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Abstract: Industrial laboratories often remain under-digitized compared to 
production lines, creating a gap between data acquisition and analytical intelligence, 
critical for advanced quality control. This study addresses this gap by proposing and 
validating a novel framework that combines Low-Code digitalisation tools with 
Machine Learning (ML) and Causal Inference to optimise data collection and 
analysis in an automotive painting laboratory. A Microsoft Power Apps-based 
platform was developed in order to digitalise all measurement records, eliminating 
manual transcription errors (previously ≈ 40.01%) and reducing data-handling time 
by up to 34% of an operator’s shift, while enabling centralised, traceable storage 
and Power BI integration. Four datasets were used to assess predictive capacity with 
Random Forest, XGBoost and Neural Networks; Random Forest consistently 
provided the most stable results—Mean Absolute Error (MAE) of 0.972, Mean 
Absolute Percentage Error (MAPE) of 16.45%, and Root Mean Square Error 
(RMSE) of 1.307. Causal models (Linear Regression, DoWhy, Causal Forest, 
Double Machine Learning) consistently identified ultrafiltrate I solid content of the 
electrodeposition process as a dominant causal factor for defects. This study 
provides a novel framework that bridges digitalisation and ML-based causal 
reasoning in laboratory settings, offering a scalable approach that can be extended 
and replicated in other industrial sectors, aiming to develop smart, data-driven 
quality control systems. 

 Keywords: digitalisation; laboratory; electrodeposition; machine learning;  
causal inference 

1. Introduction 

The automotive industry faces increasing pressure to improve quality, reduce waste, and enhance process 
efficiency, particularly under the paradigm of Industry 4.0 [1]. Within this framework, digitalisation plays a pivotal 
role, transforming manual data collection and disconnected systems into integrated, traceable, and data-driven 
environments capable of supporting advanced analytics and decision-making [2–4]. While significant progress has 
been achieved in production lines—through automation, sensorisation and real-time monitoring—supporting 
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laboratory operations have often lagged behind this transformation, remaining partially manual and weakly 
integrated into the broader digital ecosystem. 

In many industrial laboratories, measurement data are still collected manually and subsequently transcribed into 
spreadsheets stored across separate files and systems. Evidence from the automotive factory used to validate this 
study shows that such practices typically consume between 40 min and 2 h of an 8-h shift, while introducing 
transcription errors in approximately 40.01% of historical records. Beyond their operational inefficiency, these 
practices compromise data integrity, limit traceability and significantly reduce the analytical value of laboratory data. 
As a result, laboratories—despite generating critical process information—are frequently unable to support proactive 
quality control or data-driven root cause analysis. This mismatch represents a clear scientific and industrial gap: the 
lack of integrated frameworks that connect laboratory digitalisation with advanced analytical intelligence. 

From a scientific perspective, the literature shows extensive adoption of machine learning (ML) techniques 
for quality control and defect detection in automotive production lines. However, most studies focus on large-
scale, sensor-rich production environments, with limited attention given to laboratory-scale processes where data 
are scarcer, heterogeneous and often manually collected. Moreover, existing works tend to emphasise predictive 
accuracy, while the causal understanding of defect formation—essential for process optimisation—remains 
comparatively underexplored in laboratory contexts. Consequently, the potential of combining digitalisation, 
predictive ML and causal inference within industrial laboratories remains insufficiently addressed. 

This study aims to address this gap by proposing a novel framework integrating digitalisation mechanisms 
with exploratory ML and causal modelling to improve data collection, data quality and analytical insight in an 
automotive painting laboratory, with particular emphasis on the electrodeposition (ED) process. The scientific 
contribution of this work is twofold. First, it empirically demonstrates how low-code digitalisation tools—
specifically Microsoft Lists, Power Apps, and Power Automate—can substantially enhance data integrity, 
traceability, and analytical reliability in real industrial laboratory environments. Second, it evaluates the predictive 
and causal capabilities of ML algorithms applied to historical ED process data, assessing not only their forecasting 
performance but also their ability to identify key variables driving defect formation. 

Therefore, the main research question guiding this work is: How can data collection and analysis efficiency 
in an automotive painting laboratory be improved through digitalisation mechanisms? 

To answer this question, the general objective of the study is to develop and validate a framework for 
optimising data collection and analysis in industrial laboratories. The specific objectives include: (i) conducting a 
comprehensive literature review on digitalisation, ML and causal inference in industrial contexts; (ii) mapping and 
critically analysing the existing laboratory data collection process; (iii) designing and implementing a digital data 
acquisition and management tool; (iv) performing exploratory predictive and causal ML analyses to assess defect 
prediction capability and identify influential process parameters; and (v) validating the proposed solution through 
quantitative performance metrics and user feedback. 

By combining Design Science Research Methodology (DSRM) with the CRISP-DM framework, this work 
bridges engineering practice and data science, demonstrating that even incremental digitalisation of laboratory 
workflows can produce measurable gains in productivity, data quality, and analytical insight. Furthermore, while 
validated in an automotive context, the proposed framework is inherently scalable and transferable to other 
industrial sectors—such as chemical, pharmaceutical, and surface treatment industries—where laboratory data 
play a critical role in quality control and process optimisation. 

2. Literature Review 

The literature reviewed in this study focuses on digitalisation in industrial contexts, machine learning (ML) 
for prediction and causal inference, and a special emphasis on the electrodeposition (ED) coating process. 
Digitalisation of processes refers to the conversion of analogue processes and data into digital formats, enabling 
automation, improved data accessibility, and faster decision making [5]. Within manufacturing, digitalisation is 
considered a core enabler of Industry 4.0, supporting real-time analytics, IoT integration, and data-driven decision-
making [6,7]. Low-code development platforms such as Microsoft Power Apps and Power Automate simplify the 
creation of tailored applications without the need of advanced programming knowledge, reducing development 
time and cost [7,8]. These tools lower implementation barriers while maintaining scalability and compliance with 
corporate IT systems. Similarly, Enterprise Resource Planning (ERP) systems like SAP S/ 4HANA and Microsoft 
Dynamics 365 centralise organizational data and improve traceability, though their adoption may involve high 
costs and possible resistance to change on the part of some employees [9]. The COVID-19 pandemic also 
accelerated digital adoption, highlighting how organisations with robust digital infrastructures were more resilient 
and agile in responding to operational challenges [4]. Empirical studies demonstrate the economic impact of 
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digitalisation: Pop [2] and Mehta and Rastogi [3] reported reductions in operational costs of up to 30% and 
significant gains in traceability and quality control accuracy. However, successful digital transformation requires 
cultural and structural adaptation, as employees must transition from manual to analytical workflows [5,9]. 

While digitalisation provides the necessary data foundation, the literature also highlights limitations 
associated with classical forecasting and analytical models. Although traditionally robust and highly interpretable, 
these models often rely on restrictive assumptions such as linearity, normal error distribution and structural 
stability, which are frequently violated in real-world industrial environments. Sensitivity to outliers, influential 
observations, and structural breaks further compromises forecast reliability, particularly in settings characterised 
by data heterogeneity and operational volatility [10–14]. To address these limitations, scientific research has 
increasingly focused on applying artificial intelligence techniques. According to Lolla et al. [15], these methods 
have significantly advanced predictive analytics. Recent computational developments, particularly the use of 
graphical processing units (GPUs), have further stimulated interest in the applicability of machine learning and 
deep learning approaches [16,17] 

Building upon this digital foundation, the field of Machine Learning (ML) has gained increasing importance 
in industrial analytics. ML, a subfield of Artificial Intelligence (AI), allows systems to identify patterns in data and 
improve performance without explicit programming [18]. In industrial contexts, ML has become essential for 
predictive maintenance, quality control, and process optimisation, enabling organisations to move from reactive 
to proactive decision-making. ML techniques are generally divided into three main categories: 
(1) Supervised Learning—models are trained on labelled data to perform prediction tasks such as regression or 

classification. Algorithms such as Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are 
especially effective for industrial applications, as they can handle non-linear relationships, multicollinearity, 
and noisy datasets [19]. Both have been widely used for defect prediction in the automotive industry due to 
their robustness and interpretability. RF, for instance, builds multiple decision trees and aggregates their 
results, reducing variance and overfitting, while XGBoost optimises gradient boosting through regularisation 
and parallel computation. 

(2) Unsupervised Learning—focuses on identifying structures or clusters within unlabelled data. Techniques 
such as k-means clustering, hierarchical clustering, and Principal Component Analysis (PCA) are often used 
for dimensionality reduction and exploratory analysis, allowing engineers to identify underlying process 
behaviours, anomalies, or operational modes [20]. 

(3) Reinforcement Learning—employs trial-and-error interactions between an agent and an environment to 
optimise decision-making. It is widely used in robotics, autonomous systems, and process control, where 
systems can dynamically learn optimal policies from feedback [21]. 
In addition to these paradigms, Deep Learning (DL) represents a more complex subset of ML, characterised 

by artificial neural networks (ANNs) with multiple hidden layers. DL models, particularly Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), have achieved outstanding results in image analysis, 
signal processing, and time-series forecasting, outperforming traditional algorithms when large volumes of data 
are available [22,23]. In the automotive manufacturing context, DL models have been used for visual inspection 
of paint defects, weld analysis, and surface finish evaluation, achieving accuracy rates above 80% [22]. Beyond 
visual inspection, ANN-based approaches have also been applied to manufacturing-related processes, such as the 
optimisation of ternary metal alloy electrodes for CH4 gas detection [24]. Moreover, RNN-based architectures 
such as Long Short-Term Memory (LSTM) networks can learn long-term dependencies by selectively retaining 
relevant information, a property explored by Ramos et al. [25] in time-series forecasting applications. 

Despite these successes, DL approaches remain highly data-dependent and computationally intensive, which 
restricts their applicability in laboratory-scale or exploratory industrial studies where datasets are often limited, 
heterogeneous, and predominantly structured. In such contexts, ensemble learning methods frequently offer a more 
favourable balance between predictive accuracy, interpretability, and computational efficiency [26]. 
Consequently, tree-based models such as Random Forest and XGBoost are often emphasised in the literature, as 
they can accommodate nonlinearities and interactions without explicit parametric assumptions, efficiently handle 
multiple predictors, and reduce manual modelling effort. 

This perspective is reinforced by a growing body of empirical research. Peres et al. [19] demonstrated the 
effectiveness of Random Forest and XGBoost in predicting quality deviations across automotive production stages 
using structured process data, while Yao and Feng [27] showed that ensemble learning methods provide a more 
balanced trade-off between accuracy, stability, and explainability than deep learning models in manufacturing datasets 
dominated by physicochemical parameters. Although applied in different domains, Tang [28] similarly highlighted 
that emerging technologies and big data tools have expanded opportunities for predictive analytics in complex systems. 
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Further industrial evidence is provided by Fouad et al. [29], Ma et al. [30], and Hammam et al. [31], who reported 
superior robustness and forecasting performance of ML models in industrial decision-support and operational 
management scenarios characterised by noisy data and high variability. 

Recent comparative studies further support the suitability of ensemble learning in industrial time-series 
contexts. Santoro et al. [32], for example, compared classical models, machine learning algorithms, and deep 
learning approaches in traffic forecasting and showed that XGBoost outperformed both traditional statistical 
methods and LSTM-based models in terms of Mean Absolute Error (MAE) and Mean Square Error (MSE). These 
findings suggest that less complex models may adapt more effectively to industrial datasets exhibiting stationarity 
and local disturbances. 

Beyond predictive performance, causal inference techniques have gained increasing attention for their ability 
to identify true cause–effect relationships rather than mere statistical associations [33]. While traditional predictive 
models are effective at identifying correlations, they cannot determine whether changes in one variable genuinely 
produce changes in another. In industrial environments, causal inference addresses this limitation by modelling 
the underlying causal structure of a system, enabling practitioners to distinguish process variables that actively 
drive quality outcomes from those that are merely correlated. Recent advances in computational causal analysis, 
including Causal Forests, DoWhy frameworks, and Double Machine Learning (DML), integrate machine learning 
with statistical inference to provide interpretable and data-efficient causal estimates [34]. These methods also 
support counterfactual “what-if” analyses, allowing engineers to evaluate the potential impact of process 
adjustments prior to implementation—an especially valuable capability in electrodeposition processes, where 
identifying root causes of coating defects can guide preventive actions and reduce rework costs. 

Given the constraints typically associated with industrial laboratory data, the modelling strategy adopted in 
this work is primarily based on tree-based ensemble methods, namely Random Forest and XGBoost. These 
algorithms were selected due to their robustness when applied to structured datasets with limited sample sizes and 
heterogeneous variable types. Nevertheless, a Neural Network model was also developed in order to explicitly 
assess the feasibility of applying Deep Learning techniques within the scenario under study, which justifies its 
inclusion in the modelling framework. The proposed methodology integrates these algorithms with Recursive 
Feature Elimination with Cross-Validation (RFECV) to support feature selection and enhance interpretability. All 
analytical steps were structured under the Cross-Industry Standard Process for Data Mining (CRISP-DM) 
framework to ensure methodological rigour, transparency, and reproducibility. 

The CRISP-DM is a widely adopted framework for projects related to Machine Learning and Deep 
Learning studies. It’s comprised by six iterative phases—Business Understanding, Data Understanding, Data 
Preparation, Modelling, Evaluation and Deployment—that guide the project systematically from conception to 
implementation [35,36]. By having a strong alignment with business objectives, flexibility and support for 
iterative refinement, the clarity and reproducibility are widely enhanced. However, CRISP-DM can be resource 
intensive, rely heavily on stakeholders engagement and often lacks guidance on project management, particularly, 
many studies mention that the Deployment phase is insufficiently addressed in practice. In real-world scenarios, 
this methodology has proven very effective, for instance, in manufacturing, CRISP-DM has been successfully used 
to predict assembly cycle time using real production data and in surface-technology projects [36,37]. Such cases 
demonstrate the applicability and effectiveness across sectors, while highlighting the need to augment it with better 
deployment strategies and project management practices. 

The selection of ensemble learning techniques is supported by their documented ability to achieve a 
favourable balance between predictive accuracy, interpretability, and computational efficiency when applied to 
structured industrial datasets [26]. While deep learning approaches have demonstrated superior performance in 
domains dominated by unstructured data, such as image and text analysis, their effectiveness typically relies on 
large labelled datasets and high computational resources. In contrast, ensemble methods have been shown to 
provide more stable and interpretable solutions in manufacturing contexts characterized by limited sample sizes 
and high-dimensional physicochemical variables. 

Empirical evidence from the literature reinforces this perspective. Peres et al. [19] reported that Random 
Forest and XGBoost delivered robust predictive performance and meaningful feature importance analysis in an 
automotive quality control setting based on structured process data. Conversely, Luckow et al. [22] highlighted 
the strengths of convolutional neural networks for image-based defect detection but also emphasized their limited 
applicability in small-scale or data-scarce environments. Similarly, Yao and Feng [27] demonstrated that ensemble 
learning methods offer a more balanced trade-off between accuracy, stability, and explainability than deep learning 
models in manufacturing datasets dominated by process parameters. 

The dataset used in this study comprised a limited number of observations and a heterogeneous set of 
structured variables, including continuous physicochemical parameters, categorical identifiers, and defect counts. 
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Under these conditions, ensemble learning offers a robust analytical framework for exploring predictive and causal 
relationships while effectively mitigating the risks of overfitting. The integration of feature engineering and 
RFECV further enhances model interpretability by identifying the most influential process variables, thereby 
supporting data-driven root cause analysis and facilitating actionable insights for laboratory and production-
oriented environments [38,39]. Ultimately, the use of ML in laboratory data analysis represents not merely a 
computational improvement but a methodological transformation, enabling laboratories to evolve from isolated 
measurement routines to integrated analytical systems. Such systems continuously capture, validate, and model 
data to support real-time decision-making, in alignment with the digital twin and smart manufacturing principles 
of Industry 4.0 [40]. 

Complementing predictive modelling, causal inference was applied in the present research as a subsequent 
analytical step to strengthen interpretability and support decision-making. Multiple causal approaches—Linear 
Regression, DoWhy, Causal Forest, and Double Machine Learning—were employed to ensure robustness and 
consistency of results. This hybrid analytical perspective validates causal findings across different modelling 
assumptions and aligns with recent literature advocating the combined use of predictive accuracy and causal 
understanding to support data-driven decision-making in industrial systems. 

To evaluate the performance of the regression models developed in this study, three standard error-based 
metrics were used: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE). These metrics quantify the deviation between the predicted values (𝑦ො௜) and the observed 
values (𝑦௜) across all 𝑛 samples. MAE =  1𝑛෍ |𝑦௜ − 𝑦ො௜|௡௜ୀଵ  (1)

MAPE =  100𝑛 ෍ ฬ𝑦௜ − 𝑦ො௜𝑦௜ ฬ௡௜ୀଵ  (2)

RMSE =  ඨ1𝑛෍ (𝑦௜ −  𝑦ො௜)ଶ௡௜ୀଵ  (3)

• MAE measures the average magnitude of the errors without considering their direction, providing a clear 
interpretation in the same unit as the target variable. 

• MAPE expresses the error as a percentage, allowing comparison of models across different datasets or scales. 
• RMSE penalises larger deviations more strongly, making it sensitive to outliers and useful for assessing 

overall model stability. 
Unlike accuracy, which is commonly used for classification problems where predictions belong to discrete 

categories, the models developed in this work address a regression problem, predicting continuous numerical 
values representing defect counts. Therefore, error-based metrics were deemed more appropriate to assess model 
performance in this context. 

For the causal analysis, the coefficient of determination (𝑅ଶ) was calculated to quantify the proportion of 
variance in the observed values explained by the model: 𝑅ଶ = 1 −  ∑ (𝑦௜ −  𝑦ො௜)ଶ௡௜ୀଵ∑ (𝑦௜ −  𝑦ത௜)ଶ௡௜ୀଵ  (4)

Finally, the application of ML in automotive manufacturing demonstrates the transformative potential of data-
driven methods across production optimisation, predictive maintenance, and quality control. Yao and Feng [27] 
illustrated ML’s versatility across domains including road marking recognition, sales forecasting, and defect 
detection, while Peres et al. [19], at Volkswagen AutoEuropa, reported the successful use of Random Forest, 
XGBoost, and Support Vector Machines to predict dimensional defects across 18,148 vehicles, achieving recall 
rates of up to 97.9%. Similarly, Luckow et al. [22] explored Deep Learning (DL) for visual inspection in 
automotive assembly, highlighting the potential of Convolutional Neural Networks (CNNs) to identify surface 
defects with high precision. However, their work also exposed critical limitations such as the need for extensive 
labelled datasets, computational intensity, and difficulty in model interpretability—challenges that remain 
common in industrial AI adoption. Beyond technical performance, these studies emphasise a broader trend: the 
integration of digitalisation and analytics as essential enablers for competitiveness. As noted by Brennen and 
Kreiss [5] and Verhoef et al. [6], the convergence of Industry 4.0, data governance, and machine learning is 
redefining how manufacturing organisations approach process control and decision-making. Despite this 
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significant progress, the adoption of ML in industrial laboratories—especially in electrodeposition quality 
control—remains limited. Most initiatives focus on production line automation rather than laboratory data 
digitalisation, leaving a gap that this study addresses. By combining digital transformation with ML-based causal 
analysis, this research contributes to bridging that gap, extending the lessons from large-scale industrial 
deployments to the laboratory environment. 

3. Research Methodology 

This study employed a hybrid methodological approach that integrates digital transformation with 
exploratory data analysis using Machine Learning (ML) and causal inference techniques. Two complementary 
methodological frameworks were employed to ensure both scientific rigor and industrial applicability: (i) the 
Design Science Research Methodology (DSRM), used to guide the development, implementation, and validation 
of the digital artifact [23,24]; and (ii) the CRISP-DM (Cross-Industry Standard Process for Data Mining) 
framework, applied to structure the data understanding, preparation, modelling, and evaluation phases [36,37]. 
The methodology is therefore organised into two tightly connected components: the digitalisation of data collection 
and processing in the laboratory, and the exploratory predictive–causal analysis of historical electrodeposition 
(ED) process data. 

To facilitate the reader’s understanding, Figure 1 presents a visual representation of the developed 
framework, which is divided according to the two methodologies used, as well as the associated processes. The 
arrows represent both the workflow and the information flow. 

 

Figure 1. Framework developed. 

3.1. Digitalisation of Data Collection and Processing 

Prior to this work, measurement data from the laboratory of the automotive factory used to validate this study 
were manually recorded on paper sheets and subsequently transcribed into monthly Excel spreadsheets. This 
manual workflow was highly error-prone and time-consuming, introducing transcription inconsistencies and 
limiting data traceability and accessibility. The digitalisation stage aimed to (i) eliminate manual data transcription; 
(ii) centralise measurement records; and (iii) enable future integration with automated analytics and IoT-based 
monitoring systems. 

This stage was structured according to the DSRM cycle [41], ensuring systematic artifact development and 
validation. The problem identification and motivation phase revealed that transcription errors affected 
approximately 40.01% of historical records, while data entry consumed on average 34% of an operator’s working 
shift. Based on these findings, the definition of objectives focused on designing a digital system capable of 
reducing human error, improving data integrity, ensuring traceability, and supporting secure, structured storage. 
The design and development phase resulted in a low-code digital solution built using Microsoft Power Apps for 
the user interface, Microsoft Lists as a centralised relational database, and Power Automate to orchestrate 
automated workflows. The artifact was then demonstrated through pilot deployment in the laboratory, 
incorporating real-time feedback from operators and iterative refinements. The evaluation phase assessed 
efficiency gains, error reduction, and improvements in data accessibility, while the communication phase involved 
internal reporting and dissemination through academic publication. 

The digital artifact included the following main components: 
• New Database—A new database was created to compile the information from monthly Excel spreadsheets, 

using Microsoft Lists. By standardizing name conventions, measurement units, timestamps, and connecting 
data in the records, previously dispersed, became centralized. 
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• Data Capture and Storage—The application, developed by using Microsoft Power Apps, was designed to allow 
direct input of new measurements, storing them automatically in the database. Future integration with IoT 
sensors (e.g., pH, conductivity, and temperature sensors) was considered for fully automated data acquisition. 

• Visualization and Monitoring of the Data—Using Microsoft Power Apps in conjunction with Microsoft 
Automate, the application can display the data, allowing the user to sort it for analysis. Visuals alerts, automated 
calculations and automated emails with important information also help this kind of analysis. The new database 
also allows the exportation of selected data to Microsoft Power BI, for dashboard creation and reporting. 

• Error Handling and Traceability—The digital workflow incorporated data validation and traceability were 
enforced through built-in rules that restrict invalid entries (e.g., out-of-range physicochemical values, missing 
mandatory fields) and through automatic timestamping and user identification. These mechanisms ensure full 
traceability of each measurement, significantly reducing the risk of information loss or corruption. 

3.2. Exploratory Analysis Using CRISP-DM 

Following the digitalisation, the CRISP-DM methodology was applied to organise the predictive and causal 
analysis [42,43]. This framework was selected for its widespread adoption in industrial analytics and its flexibility 
when dealing with heterogeneous, real-world datasets, including those generated in laboratory environments [43]. 

3.2.1. Business Understanding 

The analytical phase was designed to explore whether laboratory-collected process parameters could predict 
or causally explain electrodeposition coating defects. 

To this end, the following research sub-questions were formulated: 
• Which electrodeposition process parameters have the greatest influence on the occurrence of defects? 
• Are the currently collected parameters sufficient and relevant to enable defect prediction? 
• To what extent can ML models complement the classical analytical methodology adopted by the laboratory? 
• What is the robustness and stability of the different ML models in identifying causal and predictive relationships? 
• What limitations or gaps in the current data become evident through the application of ML? 
• Could this type of approach serve as a starting point for the future implementation of more advanced decision 

support tools? 
These questions ensured that the analysis went beyond pure predictive accuracy, aiming instead to extract 

actionable insights for process optimisation and future decision-support systems. 
To quantify the impact of manual transcription prior to digitalisation, the time required to transfer laboratory 

measurements into Excel spreadsheets was measured across different processes. The results are presented in Table 1, 
showing that total transcription time ranged from approximately 40 min to more than 2.5 h per shift, depending on 
production variability. For the Minimum Total the values are for the measure of only two cars and the Maximum 
Total is for fourteen cars, (the maximum that the company produced during the study). The processes listed in 
Table 1 correspond to measurements performed by the company. For the pre-treatment and electrodeposition 
processes, these relate to physico-chemical data collected in both processes. The thickness values refer to the layer 
added during electrodeposition, as well as the final paint layer (enamel) and its gloss. Additionally, the company 
used to validate the new framework produces a document referred to as L10, which contains information related 
to production, including the number of defects and cars produced, as well as the number of materials consumed 
during the pre-treatment and electrodeposition processes. 

Table 1. Time used for transcription. 

Process Unit Transcription 
Time (min) 

Minimum Total 
Transcription Time (min) 

Maximum Total 
Transcription Time (min) 

Pre-Treatment (PT) 2.16 4.32 4.32 
Electrodeposition (ED) 2.45 2.41 2.41 

Production and Consumption (L10) 1.25 1.47 1.47 
Chassis Thicknesses 3.25 3.25 3.25 

ED Thicknesses 4.74 9.47 66.32 
Enamel Thicknesses 4.74 9.47 66.31 

Enamel Gloss 4.84 9.67 19.35 
Total 23.43 40.07 163.42 
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3.2.2. Data Understanding and Preparation 

The data used in this study, for the predictive and causal models, was collected from the electrodeposition 
(ED) (see Figure 2) coating process by the laboratory of the automotive factory used to validate this study. 
Electrodeposition is a critical pre-painting process, responsible for ensuring corrosion resistance and the uniform 
adhesion of subsequent paint layers. It comprises four main stages. First, the vehicle undergoes a manual wash 
with demineralized water, followed by immersion in the paint tank. At this stage, the application of an electric 
current results in the formation of a thin paint uniform film on the metallic surfaces of the vehicle by 
electrochemical deposition. This process is followed by rinsing and curing phases to stabilise the coating. After 
curing, the number of surface defects is assessed. It is important to note that unused paint is treated through 
ultrafiltration to remove impurities and is then reintroduced into the tank, enabling its reuse and minimizing waste. 

Given that some variables share similar characteristics, such as pH and conductivity, a standardized 
nomenclature was established for parameter identification, indicating first the source of the variable and then the 
measured characteristic (e.g., “paint_ed_ph”). 

 

Figure 2. Electrodeposition Process. 

Within the laboratory, several physicochemical parameters are routinely monitored to ensure process 
stability. These parameters include: 
• pH and conductivity of the ED bath, of the ultrafiltrate I, of the ultrafiltrate II, and of the anolyte; 
• Solid content (%) of ultrafiltrates I and II; 
• Bath temperature and appearance assessments (qualitative variables); 
• Production and consumption indicators related to paint usage and replenishment cycles. 

The target variable for this study—Defects by Car—was created by dividing the total number of ED coating 
defects recorded during laboratory inspections by the total number of cars that were painted daily. All other 
variables represent independent process parameters used as predictors to model the defect behavior. 

A Python-based data integration pipeline was developed, using Visual Studio Code, to consolidate historical 
laboratory records from multiple Excel sources into a unified structured dataset (.csv). This pipeline standardised 
variable naming conventions according to parameter type and measurement origin (e.g., pH_ED_Bath, Cond_UF1, 
Solid_UF2, Temp_ED, Defects). Data preprocessing followed CRISP-DM best practices and included data 
cleaning (removal of duplicated, missing, or invalid records), outlier treatment based on physicochemical 
specifications, and imputation of missing values using forward-fill, backward-fill, or linear interpolation, selected 
according to each variable’s coefficient of variation (CV). 

After preprocessing, the resulting dataset (df_corrected) contained 946 valid records—corresponding to 
31.94% of all available measurements—with complete defect information (as seen on Table 2) The reduction from 
the original dataset reflects the elimination of incomplete and inconsistent records rather than random sampling, a 
factor later considered when interpreting model robustness. To reduce multicollinearity and improve model 
robustness, a secondary dataset—df_No_Correlations—was generated by removing highly correlated variables 
(Pearson correlation coefficient |r| > 0.6) [44]. This step ensured that the models could better capture independent 
effects among process parameters. Feature engineering was subsequently applied to derive composite variables, 
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and Recursive Feature Elimination with Cross-Validation (RFECV) was used to identify the most informative 
feature subset, producing the df_feature_engineering_rfecv dataset. All datasets were split into training (70%) and 
testing (30%) subsets. 

Table 2. Electrodeposition process records. 

 Number of 
Records 

Number of 
Parameters 

Incorrect 
Records 

Empty 
Records 

Total of 
Errors 

Information 
on Defects 

Before Treatment 2962 28 11.82% 28.19% 40.01% 31.94% 
After Treatment 946 26 0% 0% 0% 100% 

3.2.3. Modelling 

The predictive modelling phase focused on evaluating whether the laboratory-monitored parameters could 
be used to predict electrodeposition (ED) coating defects. Three supervised Machine Learning algorithms were 
tested: Random Forest, XGBoost, and Artificial Neural Networks. Model performance was evaluated using Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), which 
are appropriate for continuous regression problems and enable direct interpretation of prediction deviations in both 
absolute and relative terms. 

To establish a reference for performance comparison, a baseline model was defined in which the predicted 
value was always equal to the median of the target variable. Consequently, the ML models were required to 
outperform this baseline, corresponding to MAE = 1.25, MAPE = 19.08% and RMSE = 1.70, in order to 
demonstrate added predictive value beyond trivial estimation. 

The target variable used in all predictive models corresponds to the daily defect ratio, calculated as the 
number of ED coating defects divided by the number of vehicles painted per day. Model predictions were 
compared against the observed values of this target variable to compute MAE, MAPE, and RMSE. 

During model development and hyperparameter tuning, a 5-fold cross-validation strategy [45,46]. was 
applied to the training data to reduce overfitting and ensure robustness. For each model, performance metrics were 
calculated on the validation folds and averaged to obtain stable estimates. The final performance values reported 
in this study correspond to the mean results obtained on the held-out test sets, ensuring that the metrics reflect the 
generalisation capability of the models rather than their fit to the training data. 

In parallel with predictive modelling, causal inference analysis was conducted to identify process variables 
with statistically significant causal effects on defect formation. Four causal models were applied: Simple Linear 
Regression, DoWhy, Causal Forest, and Double Machine Learning (DML). These models were trained using the 
same preprocessed datasets to ensure methodological consistency. The combination of predictive and causal 
approaches allowed not only the evaluation of forecasting performance but also the identification and interpretation 
of key process drivers influencing defect occurrence. 

All modelling and statistical analyses were implemented in Python, by means of Visual Studio Code, using 
established libraries for machine learning and causal inference. Residual analysis was performed to assess model 
stability and detect potential systematic biases. If the residual distributions are approximately normal and centered 
around zero, this is an indicative of no systematic bias or overfitting [47]. 

4. Results and Discussions 

4.1. Impact of Digitalisation 

The transition from analogue data recording to a digitalised workflow produced substantial operational and 
informational gains. Before the implementation of the new system, operators spent between 40 min and 2 h per shift 
(≈34% of total working time) transcribing measurements into Excel spreadsheets. This process was completely 
eliminated after the deployment of the digital platform, freeing time for higher-value analytical activities. 

As illustrated in Figure 3, this transformation led to a substantial improvement in operational efficiency by 
completely eliminating the need for data transcription in the implemented solution. The minimum values represent 
the smallest number of vehicles measured by the operator on any given day during the study period, whereas the 
maximum values correspond to days with the highest measurement volume, driven by laboratory requirements. 
This variability occurred across different days rather than within a single shift. As the number of vehicles measured 
increased, the time required for manual data transcription grew proportionally, significantly impacting operator 
workload. The digitalized solution demonstrates the effect of eliminating manual transcription—a task whose 
duration scaled directly with measurement volume. By removing this activity, the operator’s workload becomes 
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less sensitive to daily fluctuations, thereby freeing time for analytical and value-added tasks. A comparative 
analysis before and after the implementation, using key performance indicators defined in collaboration with the 
operators and supervisors of the laboratory—efficiency, error reduction, analysis time, flexibility, and data 
security—demonstrated an improvement from scores of 1–2 (pre-digitalisation) to 4–5 (post-digitalisation) (see 
Figure 4). This KPIs were measured by retrieving data at the start of the project and at the end, being translated to 
the present scale by mathematical calculus, (see Figure 4). 

 

Figure 3. Comparison of activity times. 

 

Figure 4. Comparison of process indicators: before vs. after digitalization. 

Error rates also improved markedly. Historical data indicated that approximately 40.01% of all records 
contained transcription errors due to manual entry and repeated file manipulation. Through automated data 
validation and real-time database synchronisation, the digital workflow reduced these errors to virtually zero. 
These findings are consistent with the literature, where Pop [2] and Verhoef et al. [6] reported similar 
improvements in accuracy and traceability after adopting digital tools in industrial environments. 

Furthermore, process flexibility was enhanced. In scenarios such as sudden changes in paint type, previously 
requiring new paper templates or manual updates, the digital platform enabled immediate adaptation by simply 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Minimum Maximum Solution

Ti
m

e 
(h

ou
rs

)

Data Transcription Laboratory Analysis Sample Collection Component Replacement

0

1

2

3

4

5
Efficiency

Error Reduction

Analysis TimeFlexibility

Security

Before After



Pereira et al.   J. Mech. Eng. Manuf. 2026 

https://doi.org/10.53941/jmem.2026.100011  11 of 17  

updating input parameters in the database. This adaptability is characteristic of low-code platforms, which 
according to Bock and Frank [7], significantly reduce development and change management time. 

Finally, the data security and governance aspects were also strengthened. The new system introduced user 
authentication, permission levels, and audit trails, ensuring traceability of all operations and compliance with data 
integrity standards. Previously, Excel-based workflows lacked version control, increasing the risk of accidental or 
malicious data loss. The implemented digital approach aligns with best practices reported by Haddara and Zach [9] 
in ERP-based environments, confirming that data governance is a key benefit of industrial digitalisation. 

Overall, these results justify the scientific relevance of digitalisation not only as an operational improvement but 
as a data quality enabler, without which the subsequent machine learning analyses would not be statistically reliable. 

4.2. Predictive Modelling Results 

4.2.1. Initial Dataset (df_corrected) 

Using the df_corrected dataset, the XGBoost model achieved the best results among the tested algorithms, 
with MAE = 1.002, MAPE = 17.02%, and RMSE = 1.343. Although these values indicate a reasonable fit, they 
remain above the industry threshold for high precision (MAPE < 10%) [48]. 

Residual analysis (see Figure 5) showed an approximately normal distribution, with mild skewness (−0.22) 
and kurtosis (2.13), suggesting that the model captured the main structure of the data but slightly underestimated 
extreme defect counts. This behavior is expected given the limited dataset size (946 observations) and the non-
linear relationships inherent to the electrodeposition process. The Residue Distribution also let us see that the 
models don’t overfit the data, since the curve is approximately normal [47]. 

Physicochemical variations in parameters such as pH, conductivity, and ultrafiltrate solids can produce non-
proportional effects on coating defects, behavior that tree-based models can partially capture, but only with 
sufficient training diversity. 

 

Figure 5. Residue distribution (residues/frequency). 

4.2.2. Reduced Correlations Dataset (df_No_Correlations) 

When highly correlated features (|r| > 0.6) were removed to produce the df_No_Correlations dataset, Random 
Forest outperformed all other algorithms, achieving MAE = 0.972, MAPE = 16.45%, and RMSE = 1.307. 

The improvement indicates that multicollinearity among physicochemical variables (for instance, between 
pH and conductivity in ultrafiltrate solutions) was reducing model interpretability and increasing noise. 

After removing redundant predictors, model generalisation improved, as seen by the tighter residual 
dispersion around zero. 

This result supports the findings emphasised that reducing inter-variable dependency enhances predictive 
robustness and interpretability in multivariate industrial datasets. 
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4.2.3. Feature Engineering (df_feature_engineering) and RFECV Datasets (df_feature_engineering_rfecv) 

The df_feature_engineering dataset, which introduced derived attributes such as ratios between conductivity 
and solids, initially produced slightly inferior results (MAE = 1.025; MAPE = 16.84%; RMSE = 1.417). This 
outcome suggests that not all engineered features provided meaningful new information, possibly introducing 
collinearity or noise. 

Conversely, applying Recursive Feature Elimination with Cross-Validation (RFECV) generated a more 
parsimonious feature subset (df_feature_engineering_rfecv), achieving MAE = 0.977; MAPE = 16.70%; 
RMSE = 1.323. When averaging all models across datasets, this configuration delivered the best overall 
performance (MAE = 1.051; MAPE = 17.63%; RMSE = 1.403). 

This demonstrates that structured feature selection contributes more effectively to predictive accuracy than 
indiscriminate feature expansion, a conclusion aligned with Peres et al. [19], who observed similar results in 
automotive quality control using tree-based ensembles. 

4.2.4. Interpretation 

Overall, Random Forest consistently provided the most stable and interpretable results across datasets, 
confirming its robustness for heterogeneous, small-to-medium industrial datasets. 

Nevertheless, none of the models achieved high-precision thresholds (MAPE < 10%), primarily due to the 
limited number of defect-labelled records and the narrow variability of process parameters, which constrained 
model learning. 

From a process standpoint, this implies that the parameters currently collected by the laboratory are only 
partially explanatory of defect formation. Important factors, such as bath ageing, circulation flow rates, or surface 
pre-treatment residues, are not digitally captured, limiting the predictive scope. 

Hence, while ML models demonstrated potential, their performance justifies the need for additional data 
acquisition and sensor integration (e.g., real-time pH and temperature logging) to expand model accuracy and 
causal interpretability. 

4.3. Causal Modelling Results 

Causal inference analysis complemented the predictive models by identifying which process variables 
exhibited statistically significant causal relationships with defect counts. The models created and tested in 
Python—Linear Regression, DoWhy, Causal Forest, and Double Machine Learning (DML)—were trained using 
both the original and correlation-reduced datasets, using the same data handling approach described in the Data 
Preparation phase of the CRISP-DM methodology. 

Across all models, the solid content of ultrafiltrate I consistently emerged as the dominant causal driver of 
coating defects. This finding aligns with the process knowledge of electrodeposition, as variations in solid 
concentration alter bath conductivity and paint particle availability, directly influencing deposition uniformity. 

Other variables with moderate causal influence included the Ph of the ED bath and the Ph of the ultrafiltration 
solutions, both of which affect electrochemical balance and particle migration rates during deposition. 

Model performance metrics (calculation of the R2 of the models) for the df_corrected dataset are summarised 
as follows (Figure 6): 
• Linear Regression: 0.954 
• DoWhy: 0.880 
• Causal Forest: 0.747 
• DML: 0.710 

These results indicate that simpler linear models provided sufficiently robust causal estimates given the 
dataset size, corroborating findings by Luckow et al. [22], who noted that more complex models do not always 
outperform simpler approaches when data volume is limited. 

The consistency of results across both datasets (original and correlation-reduced) reinforces the validity of 
the identified causal relationships. Collectively, these findings justify the conclusion that the ultrafiltrate I solid 
content is a key control parameter for defect mitigation, and that causal analysis can serve as a diagnostic 
complement to traditional quality monitoring, guiding future process optimisation. 
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Figure 6. Causal models scores. 

5. Critical Analysis 

The results of this study clearly demonstrate that digitalisation represented the most transformative intervention, 
delivering immediate operational and informational benefits. The elimination of manual transcription, which 
previously consumed up to 34% of the operators’ working time, aligns with findings by Pop [2] and Mehta and 
Rastogi [3], who reported efficiency gains of 25–35% in similar industrial digitalisation projects. Moreover, the 
near-total removal of transcription errors (previously 40.01%) confirms that low-code digital tools can achieve 
reliability levels comparable to integrated ERP or MES systems, as also highlighted by Verhoef et al. [6] and 
Haddara and Zach [9]. These outcomes reinforce that digitalisation is not only an operational enabler but a 
scientific prerequisite for reliable analytics, since data integrity directly determines model performance. 

The predictive modelling results further emphasise this dependency. While the Random Forest and XGBoost 
algorithms achieved Mean Absolute Percentage Errors (MAPE) between 16% and 17%, these values remain above 
the high-precision industrial benchmark (MAPE < 10%) defined by Hyndman and Koehler [49]. Similar results 
were reported by Peres et al. [19] in their study at Volkswagen AutoEuropa, where tree-based ensembles achieved 
strong but not perfect prediction of dimensional defects, due to unmeasured environmental variables. The present 
study corroborates these challenges: the limited dataset (946 labelled records) and the absence of key variables such 
as bath ageing or circulation rate constrained model learning. This finding is consistent with Yao and Feng [27] and 
Luckow et al. [22], who showed that data completeness and sensor integration are critical for achieving robust 
industrial ML models. 

The causal inference analysis provided valuable complementary insights by identifying ultrafiltrate I solid 
content as the most influential causal factor in defect formation, a result that is coherent with electrochemical 
process theory and prior research by Fu et al. [50] on electrodeposition bath dynamics. The fact that simpler models 
(e.g., linear regression) produced causal estimates comparable to more complex methods, loke Causal Forest and 
Double Machine Learning, confirms the literature’s observation that model complexity does not necessarily 
guarantee better causal interpretability in small-sample industrial datasets [51,52]. 

Overall, this study contributes by empirically validating that digitalisation combined with ML and causal 
analysis can yield actionable insights even under resource and data constrains, a condition frequently encountered in 
laboratory-scale operations. The observed efficiency gains and the identification of meaningful causal variables align 
with the broader shift toward smart manufacturing and data-driven quality control noted by Brennen and Kreiss [5] 
and Verhoef et al. [6]. However, the work also reinforces a key limitation repeatedly stressed in the literature: data 
quality, consistency, and representativeness remain major obstacles to fully leveraging AI in manufacturing. Future 
work should therefore prioritise real-time sensor integration, expanded data collection, and model retraining, enabling 
predictive systems capable of near-real-time defect prevention and continuous process optimization.  
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6. Conclusions 

This research addressed the question: 

“How can the efficiency of data collection and processing in an industrial painting laboratory be 
increased through digitalisation mechanisms and data-driven analysis?” 

The findings demonstrate that the integration of low-code digitalisation tools with exploratory Machine 
Learning (ML) and causal inference models provides a novel and effective framework for enhancing both 
operational efficiency and analytical capability in laboratory environments. The developed Microsoft Power Apps 
platform, supported by centralised databases and automated workflows, eliminated manual transcription tasks, 
previously consuming up to 34% of operational time, and reduced transcription errors (≈40%) to virtually zero. 
This confirms the transformative potential of digitalisation not only as an operational improvement but as an 
enabler of trustworthy, analytics-ready data, a prerequisite often overlooked in industrial research. 

From an analytical standpoint, this study offers a novel integration of causal inference and predictive ML in 
the context of electrodeposition quality analysis, using real laboratory data. While the Random Forest model 
achieved moderate predictive accuracy (MAE ≈ 1.0; MAPE ≈ 16–17%), the causal analysis consistently identified 
the ultrafiltrate I solid content as the primary factor influencing coating defects. This dual methodological approach 
offers both predictive and explanatory insights—bridging a gap in existing literature where causal understanding 
is rarely integrated into industrial ML studies. 

The novelty of this work lies in the proposed framework that integrates digitalization tools, machine learning 
techniques, and causal analysis, and applies them to a manufacturing support laboratory, something that was not 
found in other literature, since most existing works focus on the processes occurring in production lines rather than 
on companies’ support areas, such as laboratories. 

This study demonstrates that combining digitalization, machine learning, and causal analysis can generate 
actionable insights even under resource and data constraints—a scenario frequently encountered in laboratory-
scale operations within the automotive manufacturing sector. 

The main limitations of this study include the relatively small dataset, the lack of additional sensors that could 
enhance data collection, and the resulting constraints on model accuracy. Beyond the automotive sector, the 
proposed framework is generalizable to other industries facing similar challenges of fragmented data collection 
and limited process digitalisation, such as chemical processing, pharmaceuticals, food manufacturing, and energy 
systems. By demonstrating that substantial analytical and operational value can be extracted even from constrained 
datasets, this work provides a replicable model for laboratories and production units seeking to transition toward 
smart, data-driven quality control. 

6.1. Limitations 

 The main limitations of this study were related to data collection, which was carried out manually. This approach 
constrained the historical volume of data obtained with a likelihood of transcription errors during transfer to the 
digital system. Due to this the dataset had to reduce from 2962 into 946 data examples (Table 2). 

 The number of variables collected by the laboratory used to validate the study did not include certain variables 
from the electrodeposition phase, such as manual rinsing steps or the temperature values of the drying oven—
variables that may contain relevant information for the models. 

 The laboratory-only scope, which does not currently incorporate upstream or downstream production data. 

6.2. Future Work 

 Future research should address these limitations by expanding the dataset, increasing operational variability, 
and integrating data from full-scale production processes to enhance the generalizability and robustness of 
the proposed framework. This can be achieved dynamically and in a fully automated manner through: 

 Automating data acquisition via IoT-connected sensors to ensure continuous, high-frequency data capture; 
 Developing interactive dashboards for real-time monitoring of process indicators; 
 Extending the model scope to incorporate production line variables and multivariate time-series models, 

enabling predictive maintenance and supporting digital twin applications. 
In summary, this work presents a validated proof-of-concept that uniquely integrates low-code digitalisation 

with machine learning and causal analysis to enhance quality control in industrial laboratories. It contributes 
practically, by demonstrating measurable efficiency and data-quality improvements, and scientifically, by 
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establishing a novel, transferable framework for data-driven process optimisation that can be extended beyond the 
automotive sector to other manufacturing domains within the paradigm of Industry 4.0. 
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