated
to transmission-dominated regimes occurs at smaller frequencies. Nevertheless, both fields preserve the same
qualitative multipole hierarchy and approach the universal high-frequency limit Γ → 1, confirming that ultraviolet
modes are largely insensitive to both spin and the internal regular core structure.
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0.8

1.0

Γ(ω)

Figure 8. Grey-body factors of the massless electromagnetic field as a function of frequency for the Frolov black
hole with l = 2, 3, 4, 5 (from left to right) and α0 = 0.4 and q = 0.2.
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Figure 9. Grey-body factors of the Dirac field as a function of frequency for the Frolov black hole with |k| = 2, 3, 4, 5

(from left to right) and α = 0.4 and q = 0.2.

6. Unruh Temperature

In this section, we examine the Unruh temperature associated with the spacetime under consideration. This
temperature reflects the surface gravity or, equivalently, the proper acceleration felt by an observer stationed at a
fixed radial distance from the black hole. Such a property has also been explored in various alternative theories
of gravity. The Unruh temperature can be expressed in terms of the red-shifted surface gravity, or more generally
through covariant quantities involving the gravitational potential and the timelike Killing vector field. Previously,
the Unruh temperature has been investigated in various setups [46,47].

Let ϕ denote the gravitational potential and ξα a timelike Killing vector. The potential is defined as

ϕ =
1

2
ln
[
−gαβ ξαξβ

]
. (36)

The quantity

eϕ =
√
− gαβ ξαξβ (37)

is the redshift factor associated with the static Killing field. It measures how the proper time of a stationary observer
at radius r relates to the coordinate time measured by an observer at spatial infinity. In an asymptotically flat
spacetime, this factor approaches unity as r → ∞, ensuring the standard normalization of the Killing vector.
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The background geometry is assumed to be a static solution that admits a global timelike Killing vector ξα.
For the static and spherically symmetric spacetime considered here, we choose the timelike Killing vector associated
with time translations, ξµ = (∂t)

µ. Its covariant components are given by ξµ = gµνξ
ν = (−f(r), 0, 0, 0), where

f(r) is the metric function. This Killing vector is normalized such that ξµξµ → −1 at spatial infinity.
The local acceleration then follows from

aα = −gαβ∇βϕ, (38)

where
ϕ(r) =

1

2
ln f(r) (39)

The corresponding Unruh temperature is

TUnruh =
h̄

2π
eϕ nα∇αϕ, (40)

Here nα is a unit vector that is everywhere orthogonal to the timelike Killing vector ξα. This equation can be
rewritten as [48]

TUnruh =
h̄

2π
eϕ
√
gαβ ∂αϕ∂βϕ (41)

For a static, spherically symmetric black hole with metric function f(r), a static observer at radius r measures
by setting h̄ = 1, and M = 1 this becomes,

T (r) =
r
(
q4α2 +Mr2

(
r3 − 4Mα2

)
− q2

(
r4 + 2Mrα2

))
2π (r4 + q2α2 + 2Mrα2)

2 (42)

Figures 10 and 11 depict the variation of the Unruh–Verlinde temperature T (r) with respect to the radial
coordinate r for the Frolov black hole. In both cases, the temperature exhibits a monotonically decreasing behavior
with increasing r, approaching zero asymptotically. This trend is consistent with the expectation that the effective
temperature perceived by a static observer decreases with distance from the gravitational source due to the redshift
of local acceleration.

In Figure 10, the BH parameter α0 is varied while keeping the charge fixed. Similar to the effect of q, increasing
α0 also lowers the Unruh temperature profile. It can be seen that a larger α0 weakens the spacetime curvature near
the core, reducing the surface gravity at the horizon and hence the temperature. This behavior indicates that the
inclusion of parameter effects leads to a more stable and colder black hole configuration.
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Figure 10. Unruh temperature as a function of the radial coordinate for M = 1 and fixed q = 0.2 with α0 = 0

(blue), α0 = 0.2 (green), α0 = 0.4 (orange), and α0 = 0.6 (red).
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In Figure 11, the charge parameter q is varied while keeping the regularization parameter α0 = 0.2 fixed.
It can be seen that increasing q leads to a systematic decrease in the Unruh temperature across the entire radial
domain. The presence of electric charge effectively weakens the gravitational attraction experienced by a static
observer, resulting in a reduced proper acceleration and, consequently, a lower Unruh temperature. The curves
clearly demonstrate that the black hole becomes thermodynamically “cooler” as the charge grows, approaching the
extremal limit where T → 0.
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Figure 11. Unruh temperature as a function of the radial coordinate for M = 1 and fixed α0 = 0.2 with q = 0

(blue), q = 0.2 (green), q = 0.4 (orange) and q = 0.6 (red).

Both parameters q and α0 act to suppress the Unruh–Verlinde temperature. The temperature profiles confirm
that the Frolov black hole smoothly interpolates between the classical Schwarzschild case (q = 0, α0 = 0) and a
regularized, cooler configuration where parameter corrections and charge effects dominate.

7. Discussion and Conclusions

We have carried out a detailed study of the quasinormal modes (including the first overtone), grey-body factors,
and Unruh temperature for test electromagnetic and Dirac fields propagating in the background of a static charged
regular black hole, also known as the Frolov BH, arising in Quantum Gravity scenarios. Using the sixth-order
WKB approximation for the electromagnetic field and for the Dirac field we cross-checked with higher-order
approximations and Padé Averaging for numerical consistency and derived and solved the corresponding wave
equations for both cases.

The QNM spectra of the Frolov black hole, obtained in this case, reveal distinct features that set this regular-
ized geometry apart from the classical Schwarzschild and Reissner–Nordström (RN) spacetimes. For all modes
considered, the real part of the frequency Re(ω) increases with both the electric charge q and the BH parameter α0,
indicating that the inclusion of these parameters strengthens the effective potential barrier and raises the oscillation
frequency of perturbations. Simultaneously, the magnitude of the imaginary part |Im(ω)| decreases, showing that
damping becomes weaker and the perturbations persist longer.

The excellent agreement between the sixth and eighth-order WKB–Padé averaged results confirms the reliability
of the computed spectra for both fundamental and overtone modes. The standard multipole and overtone hierarchies
are preserved—higher l (or |k|) leads to larger Re(ω) and stronger damping, while higher n corresponds to faster
decay which shows that the fundamental structure of the perturbative response remains intact. One can infer clearly
from the tables how the spectra differs from the standard results of the Schwarzschild (q = 0 and α0 = 0) as
well as the Reissner-Nordström case (α0 = 0). These findings establish that the Frolov spacetime suggest that
its ringdown signature could provide a distinct observational imprint of quantum-gravity inspired regular black
holes. The grey-body factors, which determine the transmission probability of Hawking radiation through the effective
potential barrier, are also affected by the corrections. We find that quantum effects slightly suppress the transmission
coefficients at lower frequencies, effectively modifying the spectrum of radiation that reaches a distant observer. This
suppression reflects how the modified spacetime geometry alters the scattering properties of the black hole potential.
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In addition, our results indicate that the Unruh temperature decreases monotonically with increasing α0 while
fixing the charge q and vice versa, suggesting a direct influence of these corrections on the thermal properties of the
horizon. These findings highlight that while QNM ringing remains a robust observable for probing strong-field
regimes and constraining possible quantum gravity effects. Our analysis opens up several avenues for future
investigation. It would be particularly interesting to extend this work by studying the gravitational perturbations in
greater detail, as such modes are directly linked to the quasinormal spectra observable in future gravitational wave
detections. A comprehensive analysis incorporating both axial and polar perturbations would help to establish the
complete dynamical stability of the Frolov black hole spacetime. Furthermore, it would be valuable to explore the
Hawking radiation spectra associated with this geometry, as well as to investigate its implications in the context of
modified theories of gravity and quantum gravitational corrections.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The author would like to thank R. A. Konoplya for stimulating discussions and the anonymous referees for
their valuable comments, which significantly improved the manuscript. The author also expresses his gratitude to
Pankaj S. Joshi and Parth Bambhaniya for giving the opportunity to visit ICSC, Ahmedabad University.

Conflicts of Interest

The author declares no conflict of interest.

Use of AI and AI-Assisted Technologies

No AI tools were utilized for this paper.

References

1. Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57. https://doi.org/10.1103/
PhysRevLett.14.57.

2. Hawking, S.W. Singularities in the Universe. Phys. Rev. Lett. 1966, 17, 444. https://doi.org/10.1103/PhysRevLett.17.444.
3. Frolov, V.P. Remarks on non-singular black holes. EPJ Web Conf. 2018, 168, 01001. https://doi.org/10.1051/epjconf/

201816801001.
4. Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149–152.

https://doi.org/10.1016/S0370-2693(00)01125-4.
5. Dymnikova, I. Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to

general relativity. Class. Quantum Gravity 2004, 21, 18. https://doi.org/10.1088/0264-9381/21/18/009.
6. Dymnikova, I. Vacuum nonsingular black hole. Gen. Relativ. Gravit. 1992, 24, 235–242. https://doi.org/10.1007/BF00760226.
7. Ansoldi, S. Spherical black holes with regular center: a review of existing models including a recent realization with

Gaussian sources. arXiv 2008, arXiv:0802.0330.
8. Ovalle, J. Schwarzschild black hole revisited: Before the complete collapse. Phys. Rev. D 2004, 109, 104032. https://doi.org/

10.1103/PhysRevD.109.104032.
9. Ovalle, J. Interior Dynamics of Regular Schwarzschild Black Holes. arXiv 2025, arXiv:2509.00816.

10. Lemos, J.P.S.; Zanchin, V.T. Regular black holes: Electrically charged solutions, Reissner-Nordström outside a de Sitter
core. Phys. Rev. D 2011, 83, 124005. https://doi.org/10.1103/PhysRevD.83.124005.

11. Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. https://doi.org
/10.1103/PhysRevLett.96.031103.

https://doi.org/10.53941/ijgtp.2026.100001 17 of 19

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.17.444
https://doi.org/10.1051/epjconf/201816801001
https://doi.org/10.1051/epjconf/201816801001
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1088/0264-9381/21/18/009
https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevD.109.104032
https://doi.org/10.1103/PhysRevD.109.104032
https://doi.org/10.1103/PhysRevD.83.124005
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.53941/ijgtp.2026.100001


Pathrikar Int. J. Gravit. Theor. Phys. 2026, 1(1), 1

12. Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2016, 94, 104056. https://doi.org/10.1103/PhysRevD.
94.104056.

13. Xiang, L.; Ling, Y.; Shen, Y.G. Singularities and the Finale of Black Hole Evaporation. PInt. J. Mod. Phys. D 2013, 22,
1342016. https://doi.org/10.1142/S0218271813420169.

14. Culetu, H. On a regular modified Schwarzschild spacetime. arXiv 2013, arXiv:1305.5964.
15. Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855–2863.

https://doi.org/10.1007/s10773-015-2521-6.
16. Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; et al. Regular black holes in f(R) gravity coupled to nonlinear electrody-

namics. Phys. Rev. D 2016, 94, 024062. https://doi.org/10.1103/PhysRevD.94.024062.
17. Simpson, A.; Visser, M. Regular black holes with asymptotically Minkowski core. Universe 2019, 6, 8. https://doi.org/10.

3390/universe6010008.
18. Ghosh, S.G. A nonsingular rotating black hole. Eur. Phys. J. C 2015, 75, 532. https://doi.org/10.1140/epjc/s10052-015-3740-y.
19. Li, X.; Ling, Y.; Shen, Y.G.; et al. Generalized uncertainty principles, effective Newton constant and the regular black hole.

Annals Phys. 2018, 396, 334–350. https://doi.org/10.1016/j.aop.2018.07.021.
20. Martinis, M.; Perkovic, N. Is exponential metric a natural space-time metric of Newtonian gravity? arXiv 2010, arXiv:1009.6017.
21. Ling, Y.; Wu, M.H. Regular black holes with sub-Planckian curvature. Class. Quant. Grav. 2023, 40, 075009. https://doi.org

/10.1088/1361-6382/acc0c9.
22. Konoplya, R.A.; Zhidenko, A. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 2011,

83, 793. https://doi.org/10.1103/RevModPhys.83.793.
23. Berti, E.; Cardoso, V.; Starinets, A.O. Quasinormal modes of black holes and black branes. Class. Quant. Grav. 2009, 26,

163001. https://doi.org/10.1088/0264-9381/26/16/163001.
24. Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 9, 068.

https://doi.org/10.1088/1475-7516/2024/09/068.
25. Tang, C.; Ling, Y.; Jiang, Q.Q. Correspondence between grey-body factors and quasinormal modes for regular black holes

with sub-Planckian curvature. Chin. Phys. C 2025, 12, 125110. https://inspirehep.net/literature/2905022.
26. Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric

traversable wormholes. JCAP 2025, 2025, 025. https://doi.org/10.1088/1475-7516/2025/04/025.
27. Dubinsky, A. Black Holes Immersed in Galactic Dark Matter Halo. Int. J. Gravit. Theor. Phys. 2025, 1, 2. https://doi.org/

10.53941/ijgtp.2025.100002.
28. Konoplya, R.A. Black holes in galactic centers: Quasinormal ringing, grey-body factors and Unruh temperature. Phys. Lett.

B 2021, 823, 136734. https://doi.org/10.1016/j.physletb.2021.136734.
29. Song, Z.; Gong, H.; Li, H.L.; et al. Quasinormal modes and ringdown waveforms of a Frolov black hole. Commun. Theor.

Phys. 2024, 76, 105401. https://doi.org/10.1088/1572-9494/ad5717.
30. Lopez, L.A.; Hinojosa, V. Quasinormal modes of Charged Regular Black Hole. Can. J. Phys. 2021, 99, 44–48. https://doi.org/

10.1088/1361-6382/acc0c9.
31. Arun, K.G.; Belgacem, E.; Benkel, R.; et al. New horizons for fundamental physics with LISA. Living Rev. Relativ. 2022,

25, 4. https://doi.org/10.1007/s41114-022-00036-9.
32. Barausse, E.; Berti, E.; Hertog, T.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81.

https://doi.org/10.1007/s10714-020-02691-1.
33. DeWitt, C.; DeWitt, B.S. Black Holes (Les Astres Occlus). In Proceedings of the Ecole d’Eté de Physique Théorique, Les
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