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Abstract: The development of haircutting robots has gained significant attention for
applications in personal grooming and healthcare, driven by population aging, labor
shortages, and increased demand for contactless interaction. Existing efforts, however,
remain fragmented, addressing perception, hair modeling, or motion planning in
isolation without a systematic framework. This survey provides a comprehensive
review of robotic haircutting through the lens of Computer Numerical Control (CNC)
machining principles, proposing a unified framework that treats hair manipulation
with industrial manufacturing rigor. We systematically analyze the field across five
key dimensions: system architectures including gantry-based, manipulator-based, and
hybrid configurations; sensing modalities encompassing vision, force, proximity, and
tactile feedback; hair modeling techniques from physics-based simulation to neural
reconstruction methods; toolpath planning strategies adapted from CNC machining
including coverage planning and multi-pass optimization; and control approaches for
precision execution and safety assurance. We present detailed comparisons of existing
prototypes and commercial systems, identify key technical challenges including head
motion compensation, hair property variability, and safety-critical control, and outline
promising research directions. This survey bridges the gap between service robotics
and precision manufacturing, providing researchers with a structured foundation for
advancing haircutting robot technology toward practical deployment.

Keywords: robotic hair cutting; CNC-inspired automation; coverage path planning;
precision control; personal care robotics; human-robot interaction

1. Introduction

Population aging, labor shortages in service industries, and the interest in contactless interaction have increased
demand for automation in personal grooming, especially after COVID-19 [1]. Within this context, haircutting robots
have been regarded as a new frontier of service robotics, aiming to deliver accessible, hygienic, and consistent
grooming while reducing the physical burden on human stylists. Recent comprehensive treatments of this emerging
field can be found in [2–4].

The hairstyling industry represents a massive global market exceeding $50 billion annually, yet remains
almost entirely manual despite revolutionary advances in robotics and automation. While industrial robotics has
transformed manufacturing through precise, repeatable operations, personal care services like hair cutting have
resisted automation due to fundamental technical barriers: the complexity of hair as a deformable material [5], safety
requirements for close human-robot interaction [6], and aesthetic demands requiring adaptive decision-making.

To better understand this emerging application, it is instructive to relate haircutting to other service robots that
already perform coverage-oriented tasks. A direct analogy can be drawn between robotic lawn mowing and robotic
haircutting: both require the robot to systematically traverse a target domain and remove material to a prescribed
level. The similarity motivates technology transfer from mature service robots to haircutting. However, haircutting

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.sciltp.com/journals/jaia
https://creativecommons.org/licenses/by/4.0/


Khan and Li J. Artif. Intell. Autom. 2026, 1(1), 2

exhibits unique characteristics that distinguish it from conventional coverage tasks. The workspace is a human head
with sensitive anatomy and strict safety requirements. The manipulated medium is deformable and diverse across
users, varying in texture, density, curl pattern, and moisture content [7,8]. Furthermore, the outcome is judged not
only by geometric completeness but also by aesthetic quality and personalization.

This survey proposes reconceptualizing robotic hair cutting through Computer Numerical Control (CNC) ma-
chining principles, treating hair manipulation with precision manufacturing rigor. CNC machining revolutionized
manufacturing by enabling unprecedented precision, repeatability, and automation in material processing [9]. When we
observe 5-axis CNC machining, particularly operations sculpting complex 3D surfaces, striking parallels emerge with
hair cutting requirements. Both demand precise multi-axis tool positioning, continuous trajectory control, real-time
adaptation to material properties, and sophisticated path planning optimizing coverage and finish quality. In typical
5-axis CNC systems, the rotational and linear axes follow hierarchical coordination where the linear axes (X, Y, Z)
provide primary positioning while rotational axes (A, B, or C) adjust tool orientation. However, in our proposed
haircutting system illustrated in Figure 1, we employ synchronized parallel control of all five axes to enable continuous
contouring motion around the complex curved geometry of the human head, similar to 5-axis simultaneous machining
operations. This coordination strategy allows the cutting tool to maintain optimal orientation relative to the scalp surface
throughout the entire trajectory, maximizing both cutting efficiency and safety margins.

While the CNC analogy provides a powerful framework for systematic automation, it is essential to recognize
that haircutting introduces fundamental challenges that extend beyond traditional CNC machining paradigms. Unlike
rigid workpieces in conventional CNC operations, hair is a highly deformable material that responds dynamically
to cutting forces, exhibits significant inter-individual variability in mechanical properties, and requires aesthetic
evaluation criteria that transcend purely geometric specifications. The safety-critical nature of operating in close
proximity to sensitive human anatomy demands control strategies with guaranteed collision avoidance and compliant
interaction capabilities not typically required in industrial machining. Most importantly, the aesthetic dimension
of haircutting, encompassing style preferences, facial symmetry considerations, and subjective quality judgments,
cannot be fully captured by geometric precision metrics alone. Therefore, our CNC-inspired framework must
be augmented with advanced sensing for material property adaptation, learning-based approaches for aesthetic
evaluation, and human-centered design principles for safe interaction. These extensions transform the CNC paradigm
from a pure precision manufacturing model into a hybrid framework that combines industrial rigor with the adaptive
intelligence required for personalized service robotics.
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Figure 1. CNC-inspired 5-axis robotic hair cutting system architecture showing aluminum extrusion gantry frame with
XYZ linear motion, rotary positioning ring (R1), tool head with clipper and tilt rotation (R2), and integrated sensing.

The mobile robotics community has developed a well-recognized structure for autonomy, usually described
in terms of three canonical problems: localization (“Where am I?”), coverage planning (“Where to go?”), and
control (“How can I go there?”). This structure has guided progress in domains ranging from autonomous vehicles
to household service robots [10, 11]. We adopt this framework to systematically analyze haircutting robots, as
illustrated in Figure 2.
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Figure 2. Block diagram of the CNC-based robotic hair-cutting workflow, showing input hairstyle specifications,
toolpath generation, multimodal sensing feedback, adaptive correction, and final precision cutting execution.

The remainder of this survey is organized as follows. Section 2 reviews related work and existing haircutting
robot prototypes. Section 3 examines system architectures and hardware configurations. Section 4 surveys sensing
modalities for localization and perception. Section 5 analyzes hair modeling techniques. Section 6 presents toolpath
planning and coverage strategies. Section 7 discusses control approaches and safety mechanisms. Section 8 identifies
open challenges and future directions. Section 9 concludes the survey.

2. Related Work and Existing Systems

Attempts at robotic haircutting are relatively recent and remain fragmented. Early concepts appeared in
patents for automatic haircutting machines [12], followed decades later by DIY prototypes demonstrating feasibility
but lacking systematic autonomy. The field has evolved through several generations of systems, each addressing
different aspects of the haircutting challenge with varying degrees of sophistication. Recent surveys provide
comprehensive overviews of this emerging domain [3].

Shane Wighton’s depth-camera-guided haircutting arm [13] and the “Stuff Made Here” UR5e-based robot [14]
demonstrated feasibility but lacked systematic autonomy. Commercial efforts have included Panasonic’s shampoo
and head-massage robot [15] and more recent patented haircutting devices [16]. Academic research has explored
more principled approaches, including the University of Tokyo’s strand-oriented styling robot [17], MIT’s RoboWig
with tactile and visual sensing [18], and Moe-Hair’s soft end-effectors for compliant manipulation [19,20]. Related
work on robotic combing and brushing further emphasizes safe, contact-rich interaction [21]. Table 1 provides
a detailed comparison of existing haircutting robot systems and prototypes, organized by primary task focus to
facilitate meaningful comparisons.

Haircutting robots benefit from mature experience in several related domains. Domestic service robots such
as vacuum cleaners, exemplified by the iRobot Roomba [22], evolved from wall-following and bump sensing to
visual SLAM and decomposition-based coverage. Robotic lawn mowers, such as the Husqvarna Automower [23],
incorporated GPS and outdoor navigation techniques. These coverage-oriented systems provide templates for
systematic trimming operations that can be adapted to the haircutting context. For example, the Roomba 980 model
demonstrated the effectiveness of vSLAM (visual Simultaneous Localization and Mapping) for systematic room
coverage with 95% area coverage efficiency in controlled environments. Similarly, the Automower 450X achieves
boundary-following accuracy within ±2 cm using GPS-assisted navigation combined with boundary wire detection.
These quantitative benchmarks from mature service robotics domains provide concrete performance targets that can
guide haircutting robot development, particularly for achieving systematic scalp coverage with minimal redundancy.

Surgical robotics provides another valuable source of technology transfer. Precise localization and constrained
trajectory generation, exemplified by the da Vinci system [24], enable safe operation in anatomically sensitive
environments. The emphasis on safety-critical control directly applies to haircutting near sensitive facial regions,
where even minor errors could result in injury or aesthetic defects [4]. The da Vinci surgical system achieves
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positioning accuracy of 0.1–0.2 mm with force feedback sensitivity below 0.1 N, demonstrating the level of precision
and safety achievable in human-contact applications. These specifications establish performance benchmarks directly
applicable to haircutting robots operating near sensitive facial anatomy, where similar precision and force sensitivity
are essential for preventing accidental contact with ears, eyes, and scalp.

Computer numerical control has long relied on multi-pass toolpath planning [9], directly paralleling recursive
material removal in haircutting. CAM software generates optimized trajectories for complex 3D surfaces, providing
algorithmic foundations for hair cutting path planning that can handle the curved geometry of the human head while
optimizing for coverage efficiency and cut quality. The theoretical foundations for translating CNC principles to
haircutting have been established in [2].

Table 1. Comparison of existing haircutting robot systems and prototypes. systems are grouped by primary task
focus to facilitate meaningful comparisons within each category.

System/Approach Platform Type Sensing Planning Method Task Focus Key Limitations

Cutting-Focused Systems

Gronier (1966) [12] Automated device Mechanical Fixed patterns Basic cutting Early patent, no sensing

Wighton (2020) [13] Custom scissor arm Depth camera Heuristic trajectory Cutting demo DIY prototype, no systematic
autonomy

Stuff Made Here (2021) [14] UR5e manipulator RGB-D camera Pre-programmed paths Entertainment Single style, lacks safety
guarantees

Aldabbah (2023) [16] Patented device Not specified Automated paths Full haircut Patent only, no validation
Front hair styling (2025) [17] Custom system Vision-based Path planning Strand adjustment Limited to front hair

Hair Manipulation Systems

RoboWig (2022) [18] Robotic arm Visual + tactile Learning-based Hair brushing Not cutting; limited
generalization

Hair combing (2021) [21] General-purpose arm Visual + force Reactive control Combing task Simple trajectories only
Moe-Hair (2024) [19] Soft end-effector Force/tactile Compliant control Hair manipulation No cutting capability

Scalp Care Systems

Panasonic (2012) [15] Custom robot Pressure sensors Fixed patterns Shampoo No cutting, limited to scalp
care

CNC-inspired (Proposed) 5-axis gantry Multimodal CAM-based toolpath Full haircut Requires validation

3. System Architectures

Haircutting robot architectures can be categorized into four main configurations, each presenting distinct
trade-offs between workspace coverage, precision, and system complexity. Table 2 summarizes these architectural
options and their key characteristics.

Table 2. Comparison of robot architecture configurations.

Architecture Workspace Precision Complexity *

Gantry (CNC-style) Full head <0.5mm Medium **
Serial manipulator Limited 1–2mm High ***
Parallel (Stewart) Partial <0.3mm High ***
Hybrid systems Full head 0.5–1mm Very high ****

* Complexity ratings: ** = 3–5 DOF with standard controllers; *** = 6+ DOF or complex kinematics requiring advanced control; **** =
Multiple coordinated subsystems with hierarchical control

Gantry-based systems, inspired by CNC mills, employ Cartesian gantries providing XYZ positioning with
rotary axes for orientation control. As shown in Figure 1, a rotary ring (R1) enables circumferential tool positioning
around the head, while a tilt axis (R2) provides tool orientation adjustment. Aluminum extrusion frames offer high
stiffness-to-weight ratios, minimizing deflections during motion. This configuration provides full spatial positioning
capability with sub-millimeter precision, making it particularly well-suited for systematic coverage of the entire
head surface.

A critical challenge in all architectural configurations is accommodating natural head motion during extended
haircutting procedures. Gantry systems, while offering superior precision in static scenarios, require active
compensation mechanisms when the head moves, as their large inertia limits dynamic response. Serial manipulators
provide greater adaptability to head motion through their inherent flexibility, but may sacrifice precision in certain
joint configurations. Parallel mechanisms offer excellent dynamic response and precision but with limited workspace
coverage. Hybrid systems can theoretically combine the advantages of multiple architectures, using a gantry for
gross positioning and a parallel mechanism for fine tracking, but at the cost of significantly increased mechanical
and control complexity. The selection of architecture must therefore consider not only static precision metrics
but also the system’s ability to maintain safe and accurate operation under the dynamic conditions of real-world
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human-robot interaction.
Serial manipulator systems utilize industrial manipulators such as the UR5e to provide flexibility and es-

tablished control frameworks. However, they face kinematic constraints when operating around spherical head
geometry, with singularities and joint limits forcing suboptimal tool orientations in certain regions of the workspace.
Parallel mechanisms, including Stewart platforms and similar parallel kinematic machines, offer exceptional preci-
sion and stiffness within limited workspaces, making them potentially suitable as secondary positioning stages for
fine finishing operations.

Hybrid configurations combine serial and parallel mechanisms, or gantry systems with articulated end-effectors,
to provide both workspace coverage and local precision. While these systems offer the most comprehensive
capability, they also introduce the greatest mechanical and control complexity.

End-effectors for haircutting robots must accommodate multiple tools and provide integrated sensing capabili-
ties. Electric clippers for bulk removal operate through oscillating blade motion at 3000–6000 RPM, while scissors
provide precision cutting for detail work and thinning shears enable texture control. Quick-change interfaces allow
tool switching during operation to accommodate different cutting phases.

Integrated sensing at the end-effector includes force/torque sensors mounted at the tool interface to monitor
cutting resistance, proximity sensors for collision avoidance, and tactile arrays to estimate hair density and properties
during contact. Compliance mechanisms such as series elastic actuators (SEA) and variable stiffness actuators
(VSA) provide compliant interaction, enabling safe contact with the scalp while maintaining cutting precision [25].

4. Sensing and Localization

Localization is essential for haircutting robots, enabling trajectory planning and safe interaction. Following
the mobile robotics perspective, the core problem is estimating the clipper-head pose reliably under human motion
and complex hair geometry. Table 3 provides a systematic overview of sensor categories and their roles in
haircutting robots.

Table 3. Sensor categories and their roles in haircutting robots.

Category Representative Types Key Role in Haircutting

Proximity/Range Ultrasonic, Infrared, Capacitive, mmWave radar Collision avoidance, scalp distance monitoring,
user safety

Active Depth Structured light (Kinect, RealSense), ToF cameras,
2D/3D LiDAR

Accurate head geometry reconstruction, initialization of
trimming models

Vision RGB cameras, Stereo vision, RGB-D, Event cameras Head pose estimation, hairstyle recognition, robust
tracking under motion

Proprioceptive Joint encoders, IMUs, Joint torque sensors Precise end-effector motion estimation, stable
kinematic constraints

Contact/Tactile Force sensors (6-axis F/T), Tactile arrays, Electronic skin Real-time scalp contact feedback, compliant
motion control

Following mobile robotics principles, localization can be organized into three levels. Global localization
establishes absolute pose in a consistent coordinate frame. Outside-in vision with fixed cameras or RGB-D sensors
offers reliable initialization [26], either through fiducial markers such as AprilTags [27, 28] or markerless head
modeling based on 3D morphable models [29]. External tracking systems including motion capture, magnetic
tracking, or UWB beacons provide high-accuracy alternatives when infrastructure permits [30].

Relative localization focuses on incremental motion tracking without external infrastructure. Visual odome-
try [31,32], optical flow [33], and visual-inertial odometry provide lightweight solutions but suffer from occlusion
in dense hair regions. Proprioceptive sensing with IMUs [34] and encoders enables continuous updates, though drift
accumulates over time without periodic correction.

Integrated fusion combines global stability with local responsiveness. Filtering-based methods including
Kalman filters [35], extended Kalman filters [36], unscented Kalman filters [37], and particle filters [38] handle
sensor noise in real time. Optimization-based approaches such as factor graph optimization [39] and sliding-
window estimators achieve long-horizon consistency [40–42]. Table 4 summarizes localization strategies and their
applicability to haircutting.
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Table 4. Mapping of localization strategies between mobile robots and haircutting robots.

Category Representative Methods Function in Mobile Robots Function in Haircutting

Global Outside-in vision, Kinematic
estimation, Motion capture Absolute pose in consistent frame Clipper-head pose for initialization

Relative Visual odometry, IMU/encoder
odometry, Force sensing Track motion relative to local frame Track clipper relative to moving head

Integrated Fusion EKF, UKF, Factor graphs,
Learning-based fusion Fuse sensors for robust localization Robust trimming under dynamic

interaction

5. Hair Modeling

Hair modeling is fundamental for planning and simulation in haircutting robots. The field has evolved from
physics-based approaches to learning-based reconstruction methods, each offering different trade-offs between
accuracy, computational efficiency, and ease of acquisition.

Physics-based models capture hair mechanics for simulation and prediction. Mass-spring models represent
hair strands as chains of particles connected by springs, capturing elasticity and gravity effects [43]. While
computationally efficient, they offer limited accuracy for complex interactions. Rod-based models treat hair as
elastic rods with bending and twisting stiffness, providing greater accuracy than mass-spring models but at higher
computational cost for dense hair. Continuum models represent hair as a continuous medium rather than individual
strands, enabling efficient computation for dense hair regions at the expense of strand-level detail.

Deep learning has enabled impressive progress in 3D hair reconstruction from images. HairNet [44] performs
single-view hair reconstruction using convolutional neural networks, predicting strand geometry from monocular
images. AutoHair [45] provides fully automatic hair modeling from single images, combining segmentation,
orientation estimation, and strand synthesis. Neural Haircut [46] achieves prior-guided strand-based reconstruction
with high-fidelity geometry from video input. Gaussian Haircut [47] reconstructs human hair with strand-aligned
3D Gaussians, enabling real-time rendering and manipulation. Table 5 compares these hair modeling approaches.

Table 5. Comparison of hair modeling approaches.

Method Input Output Application

Mass-Spring [43] Parameters Dynamics Simulation
HairNet [44] Single image 3D strands Reconstruction

AutoHair [45] Single image Full model Modeling
Neural Haircut [46] Video Strands High-fidelity

Gaussian [47] Multi-view 3D Gaussians Real-time

6. Toolpath Planning and Coverage

In autonomous haircutting, determining how the clipper should traverse the scalp constitutes a core challenge.
From the mobile robotics perspective, this problem can be framed as Coverage Path Planning (CPP). CPP aims to
compute trajectories ensuring complete and efficient coverage of a target area. Unlike traditional 2D coverage tasks,
haircutting introduces several distinctive complexities.

Multi-pass trimming represents a fundamental requirement. Due to limited cutting depth per pass, the desired
hair volume cannot be achieved through single-pass motion. The system must perform sequences of overlapping
passes, each precisely aligned and depth-regulated. Shaped outcome requirements further distinguish haircutting
from generic area coverage. Unlike tasks where all regions are visited equally, haircutting demands conformity to
predefined 3D target shapes meeting aesthetic specifications. Safety constraints require the robot to avoid contact
with sensitive anatomical regions including ears, eyes, and face, necessitating explicit integration of spatial exclusion
zones into the planning framework.

It is essential to clarify the relationship between Coverage Path Planning (CPP) from mobile robotics and
Computer-Aided Manufacturing (CAM) toolpath generation from CNC machining, as both paradigms contribute
complementary capabilities to haircutting automation. CPP methods from mobile robotics, including boustrophedon
decomposition, grid-based approaches, and graph traversal algorithms, excel at high-level workspace decomposition
and systematic area coverage. These techniques partition the scalp surface into manageable regions (e.g., crown,
temporal, parietal, occipital zones) and determine efficient visiting sequences that minimize redundant motion while
ensuring complete coverage. In contrast, CAM algorithms from CNC machining, including contour-parallel paths,
spiral toolpaths, and multi-pass finishing strategies, specialize in generating precise, surface-following trajectories
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with controlled tool orientation and depth. These methods optimize local cutting quality, manage material removal
rates, and maintain consistent surface finish. In our proposed framework, we employ a hierarchical integration:
CPP methods provide global workspace decomposition and region sequencing at the strategic level, while CAM
algorithms generate detailed, geometry-conforming toolpaths within each region at the tactical level. This two-level
approach combines the systematic coverage guarantees of mobile robotics with the precision surface machining
capabilities of CNC systems, yielding a comprehensive planning framework optimized for both efficiency and
quality in robotic haircutting.

Table 6 summarizes representative coverage planning strategies and their applicability to haircutting. Pattern-
based approaches such as boustrophedon [48] and spiral patterns [49] provide systematic sweeping motions suitable
for scalp partitioning into local patches. Decomposition methods including boustrophedon decomposition [10]
and grid/quadtree approaches [50] enable workspace partitioning into cells for segmentation of the scalp surface.
Graph-based methods such as the Chinese Postman problem [51] and minimum spanning tree approaches [11]
optimize traversal with minimum cost for scalp-wide coverage. Sampling-based approaches including PRM [52] and
RRT [53] establish feasible connections in configuration space for constrained regions with complex geometry. Multi-
objective methods employing genetic algorithms [54], particle swarm optimization [55], and neural dynamics [56]
balance trade-offs among efficiency, safety, and aesthetics. Related evolutionary approaches for robot path planning
have been explored in [57,58].

Table 6. Coverage planning strategies for haircutting robots.

Category Representative Methods Key Characteristics Applicability to Haircutting

Pattern-based Boustrophedon [48], Spiral [49] Systematic sweeping motions Scalp partitioning into local patches

Decomposition Boustrophedon decomposition [10],
Grid/quadtree [50] Workspace partitioning into cells Segmentation of scalp surface

Graph-based Chinese Postman [51], MST [11] Traversal with minimum cost Scalp-wide coverage optimization

Sampling-based PRM [52], RRT [53] Feasible connections in C-space Constrained regions with complex geometry

Multi-objective GA [54], PSO [55], Neural dynamics [56] Trade-offs among multiple criteria Balance efficiency, safety, aesthetics

We adapt Computer-Aided Manufacturing algorithms from the CNC domain to hair cutting. Given a target
hairstyle specification defining length distribution and shape, the system generates optimized cutting trajectories
covering the head surface, as illustrated in Figure 3. Contour-parallel paths follow head curvature analogous
to surface finishing passes in CNC machining, providing uniform coverage while maintaining consistent tool
orientation relative to the scalp surface. Spiral patterns provide uniform coverage through outward or inward radial
sweeping, particularly suitable for crown regions. Region-based segmentation partitions the scalp into manageable
sub-regions including temporal, parietal, occipital, and crown areas for prioritized processing.

High-Detail Inset

Figure 3. Toolpath planning over a 3D head model showing contour-parallel trajectories, tool orientation vectors,
and a zoomed inset highlighting local path detail for controlled surface-following hair-cutting motion.
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An often-overlooked but critical prerequisite for precision cutting is proper hair preparation through combing,
sectioning, and potentially wetting. Professional hairstylists universally employ systematic combing to detangle hair,
establish consistent strand orientation, and present hair uniformly to cutting tools. Sectioning divides the scalp into
manageable zones (typically 5–7 major sections) using clips or combs, enabling controlled sequential processing
and preventing already-cut hair from interfering with subsequent operations. Wetting hair modifies its mechanical
properties, increasing weight and reducing static, thereby improving controllability and cutting consistency. These
preparatory steps directly impact the effectiveness of subsequent toolpath execution by ensuring hair is presented
to the cutting tool in a predictable, organized manner. Future haircutting robot systems must integrate automated
combing mechanisms, either as a dedicated pre-processing stage or as an interleaved operation between cutting
passes. Recent work on robotic hair brushing [18] and compliant combing [21] provides technical foundations for
such capabilities. Incorporating these preparatory operations into the overall workflow represents a critical step
toward achieving professional-quality results comparable to human hairstylists.

Professional hairstylists use iterative refinement with rough cutting followed by detail passes. We implement
analogous multi-pass strategies where coarse trimming provides initial bulk removal with aggressive parameters
(high feed rates, coarse tolerances) to approximate the rough silhouette. Intermediate blending establishes gradients
and transitions between regions. Fine finishing achieves precise target lengths with fine tolerances for aesthetic
quality. Algorithm 1 presents the multi-pass toolpath generation procedure.

Algorithm Parameter Definitions. Before presenting the multi-pass toolpath generation algorithm, we clarify
the representation of key parameters:

• Hair volume S0 and residual volume S: Represented as a 3D scalar field over the head surface mesh, where
each vertex stores the current hair length (in millimeters). This discretized representation enables efficient set
operations through element-wise comparisons and updates.

• Target hairstyle T : Encoded as a target length field over the same mesh, specifying the desired hair length at
each vertex. The notation T+ϵ denotes the target with a tolerance margin ϵ (typically 1–2mm), allowing the
algorithm to terminate when the residual volume is within acceptable bounds.

• Safety zones O: Defined as 3D bounding volumes (axis-aligned boxes or convex hulls) representing exclusion
regions around sensitive anatomy (ears, eyes, face). Collision checking verifies that generated toolpaths
maintain minimum clearance from these volumes.

• Set operations: The subtraction S\T computes the excess hair volume by element-wise comparison, identifying
vertices where current length exceeds target length. The executed removal Ei represents the actual material
removed during pass i, updating the length field based on clipper guard height and trajectory coverage.

Algorithm 1 Multi-Pass Toolpath Generation

Require: Initial hair volume S0, Target hairstyle T , Safety zones O
Ensure: Sequence of toolpaths {gi(t)}Ni=1

1: Initialize residual volume S ← S0

2: i← 0

3: while S ̸⊆ T+ϵ do
4: i← i+ 1

5: Compute removal target Ri ← S \ T
6: Generate collision-free toolpath gi(t) covering Ri

7: Verify gi(t) ∩O = ∅ for all t
8: Execute pass and update S ← S \ Ei

9: end while
10: return {gi(t)}Ni=1

7. Control and Execution

The final component of autonomous haircutting lies in execution, where planned trajectories must be realized
safely, efficiently, and with desired trimming quality. Achieving CNC-level precision requires sophisticated motion
control approaches that address the unique challenges of operating in close proximity to a human subject.

High-bandwidth servo control on each axis employs closed-loop control with position feedback at 1–10 kHz
rates. Feedforward compensation based on inverse dynamics models minimizes trajectory tracking errors, achieving
positioning accuracy below 0.5 mm. Coordinated multi-axis motion synchronizes all five axes through real-time
interpolation generating setpoints while maintaining geometric path accuracy [59]. Adaptive feed rates adjust
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cutting speed based on hair properties through force feedback, where increasing resistance triggers deceleration to
prevent tool jamming.

Humans naturally move during extended procedures, presenting a significant challenge for maintaining
cutting accuracy. Vision systems track head pose at 100 Hz, detecting movements within 10 ms. Predictive
algorithms anticipate motion trends, enabling proactive trajectory adaptation rather than reactive correction. Minor
movements trigger local trajectory warping, while large movements pause operations, replan globally, and resume
safely. This hybrid approach combining active compensation and passive stabilization through padded head rests
maximizes effectiveness.

Close human-robot proximity demands multiple safety layers [4]. Table 7 summarizes the key safety mecha-
nisms employed in haircutting robots. Variable impedance control adjusts apparent stiffness based on task phase and
collision risk [60]. During normal cutting, high stiffness maintains precision; upon detecting unexpected resistance,
stiffness reduces immediately, allowing safe deflection.

Table 7. Safety mechanisms in haircutting robots.

Mechanism Function

Impedance control [60] Variable stiffness based on task phase
Collision avoidance [61] Multi-layer prevention and reaction

Force limiting Hardware-enforced maximum forces
Emergency stop Immediate tool retraction

Compliant actuators Passive safety via SEA/VSA

Multi-layer collision avoidance ensures safety through planning-stage collision checking that verifies trajectory
safety before execution, proximity-based intervention that triggers evasive actions when sensors detect dangerous
approach, and contact-based reaction that immediately stops motion upon unexpected contact [61]. Hardware safety
mechanisms include torque-limited motors that physically constrain maximum forces, mechanical stops preventing
excessive tool excursions, and spring-loaded retraction mechanisms that engage during power failures.

Table 8 summarizes representative actuators and their roles in haircutting robots. Motion actuation employs
DC/BLDC motors, servo motors, stepper motors, and linear actuators for driving arm joints, end-effector orientation,
and positioning. End-effector actuators include vibration motors for clippers, rotary servos for scissors, and micro
linear actuators for guard adjustment. Compliant actuators such as SEA, VSA, and MR clutches/dampers enable
safe contact, force control, and compliance tuning. Auxiliary systems encompass tool changers, vacuum motors for
hair collection, and blower actuators for airflow assistance.

Table 8. Actuator categories and their roles in haircutting robots.

Category Representative Actuators Key Role

Motion actuation DC/BLDC motors, Servo motors, Stepper motors, Linear actuators Driving arm joints, end-effector orientation, positioning
End-effector Vibration motors (clipper), Rotary servo (scissors), Micro linear (guard) Trimming execution, cutting length adjustment
Compliant SEA, VSA, MR clutches/dampers Safe contact, force control, compliance tuning
Auxiliary Tool changer, Vacuum motors, Blower actuators Tool switching, hair collection, airflow assistance

HRI Haptic feedback, Audio output User alerts, touch cues, voice interaction

8. Open Challenges and Future Directions

Hair exhibits enormous diversity across individuals and ethnicities. Thickness varies 10-fold, curvature ranges
from straight to tightly coiled, and density varies 3-fold [7]. Developing inclusive models representing all hair types
is both a technical necessity and an ethical imperative for ensuring equitable access to robotic haircutting services.
Achieving truly inclusive haircutting automation requires comprehensive datasets encompassing the full spectrum
of human hair diversity, including Type 1 (straight) through Type 4 (coily) hair across different ethnicities. Current
hair modeling and cutting research has disproportionately focused on straight to wavy hair types common in East
Asian and European populations, with limited attention to the kinky and coiled textures predominant in African
and Afro-Caribbean populations. These hair types exhibit fundamentally different mechanical properties, including
higher tensile strength, lower elasticity, and greater tangling propensity. These characteristics demand adapted
cutting strategies, specialized tools, and modified force control parameters. Developing equitable robotic haircutting
systems requires investment in diverse training data collection, development of hair-type-specific models, and
validation across representative user populations to ensure that automation benefits are accessible to all communities,
not merely those whose hair characteristics align with existing research biases.

Long-horizon autonomy presents another significant challenge, as complete hairstyling sessions span 30–60 min
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involving thousands of individual cuts. Maintaining consistent precision while adapting to changing conditions
requires robust long-horizon planning that can recover from errors and adapt to unexpected situations. Consider
a practical example: cutting a medium-length hairstyle with 100,000 strands to achieve uniform 5 cm length.
Assuming 10mm cutting width per pass and 50% overlap for quality, approximately 2000 individual cutting strokes
are required. At a conservative 2-s cycle time per stroke (approach, cut, retract), the total operation time exceeds
60 min. During this extended period, cumulative positioning errors, tool wear, hair property changes due to drying,
and inevitable human movements all degrade cutting quality. Robust long-horizon autonomy requires continuous
quality monitoring through vision feedback, adaptive recalibration based on landmark tracking, periodic error
correction passes, and graceful degradation strategies when performance drifts beyond acceptable bounds. These
capabilities extend significantly beyond current demonstration-level prototypes that operate for only a few minutes
under constrained conditions.

Aesthetic evaluation remains poorly quantified, with no standardized metrics for hairstyle quality. Developing
benchmarks incorporating both geometric accuracy and aesthetic assessment is essential for objective comparison
of different systems and approaches. Unlike manufacturing operations where quality can be measured through
geometric tolerances and surface finish metrics, hairstyle quality encompasses subjective aesthetic dimensions.
These dimensions include facial symmetry enhancement, style coherence, transition smoothness between regions,
and alignment with contemporary fashion norms. Professional hairstylists evaluate quality through holistic visual
inspection considering proportions relative to facial features, balance between left and right sides, smooth gradients
in fade regions, and overall stylistic harmony. Translating these qualitative assessments into quantifiable metrics
suitable for robotic optimization represents a fundamental research challenge. Potential approaches include
perceptual loss functions trained on human preference data, multi-view geometric analysis comparing target and
achieved styles, and automated detection of common defects such as uneven lengths, harsh transitions, or asymmetry.
However, developing truly comprehensive evaluation frameworks that capture the full complexity of aesthetic
judgment remains an open problem requiring interdisciplinary collaboration between computer vision, psychology,
and professional hairstyling communities.

Sim-to-real transfer poses ongoing challenges. Physics-based hair simulation combined with photorealistic
rendering enables algorithm development in simulation, but bridging the gap to real-world deployment requires
careful domain adaptation. Current physics simulators can model individual hair strand dynamics with reasonable
accuracy. However, scaling to realistic full-head simulations with 100,000+ strands remains computationally
prohibitive for real-time application. Simplified models using strand clustering or continuum approximations
achieve computational tractability but introduce sim-to-real gaps in cutting dynamics, particularly for curly and
textured hair where individual strand interactions dominate bulk behavior. Rendering realistic hair appearance
for perception algorithm training faces additional challenges. Subsurface scattering, anisotropic reflection, and
fine geometric detail require expensive ray-tracing techniques. Practical sim-to-real transfer for haircutting likely
requires hybrid approaches combining coarse physics simulation for motion planning, learned corrections from
real-world data for dynamics prediction, and domain randomization techniques to improve robustness. Recent
advances in differentiable physics simulation and neural rendering offer promising directions but have not yet been
validated for hair manipulation tasks at the scale and fidelity required for autonomous haircutting.

Learning-based approaches offer promising directions for advancing haircutting robot capabilities. Behavior
cloning [62] and demonstration-based models [63] can capture stylistic features of professional barbers for robotic
execution. Imitation learning provides a powerful paradigm for transferring human expertise to robots [64,65].
Reinforcement learning enables policy optimization through trial-and-error [66–68], adapting trimming trajectories
to user preferences and dynamic hair properties. Recent vision-language-action frameworks [69–71] unify perception
and language to produce action commands, enabling natural language hairstyle specification that could make robotic
haircutting more accessible to users.

Integration with autonomous systems provides additional sources of technology transfer. Deep neural networks
for perception [72,73], control barrier functions for safety [74], and model predictive control [75] from autonomous
driving [76,77] provide templates for haircutting systems. Methods for covering complex 3D surfaces, segmenting
irregular workspaces, and executing visual servoing from UAV coverage applications [78,79] are directly pertinent
to scalp coverage. Graph neural networks for multi-robot coordination [80] and Pareto-optimal motion planning [81]
offer additional algorithmic foundations.

Economic and social considerations merit careful attention. Detailed cost-benefit analysis must assess system
costs, throughput improvements, and customer willingness to pay. Identifying viable market segments including
budget salons, assisted living facilities, and military applications guides commercialization strategy. Understanding
effects on hairstylist employment and developing augmentation rather than replacement approaches addresses social
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concerns while preserving human expertise. Robotic assistance could make professional hairstyling accessible to
individuals with disabilities or limited mobility, expanding the reach of quality personal care services. A roadmap
for practical deployment has been outlined in [3].

9. Conclusions

This survey has provided a comprehensive review of robotic haircutting through the lens of CNC machining
principles, proposing a unified framework treating hair manipulation with industrial manufacturing rigor. We
systematically analyzed the field across system architectures, sensing modalities, hair modeling techniques, toolpath
planning strategies, and control approaches.

The CNC-inspired paradigm offers several key insights. Framing haircutting as coverage path planning enables
systematic algorithm development drawing on decades of mobile robotics research. Multi-pass toolpath strategies
from CNC machining directly apply to iterative hair removal with progressive refinement. Multimodal sensing
fusion addresses the localization challenge in dynamic human-robot interaction where the workspace itself is in
motion. Safety-critical control from surgical and collaborative robotics ensures safe operation in close proximity to
sensitive anatomy.

Key technical challenges remain, including hair property variability across diverse populations, long-horizon
autonomy for complete styling sessions, aesthetic evaluation metrics for quality assessment, and sim-to-real transfer
for practical deployment. Future progress will likely depend on hybrid frameworks combining model-based
control with learning-driven adaptation, integration of vision-language-action models for natural interaction, and
comprehensive real-world validation across diverse user populations.

By bridging service robotics and precision manufacturing, this survey provides researchers with a structured
foundation for advancing haircutting robot technology toward practical deployment. The systematic approach to
precision, safety, and quality control addresses key barriers that have prevented deployment for decades. Building
on industrial automation’s solid foundation, we can finally bring the benefits of robotic precision to personal
care services.

Author Contributions

A.T.K.: conceptualization, methodology, writing—original draft preparation, visualization; S.L.: supervision,
writing—reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Use of AI and AI-Assisted Technologies

During the preparation of this work, the author(s) used ChatGPT/Claude for rephrasing and grammatical
corrections and the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content
of the published article.

References

1. Gerstell, E.; Marchessou, S.; Schmidt, J.; et al. How COVID-19 Is Changing the World of Beauty; McKinsey & Company:
Chicago, IL, USA, 2020.

2. Li, S. Haircutting Robots; Springer Nature: Berlin/Heidelberg, Germany, 2025.

11 of 14



Khan and Li J. Artif. Intell. Autom. 2026, 1(1), 2

3. Li, S. Haircutting Robots: From Theory to Practice. Automation 2025, 6, 47.
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48. Bähnemann, R.; Lawrance, N.; Chung, J.J.; et al. Revisiting Boustrophedon Coverage Path Planning as a Generalized
Traveling Salesman Problem. In Field and Service Robotics; Springer: Singapore, 2021; pp. 277–290.

49. Cabreira, T.M.; Di Franco, C.; Ferreira, P.R.; et al. Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric
Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668.

50. Han, B.; Qu, T.; Tong, X.; et al. Grid-Optimized UAV Indoor Path Planning Algorithms in a Complex Environment. Int. J.
Appl. Earth Obs. Geoinf. 2022, 111, 102857.

51. Thimbleby, H. The Directed Chinese Postman Problem. Softw. Pract. Exp. 2003, 33, 1081–1096.
52. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of Probabilistic Roadmaps for Path Planning. IEEE Trans. Robot.

Autom. 1998, 14, 166–171.
53. Umari, H.; Mukhopadhyay, S. Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized Trees.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 1396–1402.

54. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning.
Procedia Comput. Sci. 2018, 127, 180–189.

55. Lin, S.; Liu, A.; Wang, J.; et al. An Intelligence-Based Hybrid PSO-SA for Mobile Robot Path Planning in Warehouse. J.
Comput. Sci. 2023, 67, 101938.

56. Hua, C.; Xu, J.; Huang, Z.; et al. Optimization-Based Finite-Time Multi-Robot Formation: A Zeroing Neurodynamics
Method. Tsinghua Sci. Technol. 2026, 31, 162–179.

57. Khan, A.T.; Cao, X.; Li, Z.; et al. Evolutionary Computation Based Real-Time Robot Arm Path-Planning Using Beetle
Antennae Search. EAI Endorsed Trans. Robot. 2022, 1, e3.

58. Huang, Z.; Zhang, Z.; Hua, C.; et al. Leveraging Enhanced Egret Swarm Optimization Algorithm and Artificial Intelligence-
Driven Prompt Strategies for Portfolio Selection. Sci. Rep. 2024, 14, 26681.

59. Chaumette, F.; Hutchinson, S. Visual Servo Control. I. Basic Approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90.
60. Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control. 1985, 107, 1–7.
61. Haddadin, S.; Croft, E. Physical Human–Robot Interaction. In Springer Handbook of Robotics; Springer: Cham, Switzerland,

2016; pp. 1835–1874.

13 of 14

https://doi.org/10.1177/1729881418769191


Khan and Li J. Artif. Intell. Autom. 2026, 1(1), 2

62. Jang, E.; Irpan, A.; Khansari, M.; et al. BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning. In
Proceedings of the Conference on Robot Learning (CoRL), Auckland, New Zealand, 14–18 December 2022; pp. 991–1002.

63. Kim, H.; Ohmura, Y.; Nagakubo, A.; et al. Training Robots Without Robots: Deep Imitation Learning for Master-to-Robot
Policy Transfer. IEEE Robot. Autom. Lett. 2023, 8, 2906–2913.

64. Zare, M.; Kebria, P.M.; Khosravi, A.; et al. A Survey of Imitation Learning: Algorithms, Recent Developments, and
Challenges. IEEE Trans. Cybern. 2024, 54, 7173–7192.

65. Hua, J.; Zeng, L.; Li, G.; et al. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning.
Sensors 2021, 21, 1278.

66. Zhu, K.; Zhang, T. Deep Reinforcement Learning Based Mobile Robot Navigation: A Review. Tsinghua Sci. Technol. 2021,
26, 674–691.

67. Ibarz, J.; Tan, J.; Finn, C.; et al. How to Train Your Robot with Deep Reinforcement Learning: Lessons We Have Learned.
Int. J. Robot. Res. 2021, 40, 698–721.

68. Han, D.H.; Mulyana, B.; Stankovic, V.; et al. A Survey on Deep Reinforcement Learning Algorithms for Robotic
Manipulation. Sensors 2023, 23, 3762.

69. Ma, Y.; Song, Z.; Zhuang, Y.; et al. A Survey on Vision-Language-Action Models for Embodied AI. arXiv 2024,
arXiv:2405.14093.

70. Kim, M.J.; Pertsch, K.; Karamcheti, S.; et al. OpenVLA: An Open-Source Vision-Language-Action Model. arXiv 2024,
arXiv:2406.09246.

71. Zitkovich, B.; Yu, T.; Xu, S.; et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. In
Proceedings of the Conference on Robot Learning (CoRL), Atlanta, GA, USA, 6–9 November 2023; pp. 2165–2183.

72. Muhammad, K.; Ullah, A.; Lloret, J.; et al. Deep Learning for Safe Autonomous Driving: Current Challenges and Future
Directions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4316–4336.

73. Grigorescu, S.; Trasnea, B.; Cocias, T.; et al. A Survey of Deep Learning Techniques for Autonomous Driving. J. Field
Robot. 2020, 37, 362–386.

74. Alan, A.; Taylor, A.J.; He, C.R.; et al. Control Barrier Functions and Input-to-State Safety with Application to Automated
Vehicles. IEEE Trans. Control. Syst. Technol. 2023, 31, 2744–2759.

75. Williams, G.; Drews, P.; Goldfain, B.; et al. Information-Theoretic Model Predictive Control: Theory and Applications to
Autonomous Driving. IEEE Trans. Robot. 2018, 34, 1603–1622.

76. Cui, C.; Ma, Y.; Cao, X.; et al. A Survey on Multimodal Large Language Models for Autonomous Driving. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024;
pp. 958–979.

77. Fu, D.; Li, X.; Wen, L.; et al. Drive Like a Human: Rethinking Autonomous Driving with Large Language Models. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 1–6
January 2024; pp. 910–919.

78. Tsiakas, K.; Tsardoulias, E.; Symeonidis, A.L. Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing
Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain. Robotics 2024, 13, 83.

79. Zhao, L.; Wang, W.; Hu, X.; et al. Visual–Inertial Autonomous UAV Navigation in Complex Illumination and Highly
Cluttered Under-Canopy Environments. Drones 2025, 9, 27.

80. Li, Q.; Gama, F.; Ribeiro, A.; et al. Graph Neural Networks for Decentralized Multi-Robot Path Planning. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October
2020–24 January 2021; pp. 11785–11792.

81. Zhao, G.; Zhu, M. Pareto Optimal Multirobot Motion Planning. IEEE Trans. Autom. Control. 2020, 66, 3984–3999.

14 of 14


	Introduction 
	Related Work and Existing Systems
	System Architectures
	Sensing and Localization
	Hair Modeling
	Toolpath Planning and Coverage
	Control and Execution
	Open Challenges and Future Directions
	Conclusions

