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Abstract: Understanding the composition and physical properties of Earth’s deep 
interior is fundamental to deciphering planetary evolution, yet modeling these 
systems under extreme pressure–temperature (P–T) conditions remains a 
significant challenge. While first-principles simulations based on density functional 
theory (DFT) offer high accuracy, their prohibitive computational costs typically 
restrict studies to small scales and short timescales. Recently, machine learning 
potentials (MLPs) have emerged as a transformative bridge, providing near-first-
principles fidelity at a fraction of the cost and enabling large-scale simulations of 
complex materials under deep-Earth conditions. This review synthesizes recent 
progress in applying MLPs to high P–T mineral physics, focusing on breakthroughs 
in modeling thermodynamic, transport, and elastic properties. We discuss 
methodological hurdles in extending MLPs across broad P–T ranges and evaluate 
emerging strategies—such as active learning, uncertainty quantification and 
temperature-dependent training—to overcome them. By uncovering phenomena 
like superionic conduction and defect-controlled behavior, MLPs are shifting our 
perspective of the deep Earth from idealized models toward complex, dynamic 
systems, paving the way for a predictive, data-driven era in mineral physics.  

 Keywords: machine learning potential; high pressure high temperature; transport 
properties; seismic properties; thermodynamic properties 

1. Introduction 

The Earth’s deep interior, particularly the mantle and core, plays a pivotal role in understanding our planet’s 
origin, evolution, and internal dynamics through the study of its composition and physical properties. However, 
natural samples are only available to the depth up to the bottom of transition zone [1,2]. The study of the most part 
of Earth’s interior has to rely on the experimental and theoretical modeling. As shown in Figure 1, the lower mantle 
experiences pressures ranging from approximately 24 GPa at the base of the transition zone to about 136 GPa near 
the core-mantle boundary, while temperatures increase from around 1839 K to roughly 4100 K [3–5]. Conditions 
in the core are even more extreme, with pressures reaching up to 360 GPa in the center and temperatures likely 
exceeding 5400 K at the inner core boundary [6]. The structures and properties of materials under such conditions 
are in stark contrast to those under ambient conditions. 
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Figure 1. Schematic diagram of the pressure-temperature conditions in Earth’s interior. Pressure data are from Ref. [3]. 
Temperature data for the transition zone are from Ref. [5]. Temperature at the core–mantle boundary is from Ref. [4]. 
Temperature data at the inner–outer core boundary is from Ref. [6]. 

Experimental investigations of Earth’s deep interior remain inherently challenging because of the extreme 
pressures and temperatures characteristic of these regions [7]. High P–T experiments are indispensable tools for 
probing the physical properties of deep-Earth materials, as they enable researchers to reproduce relevant 
thermodynamic conditions in the laboratory. However, such experiments face several intrinsic limitations. 
Constrained by instrumentation, the accessible sample volumes are typically small, producing weak signals that 
require exceptionally sensitive detection systems [8,9]. Moreover, pronounced pressure and temperature gradients 
within the sample chamber can introduce significant uncertainties in the derived data [8]. In many cases, in situ 
observations are not feasible, and samples must be quenched to ambient conditions for ex situ analyses—an approach 
that may alter their structures and phase relations, leading to deviations from the true high P–T states [10,11]. These 
challenges collectively limit the precision and reproducibility of experimental constraints on the properties and 
behaviors of materials in Earth’s deep interior. 

Theoretical and computational methods provide an essential complement to experiments in exploring the 
properties of Earth’s deep materials. Among them, first-principles calculations based on DFT have become a 
cornerstone of mineral physics owing to their predictive accuracy and parameter-free nature [12,13]. By explicitly 
solving the electronic structure, DFT enables the computation of interatomic forces and total energies with high 
fidelity, offering reliable predictions across a broad range of P–T conditions relevant to the entire Earth’s interior. 
Such calculations have been instrumental in determining equations of state [14,15], thermodynamic and elastic 
properties [16–21], and various transport properties [22–25] of deep-Earth materials. 

Despite these advantages, first-principles simulations are constrained by their substantial computational cost, 
which limits accessible system sizes and timescales. Typical simulations involve only a few hundred atoms and 
extend over picosecond to nanosecond durations—insufficient for capturing large-scale structural heterogeneity 
or slow dynamic processes [26,27]. At lower temperatures, where atomic mobility decreases, achieving chemical 
or structural equilibrium requires longer sampling times to adequately explore the phase space, further 
compounding computational demands. These constraints hinder the direct application of DFT to complex, 
multicomponent systems under realistic mantle and core conditions. 

In recent years, MLPs have emerged as an efficient and accurate alternative for modeling materials under 
extreme conditions [28,29]. They bridge the long-standing gap between the high accuracy but prohibitive cost of 
first-principles methods and the computational efficiency but limited transferability of empirical potentials. 
Trained on datasets generated from first-principles calculations, MLPs can reproduce interatomic forces and energies 
with near first-principles accuracy while reducing computational cost by several orders of magnitude [27,30,31]. This 
capability enables simulations involving tens of thousands of atoms over nanosecond-to-microsecond timescales—
conditions that are far closer to those within Earth’s deep interior than previously attainable. 
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MLPs have already been widely applied in studies of deep-Earth materials, yielding significant advances 
under mantle and core P–T regimes. For instance, MLP-based simulations have been used to investigate the 
thermal conductivity of bridgmanite and post-perovskite in the lower mantle, refining estimates of heat flux across 
the core–mantle boundary and thereby improving our understanding of the thermal budget and magnetic field 
evolution of the planet [32]. Deep-learning molecular dynamics has also enabled large-scale simulations of iron at 
core conditions, employing supercells to determine the densities and equations of state of the hexagonal close-
packed (hcp) and body-centered cubic (bcc) phases [33,34]. In addition, MLPs have been applied to study the 
partitioning and behavior of light elements in the core [35,36]. Such simulations reveal how elements like sulfur, 
oxygen, and hydrogen influence core density, elasticity, and thermodynamic properties, offering new insights into 
the formation and evolution of Earth’s core. 

Consequently, this review summarizes recent progress in applying MLPs to mineral physics, specifically 
under extreme high-pressure and high-temperature conditions. We explore how MLPs elucidate the composition, 
transport properties, elastic behavior, and thermodynamics of Earth’s deep materials. Furthermore, we discuss 
current challenges and emerging strategies for extending MLPs toward more realistic, chemically complex, and 
defect-bearing systems. For a broader discussion on the developmental roadmap of MLPs, readers are referred to 
several other recent reviews [37,38]. 

2. Developing Machine Learning Potentials for Extreme Conditions 

The central principle of a MLP is to approximate the interatomic potential energy surface (PES) based on 
reference data from first-principles calculations. In doing so, MLPs enable simulations of substantially larger 
atomic systems and longer timescales at a fraction of the computational cost, while maintaining accuracy 
comparable to quantum mechanical methods. 

Current approaches to constructing MLPs can be broadly divided into two categories: descriptor-based 
models and message-passing models. Descriptor-based models—such as neural network potentials (NNPs), 
Gaussian approximation potentials (GAPs), and moment tensor potentials (MTPs)—encode each atom’s local 
environment into mathematical descriptors, which are then used by regression algorithms (e.g., neural networks 
or Gaussian processes) to fit the first-principles PES [27,39]. In contrast, message-passing neural networks 
(MPNNs), such as PhysNet [40], represent atomic systems as graphs, learning interatomic interactions through 
iterative message exchanges between nodes. These frameworks have significantly improved the efficiency and 
generalization of MLPs across complex chemical and structural spaces. 

2.1. Workflow for Developing MLPs 

The typical workflow for developing a MLP involves four key stages (Figure 2): 
(1) Dataset generation. A diverse training dataset is constructed using first-principles calculations that provide 

atomic structures, total energies, forces, and stresses. 
(2) MLP training. A machine learning potential is trained to map atomic configurations to corresponding energies 

and forces. 
(3) MLP validation. The trained potential is evaluated against an independent validation set to assess accuracy 

and transferability. 
(4) Application. The validated MLP is then employed in large-scale molecular dynamics (MD) simulations or 

structure searches to explore materials behavior under target conditions. 
The quality and diversity of the training dataset critically determine the reliability of the resulting potential. 

To capture relevant regions of configurational space, the dataset must include a broad variety of atomic 
arrangements representative of the target P–T conditions. Constructing such datasets typically involves extensive 
first-principles molecular dynamics simulations followed by strategic sampling. 

Figure 2 presents the overall workflow for training MLPs from first-principles data using active learning. 
The iterative scheme starts by training one or more initial MLP on a small seed dataset, then uses these MLPs to 
perform molecular dynamics simulations. Configurations for which the MLPs yield unreliable predictions are 
identified from the MD results as candidate structures. These candidates are recomputed with first-principles 
methods and appended to the training set. This iterative scheme begins with a small initial dataset to train a 
preliminary model, which is then used to perform MD or structure searches. When the model encounters 
configurations with high prediction uncertainty or extrapolation risk, those configurations are recomputed using 
first-principles methods and added to the training set. The potential is then retrained, and the cycle repeats until 
convergence. Active learning thus minimizes redundant first-principles calculations, systematically explores the 
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configuration space, and enhances both training efficiency and model robustness. Active learning has emerged as 
an efficient strategy to optimize dataset construction (Figure 2) [41,42]. 

 

Figure 2. Schematic diagram of the machine learning potential training workflow. 

Because MLPs are data-driven, the quality of the first-principles reference data is paramount. Variations in 
exchange–correlation functionals, plane-wave cutoff energies, k-point sampling, or pseudopotentials can lead to 
systematic deviations in the fitted potential. Therefore, careful convergence testing of all first-principles 
parameters is essential before dataset generation and model fitting. 

2.2. Toward Universal and Transferable Potentials 

Beyond system-specific models, recent studies have focused on developing general-purpose or universal 
MLPs capable of spanning broader chemical and structural spaces. Examples include MatterGen, CHGNet, and 
M3GNet [43–45]. These models incorporate multimodal training data—energies, forces, and stresses—and 
leverage message-passing architectures to achieve high accuracy in predicting thermodynamic stability, structural 
relaxation, and materials properties. Their transferability has accelerated materials discovery and enabled cross-
scale simulations such as crystal structure prediction, defect energetics, and alloy design [46]. 

However, the reliability of universal potentials strongly depends on the quality, diversity, and 
representativeness of their training datasets. Expanding chemical and P–T coverage requires vastly larger and more 
varied configuration spaces, which in turn demands significant computational resources. Consequently, universal 
MLPs often show somewhat larger errors in energy and force predictions than specialized models optimized for a 
single system. Achieving an optimal balance between generality and accuracy—while maintaining manageable 
computational cost—remains a central challenge. Moreover, obtaining high-precision thermodynamic properties, 
such as free energies and melting points, places particularly stringent demands on MLP accuracy, an area where 
current universal models still require improvement. 

2.3. Challenges under Extreme Pressure–Temperature Conditions 

At present, no universal MLP has been published that fully covers the extreme P–T conditions of Earth’s 
interior, as the relevant configurational space expands dramatically with increasing P and T. Elevated pressures 
compress atomic volumes, shorten bond lengths, and drive complex phase transitions. They can also induce charge 
redistribution, causing transitions from semiconducting to metallic [47], or even metallic to insulating [48], states. 
In some cases, electrons localize at interstitial sites to form electrides [49]. These effects pose additional challenges 
for potential fitting compared with ambient conditions. 

Temperature introduces another layer of complexity through the contribution of electronic entropy, which 
varies significantly at high temperature. As shown in Figure 3, the electronic-entropy contribution to the total 
energy increases sharply with temperature even for the same atomic configuration. Standard MLPs, which do not 
explicitly account for electronic temperature, yield identical energies across temperatures, neglecting this 
important effect. 
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Two main strategies have been proposed to incorporate temperature dependency of electronic properties: 
1. Multiple-temperature training, in which separate MLPs are trained on datasets generated at different 

electronic temperatures to span a wide P–T range [33]. 
2. Explicit electronic temperature dependent MLPs, where the electronic temperature term is embedded directly 

into the model architecture [50]. 

 

Figure 3. The contribution of electronic entropy of different materials to the energy of the system changes with the 
electronic temperature (300 K, 4200 K, 6000 K) at 0 GPa. Static calculations were performed for each material at 
varying electronic temperature. 

For many systems near ambient conditions, the electronic-entropy contribution to total energy is small and 
varies little with temperature, so the temperature dependence of electronic entropy is often neglected during the 
training of many MLPs. However, under the thousands of Kelvin and hundreds of gigapascal conditions 
characteristic of Earth’s deep interior (Figure 2), this contribution becomes substantial and must be explicitly 
included during training. The divergent melting point predictions for iron reported by Yuan and Steinle-Neumann 
(2023) [51] and Wu et al. (2024) [52] highlight the importance of incorporating electronic-entropy effects in MLPs 
designed for extreme high P–T simulations. A practical guideline is to implement electronic-temperature 
corrections whenever the variation in the electronic-entropy energy term exceeds the target accuracy threshold of 
the potential. 

3. Applications of Machine Learning Potentials under Extreme Conditions 

MLPs have been increasingly employed to investigate a broad range of physical and chemical processes in 
Earth’s deep interior. By enabling large-scale, long-timescale simulations with near–first-principles accuracy, 
MLPs allow quantitative exploration of transport, mechanical, and thermodynamic properties under realistic P–T 
conditions. These studies reveal the critical role of composition, volatile content, and structural defects in 
governing deep-Earth dynamics. 

3.1. Transport Properties 

Transport processes—including the transfer of heat, mass, and charge—control Earth’s thermal evolution, 
compositional differentiation, and magnetic field generation. Key parameters such as thermal conductivity, 
electrical conductivity, viscosity, and diffusion coefficients determine mantle convection, melt dynamics, and the 
cooling rate of the core. These quantities normally need long-time MD simulations and are hard to converge, so 
the calculations with heavy DFT methods usually come with large uncertainties [13,53]. MLP-based molecular 
dynamics (MLP-MD) simulations have become essential tools for quantifying these transport properties and their 
dependencies on temperature, pressure, and composition. 
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3.1.1. Thermal Conductivity 

Thermal conductivity critically influences the cooling rate of the magma ocean, the heat flux across the core–
mantle boundary (CMB), and the thermal structure of subducting slabs. Experimental determinations of thermal 
conductivity under high P–T conditions remain challenging, and reported values often vary substantially [54–57]. 
Although first-principles and non-equilibrium molecular dynamics (NEMD) simulations provide valuable insights, 
their small cell sizes introduce significant size effects. MLPs, which combine first-principles accuracy with large-
scale simulation capability, have overcome this limitation and yielded new quantitative constraints on mineral and 
melt conductivities. 

MLP-based studies have explored the effects of temperature, pressure, water, and iron content on the thermal 
conductivity of minerals in the mantle transition zone (MTZ) and lower mantle. Because the MTZ is likely to be 
water-rich [1,58], its conductivities are expected to be significantly altered by hydration. In wadsleyite, MLP–NEMD 
simulations show that 0.81 wt% and 1.63 wt% H2O reduce lattice thermal conductivity by ~10% and ~12%, 
respectively, and also diminish anisotropy [59]. Water in olivine and ringwoodite exerts similar effects [60,61]. 

For MgSiO3 melt, the thermal conductivity at CMB conditions is ~4.0 W m−1 K−1—significantly lower than 
that of the solid mantle—potentially explaining lateral CMB heat-flux variations and the formation of ultra-low 
velocity zones (ULVZs) [62–64]. Pressure dominates the conductivity trend, while temperature and water exert 
weaker influence. In the lower mantle, the bridgmanite–post-perovskite transition increases the thermal 
conductivity of pyrolite by ~22% [32]. The addition of 12.5 mol% Fe reduces the thermal conductivities of 
bridgmanite and post-perovskite by ~10% and ~14% [32], respectively, and water further decreases thermal 
conductivity and weakens thermal anisotropy [63]. Collectively, these effects revealed by using MLPs suggest that 
hydration may reduce lateral heterogeneity in CMB heat flux. 

3.1.2. Electrical Conductivity 

Experimental measurements of silicate melt electrical conductivity over the entire mantle range are scarce, 
and conventional first-principles simulations are restricted to high temperatures due to slow atomic diffusion. 
MLPs enable extensive simulations across wide P–T conditions, elucidating pressure and compositional 
dependencies. 

For MgSiO3 melt, MLPs studies reveal that its electrical conductivity increases with temperature but exhibits a 
nonmonotonic pressure dependence, peaking near 50 GPa (~420 S/m) before decreasing toward the CMB (~26 S/m) 
along mantle liquidus [65]. This behavior may explain the sharp increase in mantle electrical conductivity inferred 
from geophysical observations. In bridgmanite and post-perovskite, hydrogen incorporation via (Mg + 2H)Si and 
(Al + H)Si substitution mechanisms was found to enhance proton conduction to levels consistent with mantle 
conductivity estimates [66], implying that lower mantle electrical conductivity could serve as a proxy for its water 
distribution. Moreover, superionic conduction has been identified in hydrous stishovite: at 30 GPa and 2500 K, hydrogen 
becomes mobile along one-dimensional channels, yielding anisotropic ionic conductivities up to 27 S/m [67]. 

3.1.3. Viscosity 

Viscosity controls the dynamics of the early magma ocean, magma mobility, and core–mantle differentiation. 
Experimental measurements under high pressure often yield inconsistent trends [68–73]. MLP simulations reveal 
that for MgSiO3 melt, viscosity decreases with increasing temperature and exhibits pressure-dependent behavior: 
at 2200 K it decreases then increases beyond ~6 GPa, while at 5000 K it increases monotonically. Along the mantle 
liquidus, a turnover near 23 GPa may correspond to melt accumulation near the 660 km discontinuity [65]. 

For hcp-Fe, MLP-based simulations attribute its relatively low viscosity (~1015 ± 1 Pa·s) to the high mobility 
of Fe atoms and the presence of vacancies [34], consistent with constraints from Earth’s nutation and geodynamic 
models. This finding emphasizes the influence of structural defects and reduces the need for invoking excessive 
light element contents to explain core dynamics. 

3.1.4. Diffusion 

Elemental diffusion affects mantle mixing, water transport, and core–mantle exchange. MLP simulations 
allow accurate diffusion calculations for melts, crystals, and grain boundaries—previously inaccessible to small 
DFT-based cells. 

In MgSiO3 melt, MLPs simulations found that all atomic species exhibit decreasing diffusion coefficients 
with increasing pressure (>3000 K); Mg diffuses fastest, while the pressure dependence of Si and O diffusion 
mirrors the viscosity trend [65]. In bridgmanite and post-perovskite, hydrogen diffusion depends strongly on 
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incorporation mechanisms: (Mg + 2H)Si and (Al + H)Si defects yield the highest diffusion rates, with diffusion 
faster in post-perovskite and anisotropic along [100] [66]. Slow H diffusion implies long-term heterogeneity in 
lower mantle hydration. In δ-AlOOH, hydrogen diffusion approaches ~1 Å2/ns between 1800–2100 K, consistent 
with the onset of a fully superionic state [74]. 

MLPs also enable grain boundary diffusion simulations. Peng et al. (2025) found that W diffuses extremely 
slowly in ferropericlase and silicate melts at CMB conditions, with a maximum diffusion distance of ~30 m over 
Earth’s age—far less than extrapolations from low-T experiments—indicating that W isotope anomalies in ocean 
island basalts cannot arise from grain boundary diffusion alone [75]. 

In summary, MLPs have revolutionized the quantitative study of transport properties, revealing that volatiles 
such as H₂O markedly reduce thermal conductivity and viscosity while enhancing ionic conductivity and diffusion. 
These effects collectively influence mantle convection, magnetic field generation, and the chemical evolution of 
Earth’s deep interior. 

3.2. Seismic Properties 

Elasticity and seismic wave velocities provide fundamental constraints on the composition and structure of Earth’s 
interior. MLPs enable atomistic modeling of elasticity, anisotropy, and defect effects at core and mantle conditions. 

MLP simulations of hcp-Fe show an elastic anisotropy of ~6%, consistent with observed inner core 
anisotropy [34]. Polycrystalline averaging reduces shear wave velocity by up to 17%, improving agreement with 
seismic data. At inner core pressures, Fe–Si alloys exhibit a stable bcc phase stabilized by short-range Si ordering, 
matching PREM shear velocities better than hcp, fcc, or B2 structures [76]. 

In the core–mantle boundary region, superionic fcc-FeH exhibits Vp and Vs values ~34% and 63% lower than 
PREM, respectively, and a density 4% lower than the outer core but 50% higher than the lowermost mantle [77]. 
Mixtures of fcc-FeH with ambient mantle materials can reproduce the seismic characteristics of ULVZs, linking 
them to deep water cycling and hydrogen storage. 

For CaSiO3 perovskite, MLP studies reveal anomalous temperature-dependent elasticity: linear at high T but 
with pronounced precursor softening near the tetragonal–cubic transition [78]. The softening range widens with 
pressure and overlaps with cold slab geotherms, suggesting that subducted crustal materials with partially softened 
CaSiO3 may explain the low shear velocities of large low shear velocity provinces (LLSVPs). 

These studies suggest that MLPs provide critical insight into how intrinsic crystal anisotropy, structural 
defects, and phase transitions collectively shape seismic signatures throughout Earth’s interior. 

3.3. Thermodynamic Properties 

Thermodynamic quantities—including melting points, phase stabilities, and element partitioning—are key 
to reconstructing Earth’s thermal and chemical evolution. Combining MLPs with free energy and coexistence 
methods enables accurate thermodynamic predictions beyond the reach of direct DFT simulations. 

3.3.1. Melting Behavior 

MLPs have effectively removed size limitations in melting point calculations and have recently been widely 
used to compute melting temperatures of minerals in Earth’s interior. Bridgmanite and post-perovskite are two 
major lower mantle mineral phases. Figure 4 compiles phase boundaries for bridgmanite, post-perovskite, and 
silicate melt determined previously by experiments and calculations. Dashed lines and open symbols represent 
earlier reports of bridgmanite melting points [79–88]. Red and blue solid symbols denote results obtained by 
starting from MgSiO3 in experiments, raising temperature and pressure to the target conditions, and identifying 
the resulting mineral structures. These data were further used to determine the phase boundary between bridgmanite 
and post-perovskite [89,90]. The orange curve shows the MLP-based results of Deng et al. (2023) [42]. Their findings 
are consistent with prior determinations of both the bridgmanite melting curve and the phase boundary between 
bridgmanite and post-perovskite, indicating the accuracy of MLP calculations for melting. MLP calculations 
predict a melting temperature for periclase at 140 GPa of 7750 ± 50 K [64]. Moreover, MLPs have been applied 
to study superionic transitions in lower mantle minerals. CaSiO3 perovskite containing oxygen vacancies 
undergoes superionic transition driven by oxygen’s diffusion, with higher vacancy concentrations expanding the 
superionic region and lowering the transition temperature [91]. 
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Figure 4. Melting of bridgmanite and post-perovskite. The orange solid line in the figure represents the melting 
curves of bridgmanite and post-perovskite, as well as the phase boundary between them, calculated using MLPs by 
Deng et al. (2023) [42]. The three dashed lines and open symbols indicate previously reported melting points of 
bridgmanite [79–88]. Solid red symbols represent experimental runs where only bridgmanite crystals were present. 
Solid blue symbols denote runs containing only post-perovskite crystals. Red-blue symbols correspond to 
experimental products where both bridgmanite and post-perovskite coexist [89,90]. 

For the core, MLPs simulations found that fcc-FeH melts near 2950 K at 130 GPa, while FeH0.5 and FeH0.25 
melt at ~3250 K and 3630 K, respectively [77], implying stability of superionic FeHx phases at the CMB. At the 
pressure of Earth’s inner core boundary, discrepancies among studies emphasize the need for electronic-entropy 
corrections. Yuan and Steinle-Neumann (2023) [51] obtained a melting point of 7000–7100 K for hcp-Fe, reduced 
by 700–900 K with 0.34 wt% H, whereas Wu et al. (2024) [52] using an electronic temperature dependent Deep 
Potential (Tel-DP) found 6370 ± 200 K for hcp-Fe—resolving prior discrepancies and underscoring the importance 
of accurate electronic free-energy treatment. 

3.3.2. Phases and Structures 

MLPs have clarified several long-standing uncertainties in phase stability. Simulations show that MgO exsolves 
from liquid Fe in a crystalline ferropericlase form, providing a plausible but limited energy source for the early 
geodynamo [64]. For CaSiO3 perovskite, MLPs were used to confirm a stable cubic phase throughout the lower 
mantle, with a tetragonal–cubic transition slope of ~7 K/GPa [92]. Oxygen vacancies promote a superionic phase that 
may contribute to mantle oxidation and deep oxygen cycling [91]. In hydrous stishovite, hydrogen atoms form  
one-dimensional channels and exhibit fluid-like motion upon heating, indicating partial superionic behavior [67]. 

3.3.3. Element Partitioning and Isotopic Fractionation 

MLPs have enabled atomistic modeling of element partitioning and isotope fractionation, fundamental to 
understanding differentiation and volatile cycling. Simulations of metal–silicate equilibration reproduce 
experimental partitioning of light elements [93]. For the Fe–S system, the S partition coefficient increases with 
pressure up to ~250 GPa and then saturates near 0.75 [35], insufficient alone to explain the core’s density deficit. 
In the Fe–H–O system, hydrogen preferentially resides in the liquid phase, but the presence of oxygen drives H 
incorporation into the solid core, reversing partitioning behavior when O ≥ 7 mol% [36]. The inferred outer core 
may contain ~13.5 mol% H and 2.3–10.7 mol% O emphasizes non-ideal mixing among light elements. 

Isotopic diffusion fractionation has also been explored via MLP-based pseudo-isotope simulations. In albite 
melts, the lithium isotope fractionation factor β decreases from 0.267 at 4000 K to 0.225 at 1800 K, with water 
slightly damping this temperature dependence. In model basaltic melts, β declines from 0.215 to 0.132 [94]. 
Similarly, β for helium in albite melt decreases from 0.355 at 3000 K to 0.322 at 1700 K, while in model basaltic 
melts, it decreases from 0.322 to 0.274 over the same temperature range [95], yielding D(3He)/D(4He) ratios of 
1.097 and 1.082, respectively—values consistent with natural observations. 
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As can be seen, MLPs enable precise evaluation of free energies, phase stability, and partitioning under 
extreme P–T conditions. They reveal widespread superionic and metastable states, strong coupling among light 
elements, and non-ideal mixing behavior—key to understanding chemical diversity, deep volatile cycling, and the 
dynamic evolution of Earth’s interior. 

4. Summary and Outlook 

This review has systematically summarized recent advances in applying MLPs to mineral physics under the 
extreme P–T conditions of Earth’s deep interior. Across three key domains—transport properties, mechanical 
behavior, and thermodynamic characteristics—MLPs have demonstrated their power to overcome the limitations 
of both laboratory experiments and first-principles calculations, advancing our ability to model complex processes 
that govern planetary evolution and dynamics. 

Fundamentally, MLPs integrate the accuracy of quantum-mechanical methods with the efficiency of classical 
molecular dynamics, enabling large-scale simulations of tens of thousands of atoms over nanosecond and longer 
timescales at a fraction of the computational cost. This capability allows for direct, atomistic calculations of 
macroscopic properties such as thermal conductivity, viscosity, and diffusion, as well as quantitative evaluation 
of free energies, melting points, and phase equilibria. The application of MLPs has resolved long-standing 
discrepancies in predicted melting curves, seismic velocities, and transport coefficients, while unveiling new 
physical phenomena—such as superionic conduction, defect-governed transport, and strong coupling among light 
elements—that reshape our understanding of deep-Earth materials. These insights collectively depict a more 
dynamic and chemically heterogeneous interior than previously envisioned. 

Despite these achievements, several challenges remain. The reliability of a MLP is intrinsically tied to the 
quality and diversity of its first-principles training data. Inconsistencies arising from the choice of exchange–
correlation functional, k-point sampling, or pseudopotential can propagate into systematic errors. Insufficient 
sampling of configurational space can limit a potential’s transferability beyond the conditions it was trained on. 
Furthermore, most existing MLPs are system-specific, making them difficult to generalize across compositions, 
phases, or pressure–temperature ranges. 

Looking ahead, further efforts could focus more on several key directions.: 
1. Developing transferable and temperature-dependent potentials that explicitly incorporate electronic entropy 

and maintain accuracy across wide P–T regimes. 
2. Establishing standardized benchmarks and reporting protocols for training data, validation metrics, and 

uncertainty quantification to ensure reproducibility and comparability across studies. 
3. Expanding training datasets through active learning and collaborative open repositories covering 

representative high P–T configurations of deep-Earth materials. 
4. Integrating MLPs with multiscale modeling frameworks, linking atomic-scale processes to continuum 

models of mantle convection, core crystallization, and planetary evolution. 
As machine learning techniques continue to evolve, the synergy between data-driven potentials, first-

principles theory, and experimentation promises to transform mineral physics into a more predictive and 
integrative discipline. Ultimately, MLPs will not only deepen our understanding of Earth’s interior but also 
illuminate the physics of planetary materials across the Solar System and beyond. 
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