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Abstract: Commercial anion exchange membrane water electrolyzers (AEMWE) typically do not provide detailed 
information about internal system parameters or stack characteristics, making physics-based modeling difficult 
and limiting their integration into customized digital simulation environments. Moreover, electrochemical and 
multiphysics models often require extensive computational resources, and parameter optimization can be 
prohibitively expensive. This study investigates the use of a long short-term memory (LSTM) network to predict 
the dynamic response of a commercial AEMWE under varying hydrogen production rates. The goal is to establish 
a data-driven model that replicates the operational logic of the real system, enabling the prediction of stack current, 
stack voltage, and hydrogen flow rate directly from the target production rate with significantly lower 
computational cost while preserving the transient behavior of the device. Model validation shows that the proposed 
LSTM achieves RMSE values of 0.48 for stack current, 0.92 for stack voltage, and 5.22 for hydrogen flow rate. 
The model successfully captures the overall dynamic trends and demonstrates that hydrogen flow rate and stack 
voltage can be inferred from the target production rate and stack current. Training is computationally efficient, 
allowing rapid model development. Although undershoot occurs during rapid decreases in production rate due to 
the smoothing characteristics of LSTM, the overall prediction error remains within acceptable bounds. The results 
highlight the potential of data-driven modeling for fast and practical AEMWE system representation, supporting 
future development of digital twins and accelerating applications in green hydrogen technologies. 

Keywords: anion exchange membrane water electrolysis; long short-term memory; deep learning; digital twin; 
dynamic modeling 
 

1. Introduction 

Since the Industrial Revolution, the atmospheric concentration of carbon dioxide has increased by more than 
50%, intensifying the greenhouse effect and causing a continuous rise in global surface temperatures. In response 
to the rapidly growing energy demand, humanity is actively seeking cleaner and more sustainable energy solutions. 
Hydrogen energy, with its high energy density and zero-carbon characteristics, is regarded as one of the most 
promising energy storage technologies. Hydrogen (H2) can be transported through compression, liquefaction, or 
chemical storage, and also serves as an important medium for long-term and seasonal energy storage. 

To achieve net-zero carbon emissions, global hydrogen demand is projected to exceed 500 million tons per 
year by 2050 [1]. Facilitating a sustainable energy transition by integrating electrolysis hydrogen production 
systems with small wind turbines and photovoltaic (PV) systems has emerged as an effective solution [2]. 
However, due to the intermittent nature of renewable energy, understanding the dynamic behavior of electrolyzers 
under various operating temperatures and power inputs is crucial for overall system efficiency. Current water-
electrolysis-based hydrogen production technologies can be categorized by operating temperature into high-
temperature Solid Oxide Electrolysis Cells (SOECs) and low-temperature Proton Exchange Membrane 
Electrolysis Cells (PEMECs), Alkaline Water Electrolysis (AWE), and Microbial Electrolysis Cells (MECs) [3]. 

Among these, AWE technology can be traced back to 1789, when Adriaan and colleagues first succeeded in 
decomposing water into hydrogen and oxygen using an electrostatic generator [4]. AWE is currently the most 
mature hydrogen production technology [5] and has already achieved commercial-scale deployment worldwide. 
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However, AWE suffers from several drawbacks, including low current density, slow reaction rates, lower gas 
purity, slow start-up, and corrosion or maintenance issues associated with the KOH electrolyte, all of which reduce 
overall energy efficiency [6]. To overcome the limitations of AWE, polymer membrane electrolysis technology 
was developed in the 1960s and applied in aerospace applications. This technology offers high current density, 
high efficiency, rapid response, compact system design, low operating temperature (20–80 °C), and the ability to 
produce ultra-pure hydrogen [7]. Although PEMECs provide high efficiency and high current density, their 
reliance on precious metal catalysts results in significantly higher costs compared to AWE. Conversely, AWE is 
more cost-effective but is constrained by liquid electrolytes and limited dynamic performance. To address the 
limitations of both technologies, AEMWE emerged as an alternative. AEMWE utilizes earth-abundant catalytic 
materials to reduce capital costs while maintaining high energy efficiency and strong scalability for industrial 
applications [8]. 

Developing a multiphysics model for an electrolyzer involves the coupling of heat transfer, mass transfer, 
and electrochemical reactions, resulting in high model complexity and substantial computational cost, making it 
unsuitable for dynamic simulations [9]. At the cell and stack scales, multiscale models constructed using 
computational fluid dynamics (CFD) require significant computational resources, limiting their applicability for 
fast simulation or real-time control [10]. Industrial-scale electrolyzer modeling further requires numerous internal 
parameters [11], many of which are not accessible in commercial systems, making such simulations difficult to 
apply in practice. Therefore, given the high computational cost of multiphysics and CFD-based models and the 
limited availability of internal parameters in commercial devices, machine-learning-based modeling has emerged 
as a highly promising alternative, particularly for dynamic prediction and digital-twin applications. 

Reference [12] compared multiple machine-learning models—including Elman neural networks, back-
propagation neural networks (BPNN), long short-term memory (LSTM), random forest (RF), support vector 
machine (SVM), bidirectional LSTM (bi-LSTM), Firefly-optimized Elman networks, and genetic-algorithm-
optimized BPNN (GA-BP)—for PEMEC parameter prediction, demonstrating that machine learning can 
effectively capture nonlinear relationships among electrolyzer parameters. Reference [13] employed a 
convolutional neural network–long short-term memory (CNN-LSTM) model to predict the time-series evolution 
of electrolyzer voltage, achieving accurate degradation prediction across two datasets. Reference [14] utilized a 
NARX architecture based on feedforward neural networks (FNN) and LSTM to predict PEMEC performance, 
successfully capturing its nonlinear dynamic characteristics and confirming the capability of LSTM models for 
nonlinear dynamic prediction of electrolyzers. 

While conventional statistical optimization and metaheuristic algorithms have achieved significant results in 
screening electrolyzer parameters [15], dynamic prediction of commercial AEM systems under rapid transient 
operation still requires deep learning architectures with strong temporal modeling capabilities to capture their 
nonlinear characteristics. 

To overcome the limitations of traditional multiphysics models in terms of computational cost and parameter 
accessibility, this study aims to develop a data-driven model capable of accurately describing the dynamic behavior 
of a commercial AEMWE system. Using measurement data collected under various load conditions, an LSTM-
based multivariable prediction framework is constructed to estimate key operating parameters, including current, 
voltage, and hydrogen flow rate. The model effectively captures the nonlinear and transient characteristics of 
AEMWE and demonstrates fast inference capability, making it a strong foundation for future digital-twin 
development and control-system design. 

2. Methodology 

2.1. System Description 

The experiments in this study were conducted using a commercial Enapter AEM Electrolyzer (EL 2.1) 
(Figure 1), which is capable of producing up to 500 NL/h of hydrogen. The system operates with a nominal 
electrical consumption of approximately 2.4 kW, including a 2.2 kW electrolyzer stack and roughly 0.6 kW of 
thermal losses during steady operation. The detailed specifications are summarized in Table 1. 

To operate the Enapter AEM system, the user sets the target hydrogen production rate through a dedicated 
smartphone application. After the command is issued, the system performs hydration and ramp-up procedures 
before reaching stable operation. During operation, key system variables—including stack voltage, stack current, 
and hydrogen flow rate—are automatically uploaded to a local web interface for monitoring and data logging. 

Although variables such as stack voltage, stack current, and hydrogen flow rate exhibit approximately linear 
relationships under steady-state conditions, their behavior becomes highly dynamic during warm-up and transient 
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operation. These variables do not follow a fixed static relationship and therefore cannot be described by simple 
analytical formulas. 

 

Figure 1. Enapter AEM electrolyzer EL2.1. 

Table 1. Enapter AEM electrolyzer EL 2.1 specs. 

Parameters Value 
Dimensions W: 482 mm * D: 634 mm * H: 307 mm 

Weight 55 kg 
Production rate 500 NL/hr 
Output pressure Up to 35 barg 

Hydrogen output purity 35 bar: ~99.9% (Impurities: ~1000 ppm H2O)  
8 bar: >1500 ppm H2O 

Nominal power consumption (beginning of life) 4.8 kWh/Nm3 
Operative power consumption 2400W 

Power supply 200–240 VAC, 50/60 Hz 
Maximum water input conductivity 20 µS/cm at 25 °C 

Water consumption ~400 mL/h 
Water input pressure range 1–4 barg 

Ambient operative temperature range 5~45 °C 
Ambient operative humidity range Up to 90% Rh, non-condensing 

IP rating IP 20 

Control and monitoring Fully automatic with Enapter’s EMS,  
Modbus TCP via Ethernet 

2.2. Data Preprocessing 

In this study, the hydrogen production rate of the AEM electrolyzer was manually adjusted every 30 min 
with a step size of 10%, starting from 60%, increasing to 100%, and then decreasing back to 60%. The system 
recorded data every two seconds, resulting in a total of 14,165 samples over 275 min (Figure 2). From the system’s 
automatically logged parameters, four variables—production rate, stack current, stack voltage, and hydrogen flow 
rate—were selected as the inputs and outputs for modeling the dynamic response of the electrolyzer. 

The dataset was split chronologically, with 80% used for training and the remaining 20% for validation. In 
addition, an independent dynamic test was conducted under a different operating profile, where the production rate 
was adjusted every six minutes with the same 10% step size, cycling from 60% to 100% and back to 60% for two 
full cycles. This dataset was also sampled every two seconds, yielding 8798 samples over 170 min, and was used 
as an unseen test set to evaluate the model’s generalization capability (Figure 3). Missing values in the dataset 
were handled using mean imputation. To mitigate the impact of scale differences among variables, all input and 
output features were standardized, which improves both training stability and prediction accuracy. 



Green Energy Fuel Res. 2026, 3(1), 1–11 https://doi.org/10.53941/gefr.2026.100001  

4 

 

Figure 2. Training production rate cycle applied to AEM system. 

 

Figure 3. Test production rate cycle applied to AEM system for generalization evaluation. 

To enable the LSTM model to learn the temporal dependencies of the system, a sliding-window approach 
was applied to transform the time-series data into supervised learning pairs. A window length of 30 time steps was 
used, where each sequence of 30 consecutive samples served as the model input to predict the system response at 
the next time step. This method preserves the sequential structure of the data and allows the model to capture the 
dynamic behavior of the AEM electrolyzer under varying production rate conditions. 

2.3. LSTM Neural Network 

Recurrent Neural Networks (RNNs) are capable of preserving temporal dependencies within sequential data, 
making them suitable for time-series modeling. However, conventional RNNs often suffer from the vanishing-
gradient problem when processing long sequences. To address this limitation, the Long Short-Term Memory 
(LSTM) architecture introduces memory cells to replace the traditional hidden units, enabling the model to capture 
both short-term and long-term temporal dependencies (Figure 4). 

For time series 𝑋் ൌ ሺ𝑥ଵ, … , 𝑥்ሻ , the LSTM receives an input 𝑥௧  at each time step 𝑡  and regulates 
information flow through three gating mechanisms: the input gate, forget gate, and output gate. The cell state 𝐶௧ 
is updated based on the outputs of these gates, allowing the network to retain essential historical information 
throughout the sequence. 
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When a new input 𝑥௧ enters the model, the forget gate determines which components of the previous hidden 
state ℎ௧ିଵ should be retained or discarded. Its output is computed as: 

𝑓௧ ൌ 𝜎ሺ𝑊௙ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௙ሻ (1)

where 𝑊௙ and 𝑏௙ denote the weight matrix and bias term of the forget gate. 
The input gate controls whether the processed input 𝑥௧ should be incorporated into the cell state: 

𝑖௧ ൌ 𝜎ሺ𝑊௜  ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௜ሻ (2)

where 𝑊௜ and 𝑏௜ represent the input gate’s weights and bias. 
The input signal is further transformed through a tanh activation to generate a candidate information vector 

𝐶௧෩ , which is integrated into the updated cell state: 

𝐶௧෩ ൌ tanℎ ሺ𝑊௖ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௖ሿ (3)

where 𝑊௖ and 𝑏௖ correspond to the weights and bias associated with the candidate cell update. 
The updated cell state 𝐶௧ is computed as: 

𝐶௧ ൌ 𝑓௧ ⋅ 𝐶௧ିଵ ൅ 𝑖௧ ⋅ 𝐶௧෩  (4)

Finally, the output gate determines the hidden state ℎ௧ by modulating the activated cell state: 

𝑜௧ ൌ 𝜎ሺ𝑊௢ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௢ሻ (5)

ℎ௧ ൌ 𝑜௧ ⋅ tanℎ 𝐶௧ (6)

where 𝑊௢ and 𝑏௢ denote the output gate’s weights and bias. 
Each LSTM layer consists of 𝑁௖  memory cells, and the number of cells determines the model’s 

representational capacity. After processing the entire input sequence, the final hidden state is passed through a 
fully connected output layer to generate the system response at the next time step. 

 

Figure 4. A chain of LSTM units [13]. 

2.4. Training Setup 

The LSTM model in this study was implemented using the open-source PyTorch deep learning framework, 
and consists of a single hidden layer. The input data were transformed into fixed-length sequences through a 
sliding-window approach and trained using a mini-batch strategy. For each batch, the model performs a forward 
pass and computes the Mean Squared Error (MSE) as the loss function. Gradients across all time steps are then 
obtained through Backpropagation Through Time (BPTT), and the model parameters are updated using the 
Adaptive Moment Estimation (Adam) optimizer. This training procedure continues until the maximum number of 
epochs is reached or early stopping is triggered. 

Regarding hyperparameter settings, the batch size was set to 32, the initial learning rate to 5 × 10−4, the loss 
function to MSE, and the maximum number of training epochs to 100. To enhance training stability, the 
ReduceLROnPlateau scheduler was employed to adjust the global learning rate, with a decay factor of 0.5 and a 
patience of 5 epochs. When the validation loss plateaued, the scheduler automatically reduced the learning rate to 
facilitate more effective convergence. In addition, early stopping with a patience of 10 epochs was applied to 
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prevent overfitting and improve training efficiency by halting the process when the validation loss failed to 
improve for 10 consecutive epochs. 

Optimizer selection plays a critical role in training RNN-based models. In this work, the Adam optimizer 
was adopted, which can be viewed as a combination of Momentum and RMSProp. Momentum accumulates the 
first-order moment of gradients, providing inertia that accelerates convergence and reduces oscillations, but may 
accumulate outdated gradient directions and lead to suboptimal updates. RMSProp adjusts the learning rate of 
each parameter based on the second-order moment of gradients, enabling more stable progress in parameter 
spaces with varying scales; however, the absence of a momentum term makes it prone to oscillation in narrow 
valleys or stagnation near saddle points. Adam integrates the advantages of both methods by incorporating 
momentum-based smoothing and adaptive per-parameter learning rates, thereby improving training stability and 
convergence efficiency. 

At the end of each epoch, the model automatically saves the set of parameters that yields the lowest 
validation loss. After training, this best-performing model is used for inference on the test dataset to ensure 
optimal predictive performance. 

3. Results and Discussion 

3.1. Correlation Analysis and Feature Selection Justification 

Based on the Pearson Correlation Coefficient (PCC) analysis (Figure 5), the hydrogen flow rate (h2_flow) 
and stack current (i_stack) exhibit a correlation coefficient of r = 1.00, indicating a perfectly linear relationship. In 
addition, the correlations between h2_flow and the target hydrogen production rate (pro_rate), as well as between 
i_stack and pro_rate, both reach r = 0.99, representing an almost perfectly linear relationship. In comparison, the 
correlation coefficients between the stack voltage (v_stack) and the aforementioned variables fall within the range 
of 0.96–0.97. Although slightly lower, these values still indicate a highly linear relationship. 

 

Figure 5. PCC correlation heatmap. 

The perfectly linear relationship between h2_flow and i_stack is consistent with the reaction-rate behavior 
described by Faraday’s law of electrolysis. According to Faraday’s law: 

𝑛 ൌ
𝑄
𝑧𝐹

 (7)

where n is the amount of substance produced, Q is the total electric charge passing through the electrolyzer, z is 
the number of electrons transferred, and F is Faraday’s constant. The total charge Q is given by the time integral 
of the current: 
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Q ൌ න𝐼ሺ𝑡ሻ𝑑𝑡 (8)

In this study, the data were recorded at a fixed sampling frequency, meaning that the time interval Δt is 
constant. Under this condition, the integral can be approximated as the summation of current values, implying a 
linear relationship between Q and I. Since the hydrogen production rate n is proportional to Q, the observed perfect 
linearity (r = 1.00) between h2_flow and i_stack is fully consistent with electrochemical theory. 

Given the extremely high linear correlations among these variables, including all of them as model inputs 
would introduce substantial redundancy. Such multicollinearity can obscure the gradient direction during training, 
reduce parameter update stability, and ultimately degrade model robustness. Moreover, incorporating multiple 
highly correlated features unnecessarily increases model complexity and raises the risk of overfitting without 
providing additional predictive benefit. Therefore, this study selects the target hydrogen production rate (pro_rate) 
and stack current (i_stack) as the input features, representing the most informative and physically meaningful 
combination of operating variables. 

3.2. Training Performance 

The training loss curve of the LSTM model (Figure 6) shows that both the training loss and validation loss 
decrease rapidly during the initial phase, indicating that the model quickly learns the relationship between the hydrogen 
production rate and the stack current, stack voltage, and hydrogen flow rate. In the later stages, the losses continue to 
decrease smoothly, with only minor fluctuations that do not lead to divergence, demonstrating stable training behavior. 
Early stopping was triggered at epoch 41, preventing unnecessary over-training. Throughout the process, the validation 
loss remained slightly lower than the training loss, suggesting that the model did not exhibit overfitting. 

 

Figure 6. Loss curve. 

During the training process, the loss curves exhibit smooth convergence, indicating that the model effectively 
captures the mapping between the input and output variables. This convergence behavior is consistent with the 
characteristics of the dataset: the input features (pro_rate and i_stack) and output variables exhibit strong linear 
relationships, enabling the model to rapidly grasp the dominant trends and achieve substantial loss reduction in the 
early epochs. Furthermore, the use of a relatively small initial learning rate ensures stable parameter updates; thus, 
the slight oscillations observed in later epochs do not compromise training stability or convergence. 

With the early stopping mechanism in place, training is terminated once the validation loss ceases to improve, 
preventing overfitting while maintaining computational efficiency. Overall, the training curves demonstrate that 
the model achieves good convergence and generalization performance, providing a solid foundation for subsequent 
evaluation under dynamic operating conditions. 
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3.3. Test Results Under Dynamic Operating Conditions 

Under dynamic operating conditions, the model demonstrates strong tracking performance across all three 
output variables. The predicted trajectories closely overlap with the true signals, and even the small oscillations 
embedded in the operating profile are accurately reproduced. In the region where the hydrogen production rate 
reaches 100%, the predicted hydrogen flow rate and stack current are slightly lower than the measured values, yet 
the overall trend remains consistent with the ground truth. No noticeable temporal lag is observed, indicating that 
the LSTM effectively follows rapid system transitions. (Figures 7–9). 

 

Figure 7. LSTM model prediction of hydrogen flow on unseen test data. 

 

Figure 8. LSTM model prediction of stack current on unseen test data. 
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Figure 9. LSTM model prediction of stack voltage on unseen test data. 

Across all variables, undershoot behavior commonly appears during sharp downward transitions, reflecting 
the model’s conservative response when the system output drops abruptly. Hydrogen flow rate and stack current 
exhibit the most accurate tracking during normal operation, with deviations primarily concentrated in fast-
decreasing segments. Although overshoot events are present, their magnitudes are generally small: the average 
overshoot is 0.66 for hydrogen flow (maximum 17.49, 1757 instances), 0.07 for stack current (maximum 1.65, 
1463 instances), and 0.42 for stack voltage (maximum 20.39, 3283 instances). In contrast, undershoot is most 
pronounced in hydrogen flow, with an average deviation of −4.36 and a maximum of −41.97 (826 instances), while 
stack current and voltage exhibit milder undershoot patterns. Overall, the model successfully captures both the 
global trends and fine-scale dynamics of the system, exhibiting predictable overshoot and undershoot behaviors 
consistent with the rapid transitions in the operating conditions. 

To quantitatively evaluate the model’s prediction accuracy under dynamic conditions, RMSE, MAE, and 
MAPE were computed for all three output variables. Stack current exhibits the lowest prediction error, with an 
RMSE of 0.48 and an MAE of 0.21, indicating that the model accurately captures its dynamic behavior. Stack 
voltage shows slightly higher errors (RMSE 0.92, MAE 0.37), mainly due to nonlinear polarization effects and 
measurement noise, yet the overall prediction quality remains satisfactory. 

In contrast, hydrogen flow rate yields significantly larger errors, with an RMSE of 5.22 and an MAE of 2.32, 
reflecting the greater difficulty in modeling its dynamic behavior. These error metrics align with the tracking 
analysis: stack current is the easiest variable to predict, followed by stack voltage, while hydrogen flow rate 
exhibits the largest errors due to its strong nonlinearity and rapid fluctuations. 

From a physical perspective, the prediction difficulty varies across the three output variables. Stack current 
is a direct electrochemical output with clean measurements and fast response, enabling the model to reconstruct 
its dynamics with low error. Stack voltage is influenced by polarization behavior, humidity, temperature, and 
measurement noise, resulting in moderate nonlinearity and slightly higher errors, yet its overall tracking 
performance remains stable. 

In contrast, although hydrogen flow rate is theoretically linear with respect to current, its dynamic behavior 
is affected by additional factors such as valve actuation delay, gas compressibility, manifold volume, pressure 
fluctuations, and low-flow measurement noise. These effects introduce strong nonlinearity and noise into the true 
signal. Consequently, even when current varies smoothly, hydrogen flow rate exhibits pronounced transient 
deviations during rapid increases and decreases, leading to significantly larger RMSE and MAE values. 

Furthermore, the temporal smoothing nature of LSTM causes the model to produce undershoot during abrupt 
downward transitions, a phenomenon particularly evident in hydrogen flow due to its larger magnitude and faster 
rate of change. Overall, the differences in prediction error reflect the distinct physical dynamics and measurement 
characteristics of each variable rather than their theoretical linear relationships. 

Overall, the combined analysis of tracking behavior, error metrics, and physical mechanisms demonstrates 
that the proposed model exhibits strong generalization capability under dynamic operating conditions. All three 
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output variables are accurately reconstructed, capturing both their major trends and transient variations without 
noticeable delay or instability. The low prediction errors in stack current and voltage indicate that the model 
effectively learns both linear and moderately nonlinear electrochemical behaviors. Although hydrogen flow rate 
shows larger errors due to its strong nonlinearity and measurement noise, the model still reproduces its rising and 
falling transitions with reasonable dynamic consistency. 

In summary, the model maintains stable prediction quality across different operating regions and responds 
promptly to rapid input changes, demonstrating robust dynamic tracking performance and practical applicability. 
These results are consistent with the training-phase behavior, further confirming the model’s reliability when 
applied to previously unseen dynamic data. 

3.4. Discussion of Model Behavior 

The model exhibits clear asymmetry between the rising and falling phases of the system dynamics. In the 
real system, the hydrogen flow rate decreases much more rapidly than it increases, and the LSTM requires the 
updated output information before it can fully adjust its prediction. As a result, the model tends to show delayed 
responses or overshoot during sharp downward transitions. This behavior reflects the inherent limitations of 
sequence-based models when handling abrupt changes, yet remains consistent with typical characteristics of time-
dependent neural architectures. 

The differences in prediction difficulty among the three output variables further highlight the distinct nature 
of their physical dynamics. Stack current is directly controlled by the production rate, making it the cleanest and 
most predictable signal. Stack voltage, in contrast, is inferred from the current, causing any current-related error 
to propagate and accumulate, in addition to the voltage’s inherent sensitivity to polarization behavior and operating 
conditions. Hydrogen flow rate is the most challenging variable to predict, as its dynamics are influenced by control 
delays, measurement noise, pressure fluctuations, and gas compressibility, all of which introduce stronger 
nonlinearity and uncertainty into the signal. 

Moreover, the structural characteristics of the LSTM also shape the model’s dynamic behavior. Because the 
LSTM retains information from previous time steps and uses it to estimate future outputs, it is prone to delayed or 
overshooting responses when the system undergoes sudden and rapid changes. This tendency is particularly 
evident in variables with large magnitudes and fast downward transitions, such as the hydrogen flow rate. 

3.5. Summary of Findings 

The model demonstrates strong overall performance under dynamic operating conditions, accurately 
capturing the major trends of all three output variables and maintaining consistent behavior during rapid system 
transitions. Among the variables, stack current is predicted with the highest accuracy due to its direct dependence 
on the production rate, which provides a clean and well-defined control relationship. In contrast, hydrogen flow 
rate is the most challenging variable to predict, as its dynamics are influenced by control delays, measurement 
noise, and pressure-related effects. The most prominent model deviation occurs in the form of undershoot during 
downward transitions, reflecting the LSTM’s characteristic response to abrupt decreases. Overall, the model is 
capable of rapidly reconstructing dynamic system behavior and shows strong potential for practical application. 

4. Conclusions 

This study developed a data-driven model capable of accurately predicting the dynamic behavior of water 
electrolyzers, demonstrating strong generalization performance on unseen test data. Without relying on complex 
physical formulations, the model effectively reconstructs key system dynamics and shows practical potential for 
dynamic operation and digital-twin applications. Although undershoot deviations remain during rapid downward 
transitions, the overall prediction quality remains stable. 

The main contributions of this work are as follows: 
(1) A multivariable dynamic prediction model for water electrolyzers that captures nonlinear and transient 

behaviors effectively. 
(2) Demonstration that data-driven modeling can replace high-cost physical simulations while maintaining high 

accuracy with low computational demand. 
(3) Verification of strong generalization capability on previously unseen operating conditions. 
(4) A foundational framework for digital-twin and real-time monitoring applications in water electrolyzer systems. 
(5) Identification of LSTM limitations in fast-changing regimes, with future directions toward incorporating 

physical priors to enhance accuracy and interpretability. 
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