
Transactions on Artificial Intelligence
https://www.sciltp.com/journals/tai

Article

FedA4: Federated Learning with Anti-Bias Aggregation and
TrAjectory-Based Adaptation

Guanyi Zhao 1, Juntao Hu 1,2, Zhengjie Yang 1,3,* and Dapeng Wu 1

1 Department of Computer Science, City University of Hong Kong, Hong Kong
2 School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
3 Hong Kong Generative AI Research and Development Center, The Hong Kong University of Science and Technology,

Hong Kong
* Correspondence: zhengjie.yang@sydney.edu.au

How To Cite: Zhao, G.; Hu, J.; Yang, Z.; et al. FedA4: Federated Learning with Anti-Bias Aggregation and TrAjectory-Based Adaptation.
Transactions on Artificial Intelligence 2026, 2(1), 26–38. https://doi.org/10.53941/tai.2026.100003

Received: 2 January 2026

Revised: 29 January 2026

Accepted: 2 February 2026

Published: 9 February 2026

Abstract: Non-Independent and Identically Distributed (Non-IID) data pose a
fundamental challenge in Federated Learning (FL). It usually causes a severe client
drift issue (various client model update directions) and thus, degrades the global
model performance. Existing methods typically address this by assigning appropriate
weights to client models or optimizing model update directions. However, these
methods overlook client model update trends. They focus solely on the final client
models to be aggregated at the server at each communication round, ignoring
model optimization trajectories, which may contain richer information to aid model
convergence. To address this issue, we propose FedA4, a novel FL framework with
Anti-bias Aggregation and trAjectory-based Adaptation, which leverages clients’
optimization trajectories, rather than only their final model snapshots. For anti-bias
aggregation, by observing a phenomenon termed model collapse, where biased clients
tend to predict any input data as the dominant classes in their own datasets, we quantify
the class dominance and analyze the level of client drift for each client. We evaluate a
prediction entropy, namely concentration, so as to assign an optimal weight to each
client at each training round. To further mitigate the negative effect of clients with high
levels of client drift (biased clients), we then develop a gradient adaptation mechanism
termed trajectory-based adaptation, which analyzes clients’ trajectories to correct
each client’s contribution to the aggregated global model. Extensive experiments
on CIFAR-10, CIFAR-100, STL-10, and Fashion-MNIST demonstrate that FedA4

significantly outperforms state-of-the-art baselines, particularly in scenarios with
extreme data heterogeneity (high level of Non-IID).

Keywords: federated Learning; non-IID Data; client drift; anti-bias aggregation;
optimization trajectory

1. Introduction

Federated Learning (FL) has emerged as a novel distributed machine learning paradigm, enabling models to
learn from vast amounts of data distributed across various clients (such as mobile phones, hospitals, or financial
institutions) without the need for centralized data storage [1,2]. This privacy-preserving characteristic grants it
significant potential in data-sensitive domains. In a typical FL setting, a central server coordinates training among
numerous clients: the server distributes a global model to the clients, which then perform local training on their own
data. These updates (e.g., model weights or gradients) are then sent back to the server, which aggregates them to
optimize the global model in an iterative fashion [1].

However, FL faces a core challenge: client drift caused by data heterogeneity [3]. The local data distributions
on different clients are typically not independent and identically distributed (Non-IID), which results in the local
optimization objectives of clients diverging from the global objective. For instance, an orthopedic hospital mainly
collects bone-related images while an ophthalmology hospital collects ocular images. During a classification task,

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.sciltp.com/journals/tai
https://doi.org/10.53941/tai.2026.100003
https://creativecommons.org/licenses/by/4.0/

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

these two hospitals, acting as two clients, try to minimize their local classification losses; as a result, their model
parameters evolve towards disparate local optima, drifting away from the global optimum. We classify clients as
biased if their local datasets fail to represent the complete dataset, irrespective of data volume or label distribution.
Consequently, models trained on such datasets inevitably exhibit bias toward specific local distributions, and this
phenomenon is referred to as client drift [4]. Therefore, designing an aggregation algorithm to mitigate client drift
under Non-IID conditions is a central research problem in the FL domain. Recent studies have explored three
different technical paths to address client drift caused by Non-IID conditions.

Weighted Model Aggregation. This kind of strategy aims to mitigate the impact of biased clients by adaptively
optimizing aggregation weights. While the seminal FedAvg [1] relies on data volume, subsequent studies incorporate
performance-driven metrics, such as local loss [5], model similarity [6–8], or Euclidean distances [9]. However,
mere weight adjustment fails to yield a globally representative model [10–12], leaving the aggregated model
susceptible to recurrent drift in subsequent rounds.

Client Parameter Constraint. To address the limitations of weighted aggregation, researchers have focused
on suppressing client drift by constraining local parameters to remain close to the global model. FedProx [13]
exemplifies this approach by introducing a proximal term to the local loss function, thereby penalizing deviations
between local and global parameters. SCAFFOLD [14] employs control variates to estimate and correct client drift
during local training, while [15,16] utilizes a dynamic regularizer to align local and global objectives. Although
these methods effectively mitigate the magnitude of client drift, the aggregated global model may still suffer from
bias, particularly favoring clients with larger dataset volume or larger label counts. Furthermore, the inherent
“pull-back” mechanism may overly restrict local learning; this can trap the global model in a local optimum and
hinder convergence to a superior global optimum.

Generative Model-Assisted Global Training. To address client drift caused by Non-IID data, some
studies attempt to generate a synthetic global dataset to adjust model parameters. For instance, FedGen [17]
and FedLMG [18] train a server-side generator using client features to create “imaginary” data for global training.
Since privacy rules prevent access to raw data, these methods rely on adversarial or style transfer methods. However,
adversarial methods often suffer from training instability. The difficulty in balancing the game between the
generator and discriminator often leads to mode collapse or non-convergence [19]. Meanwhile, style transfer
methods are effective only for tasks compatible with specific image styles, which limits the general applicability of
these framework.

To summarize existing methods, FL requires finding reasonable aggregation weights, constraining biased
client parameters, and mimicking global training behavior (as if a single model was trained on a union of all
clients’ datasets). To address these needs, we propose FedA4, a novel FL framework with Anti-bias Aggregation
and trAjectory-based Adaptation mechanisms. As the cornerstone of FedA4, we identify biased clients based on
the “model collapse” phenomenon, where clients make overconfident errors causing predictions to concentrate on
dominant labels due to local bias. The anti-bias aggregation module decreases the aggregation weights of these
biased clients to derive the global model. Furthermore, prior research [20, 21] indicates that changes in model
parameters reflect the characteristics of the underlying data distribution. Leveraging this insight, we require clients
to upload optimization trajectories consisting of the traces of changes for client models between local epochs. The
trajectory-based adaptation module utilizes these trajectories to infer an update gradient that mimics the behavior
of the global model trained on the complete dataset. Specifically, anti-bias aggregation establishes reasonable
aggregation weights, while trajectory-based adaptation imitates training on the complete dataset and constrains the
influence of. client drift on the aggregated model update. This approach combines the strengths of current methods
while compensating for their shortcomings.

The workflow begins with the client-side operations, where clients upload local models and optimization
trajectories. The core processing occurs in the server-side operations through three steps, with the first and second
steps serving as prerequisites for the third step. First, the evaluation of anti-bias weights step utilizes a server-resident
probe dataset to assess clients. We measure concentration via prediction entropy; low entropy indicates biased clients
concentrating on dominant local classes, while high entropy signals unbiased models. Combined with accuracy
to filter under-trained models, these metrics guide the aggregation strategy to assign higher weights to unbiased
clients. We also set bias penalty weights to filter out under-trained models in this step. Second, the adaptation of
client gradients step calculates the deviation between local and global gradients. Critically, we perform gradient
ascent for biased clients to filter out their negative impact, while performing gradient descent for unbiased clients to
reinforce shared knowledge. After gathering all information from the above two steps, the anti-bias aggregation and
trajectory-based adaptation step aggregates client models and adapts the aggregated model gradient.

https://doi.org/10.53941/tai.2026.100003 27

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

We conduct extensive experiments on CIFAR-10, CIFAR-100 [22], STL-10 [23], and Fashion-MNIST [24].
The results demonstrate that our method significantly outperforms existing baselines. This performance advantage is
particularly pronounced across diverse settings, effectively accommodating heterogeneous client model architectures
and varying numbers of clients.

The primary contributions of this paper are:

1. We present FedA4, a novel FL framework with Anti-bias Aggregation and trAjectory-based Adaptation
mechanisms. By introducing an entropy-based metric for model concentration, an accuracy-based bias penalty
scheme, and a gradient correction deception mechanism, FedA4 systematically refines the global aggregation
and update. These mechanisms jointly ensure more precise optimization and avoid local optima.

2. We introduce the optimization trajectory as the information carrier from clients, demonstrating that the training
process, not just the result, can be used by the server to more accurately diagnose and correct client drift.

3. FedA4 demonstrates superior performance in every tested scenario, peaking on CIFAR-100 [22] with a
substantial average improvement of 4.61% over baselines across diverse Dirichlet distribution configurations.

2. Related Work

Data heterogeneity (Non-IID) in FL is a key challenge that causes client drift and degrades global model
performance [3]. To address this challenge, a substantial body of work has emerged, which can be broadly
categorized into three primary streams: weighted model aggregation, model parameter constraints, and generative
model-assisted global training.

2.1. Weighted Model Aggregation

Weighted aggregation methods attempt to mitigate the impact of biased clients by assigning higher weights to
unbiased ones, aiming to steer global convergence. Seminal studies like FedAvg [1] weight clients based on data
volume, assuming dataset size correlates with representativeness. However, in Non-IID environments, large local
datasets may still exhibit severe bias. Subsequent strategies recognize the need to downweight poorly performing
clients, positing that low performance often stems from label scarcity or data insufficiency. Approaches such
as [25, 26] dynamically adjust weights based on loss or validation accuracy, while FedAtt [6] and pFedMe [7]
use attention mechanism to find better aggregation weights. Additionally, RFA [27] employs the geometric
median to enhance robustness against outliers. Nevertheless, neither simple averaging nor sophisticated weighting
fundamentally resolves client drift, as biased local models often lack consistent mathematical alignment and
may yield conflicting updates. Consequently, aggregating these conflicting parameters fails to achieve global
representativeness [10–12], leading to recurrent drift in subsequent rounds. In contrast, while our method employs
weighted aggregation, it distinguishes itself by introducing an adaptation phase that actively updates global
parameters using optimization trajectory insights.

2.2. Client Parameter Constraint

The second category focuses on mitigating client drift via local regularization or constraints. FedProx [13],
a representative work, adds a proximal term to the local loss function to penalize parameter divergence from
the global model. Alternatively, SCAFFOLD [14] employs control variates to correct update directions, while
FedDyn [15] and MOON [28] utilize dynamic regularization and contrastive learning, respectively. However, these
methods implicitly assume the global model serves as a correct reference anchor. Consequently, regardless of
the specific technique, they remain susceptible to bias from clients with dominant data volume or label diversity,
impelling the global model toward local optima. Furthermore, the inherent regularization restricts local exploration,
potentially hindering convergence to the true global optimum. In contrast, FedA4 addresses these limitations
by incorporating the optimization trajectory to capture the specific learning intent driven by local distributions.
By synthesizing these trajectories, we infer a holistic global optimization path to guide precise updates without
constraining client-side learning.

2.3. Generative Model-Assisted Global Training

This category aims to approximate the global data distribution to assist global model training via data generation
techniques. Methods like FedGAN [29], FedGen [17] and FedLMG [18] train generators (e.g., GANs or decoders)
using uploaded gradients to synthesize pseudo-global data for server-side training. The server then uses this
generated data to assist in training or calibrating the global model. These methods are conceptually significant as
they seek a global optimization direction. While conceptually appealing for providing a global perspective, this

https://doi.org/10.53941/tai.2026.100003 28

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

approach faces significant challenges: due to privacy concerns, these methods cannot ask clients to upload any
information about the local dataset; they can only use adversarial methods to generate data or generate data with
different styles to train the global model. However, adversarial methods face difficulties in balancing the game
between the generator and discriminator, which often leads to mode collapse or non-convergence [19]. At the same
time, style transfer methods are effective only for tasks compatible with specific image styles, which limits the
general applicability of these frameworks.

3. Methodology

The Non-Independent and Identically Distributed (Non-IID) nature of client data poses a core challenge in FL,
often rendering standard weighted aggregation insufficient for global representativeness. Moreover, existing methods
typically rely solely on the final model state for aggregation, discarding the significant information contained in
intermediate local client parameter updates. To address these limitations, we propose FedA4, a framework integrating
two novel mechanisms, as illustrated in Figure 1.

First, by addressing the phenomenon where biased models exhibit high prediction concentration (model
collapse), we develop anti-bias aggregation. This module leverages prediction entropy on a server-side probe dataset
to identify and downweight biased clients. Second, to recapture the optimization dynamics lost by local training, we
develop trajectory-based adaptation. By tracking the optimization trajectory across local epochs, this component
approximates the global update gradient effectively, ensuring stability and generalization. The operational workflow
of FedA4 proceeds as follows: (3.1) Client-Side Operations: Clients upload their local model parameters and
optimization trajectories to the central server. (3.2) Server-Side Operations: (3.2.1) Evaluation of Anti-bias
Weights: The server analyzes the entropy of client prediction distributions to derive anti-bias weights for all
clients, which comprise both aggregation weights and bias penalty weights; (3.2.2) Adaptation of Client Gradients:
The server computes an aligned gradient for each client based on the optimization trajectory and the determined
gradient direction (ascent or descent); (3.2.3) Anti-Bias Aggregation and Trajectory-Based Adaptation: The
server first aggregates client models using the weights from (3.2.1) to obtain an initial global model (Phase I).
Subsequently, it updates this model using the aligned gradients from (3.2.2) to integrate trajectory information
(Phase II). This process repeats for multiple rounds until convergence. Step (3.1) executes in parallel across clients,
while steps (3.2.1) to (3.2.3) occur sequentially on the server.

Δ1
(t,0)=W1

(t,1)-W1
(t,0)

Δ1
(t,1)=W1

(t,2)-W1
(t,1)

Δ1
(t,E-1)=W1

(t,E)-W1
(t,E-1)

...

Optimization trajectory

W1
(t,E)

Client1 model

parameters

Client1

Δi
(t,0)=Wi

(t,1)-Wi
(t,0)

Δi
(t,1)=Wi

(t,2)-Wi
(t,1)

Δi
(t,E-1)=Wi

(t,E)-Wi
(t,E-1)

...

Wi
(t,E)

Clienti model

parameters

Clienti

ΔN
(t,0)=WN

(t,1)-WN
(t,0)

ΔN
(t,1)=WN

(t,2)-WN
(t,1)

ΔN
(t,E-1)=WN

(t,E)-WN
(t,E-1)

...

WN
(t,E)

ClientN model

parameters

ClientN

... ...

Probe

dataset

Evaluation of

anti-bias

weights

Adaptation of client

gradient based on

optimization trajectories

Anti-bias

aggregation and

trajectory-based

adaptation

Global model
Broadcast

BroadcastUpload
W1

(t,E)

Δ1
(t,0)... Δ1

(t,E-1)
BroadcastUpload

Wi
(t,E)

Δi
(t,0)... Δi

(t,E-1)
BroadcastUpload

WN
(t,E)

ΔN
(t,0)... ΔN

(t,E-1)

Server

W1
(t,0) Wi

(t,0) WN
(t,0)

Optimization trajectory Optimization trajectory

Figure 1. Overview of FedA4 framework.

3.1. Client-Side Operations

In each global round t ∈ [0, T − 1], each client i initializes its local model W t,0
i using the global parameters

W t
global. Subsequently, the client performs local training on its private dataset Di for E epochs to minimize the

local objective Li (Algorithm 1, Lines 2–6). Distinct from standard protocols, each client records the optimization
trajectory P t

i (Algorithm 1, Line 7) rather than solely retaining the final model state. We define the parameter update
at local epoch e as ∆t,e

i = W t,e+1
i −W t,e

i , ∀e ∈ [0, E − 1]. Consequently, the complete optimization trajectory is
denoted as:

P t
i = [∆t,0

i ,∆t,1
i , ...,∆t,E−1

i]. (1)

This trajectory encodes the gradient dynamics induced by local data heterogeneity. Upon completing E epochs,
client i uploads both the final parameters W t,E

i and the trajectory P t
i to the server for global aggregation.

https://doi.org/10.53941/tai.2026.100003 29

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

Algorithm 1 Client Update Procedure
Input: Client index i, global model W t

global, local dataset Di, number of epochs E, learning rate γ

Output: Updated local model W t,E
i and optimization path P t

i

1: function CLIENTUPDATE(i,W t
global,Di, E)

2: W t,0
i ←W t

global ▷ Initialize Local Model
3: P t

i ← [] ▷ Initialize Empty Optimization Path
4: for each local epoch e = 0 to E − 1 do
5: ∆t,e

i = −γ∇Li(W
t,e
i ,Di) ▷ Calculate ∆t,e

i

6: W t,e+1
i ←W t,e

i +∆t,e
i

7: Append ∆t,e
i to P t

i ▷ Record the Path
8: end for
9: return W t,E

i , P t
i ▷ Return Final State and Full Optimization Path

10: end function

3.2. Server-Side Operations

Upon collecting W t,E
i and P t

i from all N clients in round t, the server initiates a global model aggregation
and update framework that is divided into three distinct stages. In the first stage, the server evaluates client models
to derive anti-bias weights by calculating the aggregation weights based on prediction concentration and the
bias penalty weights based on the deviation of average accuracy. Subsequently, during the adaptation stage, the
server synthesizes collective optimization trajectories to rectify local deviations, thereby yielding aligned client
gradients. Finally, in the stage termed Anti-Bias Aggregation and Trajectory-Based Adaptation, the server obtains
the global model via weighted aggregation and executes the final update using the aligned gradients and directional
parameters derived in the preceding steps. For the first and second stages, the update procedure is implemented
within a single training round t. Thus, for notational simplicity, we omit the superscript t in these two stages
(Sections 3.2.1 and 3.2.2).

3.2.1. Evaluation of Anti-Bias Weights

The server evaluates each client using a publicly available probe dataset Dprobe to compute anti-bias weights:
the aggregation weight wi, derived from the entropy of the prediction distribution to determine the contribution of
the client during preliminary aggregation; and the bias penalty weight λi, which acts as a suppression coefficient for
the client exhibiting excessive deviation from the average accuracy.

Aggregation Weight (wi). Prior to calculating the client aggregation weights, the server must first determine
whether the model is biased. To achieve this, the server evaluates the model W t,E

i of each client on the probe
dataset Dprobe to obtain the softmax prediction probabilities. As illustrated in Figure 2, empirical observations
indicate that unbiased models generally avoid overconfident misclassifications (e.g., Clients 1–3), resulting in
diverse prediction outputs. In contrast, biased models tend to produce highly similar and overconfident predictions
regardless of the input (e.g., Clients 4 and N). We term this phenomenon “model collapse”. To quantify this
phenomenon, we compute the average softmax probability distribution p̄i =

1
|Dprobe|

∑|Dprobe|
d=1 pi,d, where pi,d is the

probability distribution predicted by client i for the d-th data sample in Dprobe. We then define the concentration
metric ϕi ∈ [0, 1] based on the normalized entropy of p̄i (Algorithm 2, Lines 8–9):

ϕi = 1− −p̄i log(p̄i)

log(C)
, (2)

where C represents the number of classes. A higher ϕi signifies more severe model drift. Consequently, to suppress
the influence of biased clients, we assign aggregation weight wi inversely related to this concentration (Algorithm 2,
Lines 9 and 14):

wi =
1− ϕi∑N

i=1(1− ϕi)
. (3)

https://doi.org/10.53941/tai.2026.100003 30

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

Acc=0.50

Acc=0.50

Acc=0.17

Acc=0.67

Acc=0.17

Probe

dataset

...

Average of the
predictions

Far from μacc
~

Low λ

Close to μacc
~

High λ
 Bias penalty weightλ1 (low)

Average accuracy
μacc: 0.4

Client4

(trained set based on relatively

narrow extreme cases)

Client3

(trained on a small-sized

dataset)

Client1

(trained on a relatively general

dataset)

Client2

(trained on a relatively general

dataset)

ClientN

(trained set based on relatively

broad extreme cases)

 Aggregation Weight1 (high)

C
lien

t1

Mid-deviation from μacc
~

Middle λ

H
ig

h
 H

n
o
rm

 ~
 L

o
w

 co
n
cen

tratio
n

&

H
ig

h
 w

eig
h
t

H
ig

h
 H

n
o
rm

 ~
 L

o
w

 co
n
cen

tratio
n

&

H
ig

h
 w

eig
h
t

L
o
w

 H
n

o
rm

 ~

H
ig

h
 co

n
cen

tratio
n

&

L
o
w

 w
eig

h
t

L
o
w

 H
n

o
rm

 ~

H
ig

h
 co

n
cen

tratio
n

&

L
o
w

 w
eig

h
t

M
id

 H
n

o
rm

 ~

M
id

 co
n
cen

tratio
n

&

M
id

 w
eig

h
t

M
id

 H
n

o
rm

 ~

M
id

 co
n
cen

tratio
n

&

M
id

 w
eig

h
t

 Bias penalty weightλ2 (low)

 Aggregation Weight2 (high)

C
lien

t2

 Bias penalty weightλ3 (high)

 Aggregation Weight3 (high)

C
lien

t3

 Bias penalty weightλ4 (high)

 Aggregation Weight4 (low)
C

lien
t4

 Bias penalty weightλN (middle)

 Aggregation WeightN (middle)

C
lien

tN

Figure 2. Evaluation of anti-bias weights module. We use a 6-class probe dataset to visualize specific scenarios:
typical bias (Client1, Client2), under-training (Client3), and narrow or broad bias (Client4, ClientN). For the bar
charts, the horizontal and vertical axes represent data categories and prediction probability respectively, while blue
and red bars indicate incorrect and correct predictions. The longer the bar, the higher the probability. This figure
illustrates observed phenomena and remains independent of the experimental settings.

Algorithm 2 Proposed Two-Stage Aggregation Algorithm
Input: Initial model W 0

global, probe data Dprobe, number of rounds T , number of epochs E, number of clients N
Output: Updated global model WT

global

1: for each global round t = 0 to T − 1 do
2: ▷ — Client-Side Operations —
3: for each client i = 1 to N in parallel do
4: W t,E

i , P t
i ← CLIENTUPDATE(i,W t

global,Di, E)

5: end for
6: ▷ — Server-Side Operations —
7: for each client i = 1 to N do
8: p̄i,Accti ← EVALPROBE(W t,E

i); gti ← 1
E

∑E−1
e=0 P t

i [e] ▷ Get Accuracy & Avg Gradient
9: ϕi ← 1− −p̄i log(p̄i)

log(C)
▷ Calculate Entropy

10: end for
11: µt

Acc ← 1
N

∑N
i=1 Accti; ḡt ← 1

N

∑N
i=1 g

t
i ▷ Compute Means

12: W t+0.5
global ← 0; U t ← 0 ▷ Initialize Global Model & Update Vector

13: for each client i = 1 to N do
14: wt

i ← 1−ϕi∑N
j=1(1−ϕj)

15: W t+0.5
global ←W t+0.5

global + wt
i ·W t,E

i ▷ Apply Weighted Aggregation
16: λt

i ← exp(−β(Accti − µt
Acc)

2) ▷ Bias Penalty

17: Simt
i ←

gti ·ḡ
t

∥gti∥·∥ḡ
t∥ ; g′ti ← (1− θ) · gti + θ · ḡt ▷ Similarity & Aligned Gradient

18: if (ϕi ≥ τconc) or (Simt
i ≤ τsim) then Dt

i ← +1

19: else Dt
i ← −1

20: end if
21: U t ← U t + (wt

i · λt
i ·Dt

i) · g′ti ▷ Accumulate Directed Adaptation
22: end for
23: W t+1

global ←W t+0.5
global + η · U t ▷ Update Global Model

24: end for
25: return WT

global

Bias Penalty Weight (λi). Relying solely on prediction concentration is insufficient, as it fails to detect
under-trained models resulting from limited sample sizes (e.g., Client3 in Figure 2). To address this, we develop
bias penalty weights based on the deviation of the client accuracy Acci on Dprobe relative to the cohort mean
µAcc (Algorithm 2, Line 11). We distinguish between two outlier scenarios. A client with anomalously high
accuracy (Acci ≫ µAcc) represents a relatively broad-biased case, implying its local model overfits to a specific,

https://doi.org/10.53941/tai.2026.100003 31

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

non-representative distribution. Conversely, extremely low accuracy (Acci ≪ µAcc) indicates a relatively
narrow-biased case driven by severe drift or underfitting. We posit that clients performing near the cohort average
(Acci ≈ µAcc) offer the most globally representative consensus. Consequently, we employ a Gaussian function to
assign trust (Algorithm 2, Line 16):

λi ∝ exp(−β(Acci − µAcc)
2), (4)

where β ∈ [0, 1] is a hyperparameter controlling sharpness. This function acts as an adaptive filter throughout
the training lifecycle. It dynamically assigns λi ≈ 1.0 to the consensus cohort clustering around the mean, while
effectively suppressing both broad and narrow biased outliers to ensure precise convergence.

3.2.2. Adaptation of Client Gradients

The server synthesizes uploaded optimization trajectories to derive a unified average gradient, which
approximates the update magnitude of the complete dataset. By quantifying the similarity between individual
trajectories and this average, the server rectifies local deviations to yield client-aligned gradients. Furthermore,
integrating these similarity metrics with the aggregation weights from Section 3.2.1 enables the determination of the
precise optimization direction, specifically whether to apply gradient descent or ascent for each client.

Client-Aligned Gradient (g′
i). As illustrated in the pipeline in Figure 3, the server first processes

Pi = [∆0
i ,∆

1
i , ...,∆

E−1
i]. By calculating the average of all ∆ vectors in the trajectory, it obtains the client

average gradient gi = 1
E

∑E−1
e=0 Pi[e] (Algorithm 2, Line 8). Here, gi represents the “local model optimization

intent” of client i during its local training. We posit that “model collapse” forces the model to take shortcuts, causing
gi to be heavily biased towards a specific subset of model parameters. To prevent any single gi from exerting an
excessive impact, we develop a regularization step. After obtaining all gi, the server computes their arithmetic mean
ḡ = 1

N

∑N
i=1 gi (Algorithm 2, Line 11), which represents the average optimization trend of all clients and serves as

an approximation of the correct client optimization trajectory. Using a hyperparameter θ ∈ [0, 1], we pull each gi
slightly towards ḡ to obtain the aligned gradient g′i (Algorithm 2, Line 17):

g′i = (1− θ) · gi + θ · ḡ. (5)

Here, θ denotes the update coefficient for the client-aligned gradient, while g′i represents the actual adaptation
vector employed in the final update.

Client1 optimization trajectory

Client2 optimization trajectory

Client3 optimization trajectory

Global

gradient

Client1 gradient

Client2 gradient

Client3 gradient
Aligned

gradient

refining

G
rad

ien
t d

irectio
n

 d
ep

en
d

en
cy

Client1 direction D1:

(-1, is unbiased, gradient descent)

Mean

Mean

Mean

Mean

ClientN optimize trajectory Mean

Client4 gradient

ClientN gradient

Client1 aligned

gradient

Client2 aligned

gradient

Client3 aligned

gradient

Client4 aligned

gradient

ClientN aligned

gradient

Client4 optimization trajectory Mean

Global gradient

similarity

Client1 similarity

score

Client2 similarity

score

Client3 similarity

score

Client4 similarity

score

ClientN similarity

score

From Evaluation of Anti-Bias Weights module

Aggregated Weight1

(high)
...

...
...

Client2 direction D2:

(-1, is unbiased, gradient descent)

Client3 direction D3:

(-1, is unbiased, gradient descent)

Client4 direction D4:

(+1, is unbiased, gradient ascent)

ClientN direction DN:

(+1, is unbiased, gradient ascent)

Aggregated Weight2

(high)

Aggregated WeightN

(middle)

Figure 3. Adaptation of Client Gradients Module.

Direction of Adaptation (Dt
i). To determine the direction of adaptation (whether to apply gradient descent or

ascent for each client), we compute the cosine similarity between gi and ḡ, defining it as the similarity score Simi

(Algorithm 2, Line 17):

Simi =
gi · ḡ
∥gi∥ · ∥ḡ∥

. (6)

The term Simi is a critical metric that is independent of ϕi. While ϕi (from Section 3.2.1) measures the result
of drift (i.e., whether the model’s final state is collapsed), Simi measures the process of drift (i.e., whether the path
conflicted with the consensus). A low Simi value indicates that the optimization direction of the client is harmful,
even if its data is not skewed enough to cause a high ϕi. Finally, we combine ϕi and Simi to classify client i as
biased or unbiased. We set τconc and τsim as thresholds to determine whether the client-aligned gradient is biased.

https://doi.org/10.53941/tai.2026.100003 32

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

Client i is labeled as biased if: (ϕi ≥ τconc) or (Simi ≤ τsim). The direction of adaptation Di is then defined as
(Algorithm 2, Lines 18–19):

Di =

{
+1, if client i is biased;

−1, if client i is unbiased.
(7)

3.2.3. Anti-Bias Aggregation and Trajectory-Based Adaptation

Synthesizing the preceding results, the server executes anti-bias aggregation and trajectory-based adaptation
in two distinct phases. The pipeline of this module is shown in Figure 4. Phase I performs weighted aggregation
utilizing the client weights derived in Section 3.2.1. Phase II refines this aggregated model by integrating the bias
penalty weights and processed gradients from Section 3.2.2. To denote the iterative nature of the global training, we
introduce the superscript t to represent the current global round index.

Global model

(Phase I)

 Aligned gradient1

Direction1

Bias penaltyλ1

Aggregation weight1

Global update vector

Global model

(Phase II)
Client1

Client2

ClientN

Client3

Client4

Client1 weight (high)

Client2 weight (high)

Client3 weight (high)

Client4 weight (low)

ClientN weight (middle)

Client1

 Aligned gradient2

Direction2

Bias penaltyλ2

Aggregation weight2

Client2

 Aligned gradient3

Direction3

Bias penaltyλ3

Aggregation weight3

Client3

 Aligned gradient4

Direction4

Bias penaltyλ4

Aggregation weight4

Client4

 Aligned gradientN

DirectionN

Bias penalty λN

Aggregation weightN

ClientN

...

Updated global model

...

Phase I:

Weighted Aggregation Module Phase II : Trajectory-based Update Module

Figure 4. Anti-Bias Aggregation and Trajectory-Based Adaptation.

Phase I: Weighted Aggregation Module. The server first performs weighted aggregation on client models’
parameters W t,E

i based on wt
i from Section 3.2.1 to generate an intermediate aggregated model. Given that

the global update protocol is divided into two distinct phases culminating in the final model W t+1
global, we formally

designate the intermediate model state generated after Phase I as W t+0.5
global . This intermediate aggregation is computed

as W t+0.5
global =

∑N
i=1 w

t
i ·W

t,E
i (Algorithm 2, Line 15), where wt

i represents the aggregation weight for the i-th

client, subject to the normalization constraint
∑N

i=1 w
t
i = 1.

Phase II: Trajectory-Based Update Module. Following the initial aggregation, the server performs a
secondary trajectory-based update on the intermediate model W t+0.5

global . We utilize the aggregation weights wi,
bias penalty weights λi, and directions of adaptation Dt

i derived in previous steps to construct an update vector.
Specifically, the server computes the global update vector U t by accumulating the weighted and directed aligned
gradients g′ti from all clients (Algorithm 2, Line 21):

U t =

N∑
i=1

(wi · λi ·Dt
i) · g′ti . (8)

This formulation ensures that contributions from reliable clients are amplified while detrimental updates from
biased clients are effectively reversed. Finally, the server applies U t to the intermediate model with a global update
rate η ∈ [0, 1] to obtain the final model state W t+1

global (Algorithm 2, Line 23):

W t+1
global = W t+0.5

global + η · U t. (9)

3.3. Summary and Discussion

In summary, FedA4 establishes a novel framework integrating anti-bias aggregation and trajectory-based
adaptation. Distinct from existing methodologies that rely exclusively on the final state of client model parameters,
FedA4 leverages optimization trajectories to quantify client bias and rectify local deviations. This design explicitly
addresses a critical limitation observed in empirical studies: weighted aggregation alone often converges toward but
fails to surpass baseline performance. Consequently, FedA4 moves beyond simple reweighting to adopt a granular
optimization paradigm. By inducing global update dynamics directly from local trajectories, rather than relying on

https://doi.org/10.53941/tai.2026.100003 33

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

parameter regularization or synthetic data generation, the framework effectively approximates the training dynamics
of the true global distribution, thereby preventing overfitting to Non-IID data.

4. Experiment

In this section, we conduct a comprehensive set of experiments to validate the effectiveness of FedA4. We
aim to answer the following primary questions: (1) Does FedA4 outperform standard baselines under various
Non-IID conditions and dataset complexities? (2) Is the performance gain of FedA4 robust across different model
architectures and different client numbers? (3) To what extent does each individual component contribute to the
overall performance of FedA4, and which component is the most critical?

4.1. Experimental Setup

Datasets. To comprehensively assess performance across diverse degrees of task complexity and image
resolution, we conduct experiments on four widely recognized benchmark datasets: Fashion-MNIST [24],
STL-10 [23], CIFAR-10, and CIFAR-100 [22]. CIFAR-10 [22] serves as the canonical benchmark for FL, containing
60,000 32 × 32 color images distributed across 10 classes. Fashion-MNIST [24], consisting of 70,000 28 × 28

grayscale images, is utilized to evaluate performance on lower-complexity and single-channel data. To examine
robustness against label space complexity, we employ CIFAR-100 [22]; its 100 distinct classes significantly intensify
the statistical heterogeneity arising from Non-IID partitioning. Finally, STL-10 [23] is leveraged to demonstrate the
scalability and generalization capabilities of FedA4 on tasks involving higher-resolution (96× 96) input features.

To simulate a realistic heterogeneous environment, we partition the training data among N = 10 clients
utilizing a Dirichlet distribution controlled by the hyperparameter α, which is greater than 0. This constitutes
a standard methodology for modeling label distribution skew. The parameter α governs the degree of Non-IID
heterogeneity. A smaller α (e.g., 0.1) yields a highly skewed and more challenging Non-IID distribution where
clients may possess samples from only a limited number of classes. Conversely, a larger α (e.g., 1.0) result in a
more balanced distribution resembling an IID setting.

Baseline Methods. We compare FedA4 against three fundamental and widely adopted baseline methods: Avg
(unweighted mean), FedAvg [1] and FedProx [13]. Our method involves both weighted aggregation and a corrective
operation on the global model parameters. Therefore, comparing against Avg (unweighted Mean), FedAvg [1]
(weighted fusion) and FedProx [13] (parameter constraint) is essential. We intentionally omitted more complex,
recent SOTA methods (e.g., SCAFFOLD [14], FedGen [17], and FedLMG [18]) for a critical reason: stability and
robustness. Our preliminary tests revealed that these advanced methods are often unstable; for instance, SCAFFOLD
frequently suffered from training collapse, with test accuracy decreasing as training progressed. Furthermore,
generative methods like FedGen and FedLMG failed to produce effective global data on CIFAR-10 and CIFAR-100
in our setup, preventing the global model from optimizing effectively. We thus focus our comparison on these robust
and universally applicable baselines.

Implementation Details. Unless otherwise specified, all experiments utilize a StandardCNN architecture
consisting of six layers as the client model. We configure the experimental setup with N = 10 clients, E = 3

local epochs, and a total of T = 50 global rounds. Local training employs the Adam optimizer with a learning rate
of 10−3 and a batch size of 64. For the FedA4 framework, all hyperparameters are fine-tuned and remain fixed
across all evaluated datasets. We provide general guidance on setting these hyperparameters. By default, we suggest
β = 1.0, η = 0.01, θ = 0.9, τconc = 0.3, and τsim = 0.2 for stable convergence performance. For scenarios
involving extreme non-IID data distributions, we recommend increasing β and η while decreasing τconc. If training
instability arises, θ should be increased and τsim reduced. Regarding adjustment scales, β should be tuned on the
order of 100, θ, τconc, and τsim should be adjusted on the order of 10−1, and η is best modified in increments of 10−2.
We construct the probe dataset Dprobe by sampling K = 1 data sample for each class c ∈ C from the global training
set. We explicitly ensure that the probe dataset and local client datasets remain disjoint, satisfying the condition
Dprobe ∩ Di = ∅ for all i.

4.2. Comparison with Baseline Methods

We present the primary experimental results comparing the final global model test accuracy of FedA4 against
baseline methods across all four datasets and various heterogeneity settings. The quantitative data in Table 1
substantiates the efficacy of the proposed framework. Overall, FedA4 exhibits consistent superiority, outperforming
competing approaches across the evaluated scenarios.

https://doi.org/10.53941/tai.2026.100003 34

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

Table 1. Test accuracy comparison on benchmark datasets under varying Non-IID settings. The bold shows the best
result or accuracy increase.

CIFAR-10 CIFAR-100

0.1 0.3 0.5 0.7 1.0 Avg 0.1 0.3 0.5 0.7 1.0 Avg

Avg 73.98 83.63 84.37 84.57 85.36 82.38 49.18 52.66 53.91 54.10 55.25 53.02

FedAvg 74.45 82.78 84.50 85.19 85.67 82.52 49.50 52.19 53.93 53.97 54.94 52.91

FedProx 70.86 81.10 83.59 83.97 85.30 80.96 51.60 55.73 57.11 57.97 58.89 56.26

FedA4(ours)
77.24

(+2.79)

84.13

(+0.50)

84.78

(+0.28)

85.09

(-0.10)

85.79

(+0.12)

83.41

(+0.89)

52.16

(+0.56)

60.70

(+4.97)

63.03

(+5.92)

63.93

(+5.96)

64.54

(+5.65)

60.87

(+4.61)

Fashion-MNIST STL-10

0.1 0.3 0.5 0.7 1.0 Avg 0.1 0.3 0.5 0.7 1.0 Avg

Avg 88.72 93.38 93.74 93.33 93.81 92.60 43.43 57.45 61.19 60.75 61.84 56.93

FedAvg 88.72 93.34 93.71 93.39 93.94 92.62 51.41 56.61 60.57 61.06 61.83 58.30

FedProx 89.11 92.99 93.34 93.28 94.21 92.59 52.68 57.53 59.48 60.95 62.84 58.70

FedA4(ours)
90.27

(+1.16)

93.33

(-0.04)

93.47

(-0.27)

93.80

(+0.41)

94.11

(-0.10)

93.00

(+0.38)

56.32

(+3.64)

59.16

(+1.63)

63.02

(+1.83)

63.32

(+2.13)

64.65

(+1.81)

61.29

(+2.59)

We initiate our evaluation using the CIFAR-10 dataset. As detailed in the top-left section of Table 1, FedA4

outperforms competing baselines across nearly all data partition settings defined by the Dirichlet distribution. To
verify applicability to lower-complexity grayscale classification tasks, we examine the Fashion-MNIST results
presented in the bottom-left of Table 1. These findings highlight substantial improvements, particularly under
conditions of severe statistical heterogeneity (α = 0.1), while maintaining the highest average accuracy across
all α settings compared to alternative schemes. Following the assessment on CIFAR-10 and lower-complexity
datasets, we extend our evaluation to more challenging scenarios. To validate efficacy in environments with
expanded label spaces, we utilize CIFAR-100. As shown in the top-right of Table 1, FedA4 consistently surpasses
baseline methods across all α values, with performance gains becoming particularly pronounced when α > 0.1.
Similarly, to demonstrate robustness in handling high-dimensional inputs, we employ the STL-10 dataset. The
results presented in the bottom-right of Table 1 confirm that FedA4 maintains superior performance across all
distribution settings. Collectively, these findings demonstrate that FedA4 achieves state-of-the-art performance
across diverse task complexities and varying degrees of Non-IID heterogeneity.

4.3. Scalability of Model Architecture

To verify that the performance enhancements of FedA4 are architecture-independent and not restricted to
the specific six-layer CNN, we conducted supplementary experiments on the CIFAR-100 dataset using models of
varying complexity. Specifically, we evaluated a shallow three-layer CNN and a deeper ResNet-18 architecture.
The results, presented in Figure 5, indicate that FedA4 consistently achieves higher final accuracy than all baseline
methods. This superiority persists regardless of model complexity (three-layer, six-layer, or ResNet-18) and across
diverse α values. These findings strongly suggest that our method constitutes a generalizable framework for FL
rather than a solution tailored to a specific architecture.

As illustrated in Figure 5, the global model accuracy curves exhibit a distinct characteristic extending
beyond the previously observed trend regarding performance gaps at various Dirichlet α values. Specifically, the
curves demonstrate the capacity of FedA4 to escape local optima, a behavior visually manifested as a slower
initial convergence rate followed by superior final accuracy. As discussed in Section 3, this phenomenon arises
because baseline methods remain susceptible to the detrimental influence of biased clients, frequently causing the
global model to converge prematurely to local optima associated with skewed distributions. In contrast, FedA4

leverages intrinsic evaluation and adaptation mechanisms to actively identify and rectify deviations from the global
optimization path.

https://doi.org/10.53941/tai.2026.100003 35

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

(a) ResNet-18, α = 0.1 (b) ResNet-18, α = 0.5 (c) ResNet-18, α = 1.0

(d) 3-Layer CNN, α = 0.1 (e) 3-Layer CNN, α = 0.5 (f) 3-Layer CNN, α = 1.0

Figure 5. Scalability of model architecture when models are trained on CIFAR-100 [22]. The top row illustrates the
test accuracy comparison between FedA4 and baselines using the ResNet-18 model under Dirichlet distributions
of α ∈ {0.1, 0.5, 1.0}. The bottom row presents the comparison using a 3-layer CNN model under the same
heterogeneity settings.

4.4. Robustness to Different Client Numbers

As evidenced in Table 2, variations in the number of participating clients exert negligible impact on the
performance of the proposed method. FedA4 maintains high accuracy in almost all scenarios regardless of whether
the client cohort size is set to 5 or 20. This stability across varying scales underscores the robustness of the
framework, confirming that the efficacy of the bias adaptation mechanism remains independent of the specific
number of participants.

Table 2. Performance comparison under different client numbers and heterogeneity settings. The bold shows the
best result or accuracy increase.

α = 0.1 α = 0.3 α = 0.7 α = 1.0

5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

Avg 71.83 73.98 74.49 81.02 83.63 81.73 84.69 84.57 83.39 85.83 85.36 84.30

FedAvg 71.68 74.45 75.79 78.92 82.78 82.20 84.24 85.19 83.70 85.55 85.67 84.32

FedProx 73.05 70.86 71.95 81.60 81.10 81.54 84.55 83.97 83.31 85.91 85.30 84.29

FedA4 74.11
(+1.06)

77.24
(+2.79)

75.86
(+0.07)

81.95
(+0.35)

84.13
(+0.50)

81.45
(-0.75)

85.25
(+0.56)

85.09
(−0.10)

83.77
(+0.07)

86.18
(+0.27)

85.79
(+0.12)

84.58
(+0.27)

4.5. Ablation Study

We validate the proposed FedA4 framework by performing an ablation study on its two core components: the
weighted aggregation module (denoted as Agg. Weights) and the trajectory-based update module (denoted as Traj.
Update). Notably, the simultaneous exclusion of both modules reduces the system to the FedAvg baseline.

As presented in Table 3, the complete FedA4 architecture achieves superior performance across all evaluated
scenarios. Furthermore, each component individually contributes to accuracy improvements over the baseline,
confirming that the two modules are complementary. Crucially, the Traj. Update module provides a more significant
performance enhancement than the Agg. Weights module alone. This empirical finding corroborates our design
hypothesis: while reweighting offers passive mitigation against biased clients, actively rectifying the optimization
direction via client trajectories addresses the underlying cause of drift more effectively. In the case of Dirichlet
α = 1.0, using the anti-bias aggregation method alone may not yield an accuracy increase. This is because under a
near-IID data distribution (α = 1.0), the anti-bias aggregation reduces to weighted average aggregation, achieving

https://doi.org/10.53941/tai.2026.100003 36

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

similar accuracy (85.67 vs. 85.60).

Table 3. Ablation study on the core components of FedA4. The bold shows the best result or accuracy increase.

Dirichlet α = 0.1 Dirichlet α = 1.0

Agg. Weights Traj. Update Test Acc Agg. Weights Traj. Update Test Acc

× × 74.45 × × 85.67√
× 74.65 (+0.20)

√
× 85.60 (−0.07)

×
√

76.70 (+2.25) ×
√

85.75 (+0.08)√ √
77.24 (+2.79)

√ √
85.79 (+0.12)

5. Conclusions and Future Works

In this paper, we presented FedA4, a novel framework incorporating Anti-Bias Aggregation and Trajectory-Based
Adaptation mechanisms designed to address the persistent challenge of client drift in Non-IID FL environment.
Departing from conventional approaches that rely solely on aggregation weight adjustment or final model parameter
adaptation, FedA4 leverages client optimization trajectories to actively diagnose and rectify the directional bias
of local models. Extensive empirical evaluations across diverse datasets, client scales, and model architectures
demonstrate that our approach consistently outperforms baseline methods, exhibiting remarkable robustness
against varying degrees of statistical heterogeneity. Notwithstanding these contributions, we acknowledge that the
current framework entails architectural complexity, relies partially on heuristic logic for gradient adjustment, and
necessitates a public probe dataset. Consequently, future work will focus on establishing a rigorous mathematical
framework to derive theoretically sound global gradients, streamlining the architecture to enhance generalization,
and integrating generative models to synthesize probe data, thereby eliminating external dependencies and reducing
model complexity. Moreover, the FL security should also be considered, including malicious client attacks and
gradient inversion attacks. Ultimately, FedA4 provides a potent and privacy-preserving paradigm for constructing
unbiased global models. The novel application of optimization trajectories not only validates the superiority of the
framework but also illuminates new research avenues within the field of FL.

Author Contributions

G.Z.: Conceptualization, investigation, writing, and revision. J.H.: Conceptualization, investigation, writing,
and revision. Z.Y.: Conceptualization, investigation, writing, and revision. D.W.: Conceptualization, investigation,
writing, and revision. All authors have read and agreed to the published version of the manuscript.

Funding

This paper is partially supported by Hong Kong Research Grants Council grants #11203523, #11209425,
C1042-23GF, and Hong Kong Innovation and Technology Commission grant MHP/034/22.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest. Given the role as Editor-in-Chief, Dapeng Oliver Wu had no
involvement in the peer review of this paper and had no access to information regarding its peer-review process.
Full responsibility for the editorial process of this paper was delegated to another editor of the journal.

Use of AI and AI-Assisted Technologies

During the preparation of this work, the authors used ChatGPT to check the grammar. After using this tool, the
authors reviewed and edited the content as needed and take full responsibility for the content of the published article.

References

1. McMahan, B.; Moore, E.; Ramage, D.; et al. Communication-efficient learning of deep networks from decentralized data.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

https://doi.org/10.53941/tai.2026.100003 37

https://doi.org/10.53941/tai.2026.100003

Zhao et al. Trans. Artif. Intell. 2026, 2(1), 26–38

2. Konečnỳ, J.; McMahan, H.B.; Ramage, D.; et al. Federated optimization: Distributed machine learning for on-device
intelligence. arXiv 2016, arXiv:1610.02527.

3. Li, T.; Sahu, A.K.; Talwalkar, A.; et al. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.
Mag. 2020, 37, 50–60.

4. Zhao, Y.; Li, M.; Lai, L.; et al. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
5. Li, T.; Sanjabi, M.; Beirami, A.; et al. Fair resource allocation in federated learning. arXiv 2019, arXiv:1905.10497.
6. Ji, S.; Pan, S.; Long, G.; et al. Learning private neural language modeling with attentive aggregation. In Proceedings of the

2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.
7. T Dinh, C.; Tran, N.; Nguyen, J. Personalized federated learning with moreau envelopes. In Proceedings of the 34th

International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020.
8. Fu, S.; Yang, Z.; Hu, C.; et al. Personalized federated learning with contrastive momentum. IEEE Trans. Big Data 2024, 11,

2184–2194.
9. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; et al. Machine learning with adversaries: Byzantine tolerant gradient descent.

In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017.
10. Wang, H.; Yurochkin, M.; Sun, Y.; et al. Federated learning with matched averaging. arXiv 2020, arXiv:2002.06440.
11. Yurochkin, M.; Agarwal, M.; Ghosh, S.; et al. Bayesian nonparametric federated learning of neural networks. In Proceedings

of the 36 th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7252–7261.
12. Lin, T.; Kong, L.; Stich, S.U.; et al. Ensemble Distillation for Robust Model Fusion in Federated Learning.

In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, CA,
USA, 6–12 December 2020.

13. Li, T.; Sahu, A.K.; Zaheer, M.; et al. Federated optimization in heterogeneous networks. In Proceedings of the Third
Conference on Machine Learning and Systems MLSys 2020, Austin, TX, USA, 2–4 March 2020.

14. Karimireddy, S.P.; Kale, S.; Mohri, M.; et al. Scaffold: Stochastic controlled averaging for federated learning. In Proceedings
of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 5132–5143.

15. Acar, D.A.E.; Zhao, Y.; Navarro, R.M.; et al. Federated learning based on dynamic regularization. arXiv 2021,
arXiv:2111.04263.

16. Gao, L.; Fu, H.; Li, L.; et al. Feddc: Federated learning with non-iid data via local drift decoupling and correction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 10112–10121.

17. Zhu, Z.; Hong, J.; Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In Proceedings of the 38th
International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 12878–12889.

18. Yang, M.; Su, S.; Li, B.; et al. One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models.
arXiv 2025, arXiv:cs.CV/2311.08870.

19. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial nets. In Proceedings of the NIPS’14: Neural
Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014

20. Zhu, L.; Liu, Z.; Han, S. Deep leakage from gradients. In Proceedings of the NeurIPS 2019, Vancouver, BC, Canada,
8–14 December 2019.

21. Zhao, B.; Mopuri, K.R.; Bilen, H. Dataset condensation with gradient matching. arXiv 2020, arXiv:2006.05929.
22. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
23. Coates, A.; Ng, A.; Lee, H. An Analysis of Single-Layer Networks in Unsupervised Feature Learning. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
Volume 15, pp. 215–223.

24. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms.
arXiv 2017, arXiv:1708.07747.

25. Reddi, S.; Charles, Z.; Zaheer, M.; et al. Adaptive federated optimization. arXiv 2020, arXiv:2003.00295.
26. Wang, R.; Chen, Y. Adaptive Model Aggregation in Federated Learning Based on Model Accuracy. IEEE Wireless Commun.

2024, 31, 200–206.
27. Pillutla, K.; Kakade, S.M.; Harchaoui, Z. Robust aggregation for federated learning. IEEE Trans. Signal Process. 2022,

70, 1142–1154.
28. Li, Q.; He, B.; Song, D. Model-contrastive federated learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10713–10722.
29. Rasouli, M.; Sun, T.; Rajagopal, R. Fedgan: Federated generative adversarial networks for distributed data. arXiv 2020,

arXiv:2006.07228.

https://doi.org/10.53941/tai.2026.100003 38

https://doi.org/10.53941/tai.2026.100003

	Introduction
	Related Work
	Weighted Model Aggregation
	Client Parameter Constraint
	Generative Model-Assisted Global Training

	Methodology
	Client-Side Operations
	Server-Side Operations
	Evaluation of Anti-Bias Weights
	Adaptation of Client Gradients
	Anti-Bias Aggregation and Trajectory-Based Adaptation

	Summary and Discussion

	Experiment
	Experimental Setup
	Comparison with Baseline Methods
	Scalability of Model Architecture
	Robustness to Different Client Numbers
	Ablation Study

	Conclusions and Future Works

