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ABSTRACT

This study adopts an integrated simulation framework based on Cellular Automata and Ar-
tificial Neural Networks (CA-ANN) to model land use and land cover (LULC) transitions
driven by urban expansion. By combining machine learning with spatial modeling, the ap-
proach enables the forecasting of urban growth dynamics and supports data-driven urban
planning. The objective is to assess urban sprawl in the city of Passo Fundo, southern
Brazil, using LULC change simulations from 2002 to 2043. Satellite imagery from 2002 to
2023 indicate for supervised classification of three land cover classes—urbanized areas,
forests, and non-urbanized areas—alongside key spatial variables, including hypsometry,
proximity to water bodies, railways, central business districts, and road networks. These
variables served as inputs to the CA-ANN model to simulate future land use scenarios for
2033 and 2043. Results indicate a 45% increase in urbanized areas from 2002 to 2023,
with projections reaching 66% growth by 2043, absolute land area expansion. This urban
expansion primarily occurs at the expense of agricultural and forest areas, underscoring the
risks of landscape fragmentation, biodiversity loss, and pressure on agricultural lands. The
findings highlight the urgency of integrating spatial intelligence into sustainable land gov-
ernance strategies, particularly in regions where urbanization intersects with agribusiness
territories and food security systems.
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Research Highlights

• Forecasting of urban growth dynamics and supports data-driven urban planning.

• Results show 45% increase in urbanized areas from 2002 to 2023.

• Risks of landscape fragmentation, biodiversity loss, and pressure on agricultural lands.

1. Introduction

The urban expansion of global cities and changes
in land use require the creation and implementation of
new public policies to support future projects focused on
environmental quality in the built environment [1, 2]. For
González-Calle [3], urban expansion results from phenom-
ena driven by contemporary societies, arising from so-
cial, environmental, and economic transformations in cities
worldwide.

Inadequate urban expansion that prioritizes environ-
mental quality can lead to various problems for the city,
including an increased risk of floods [4, 5]. This occurs be-
cause urban expansion, according to Almulhim and Cob-
binah [6], is often conceived without adequate planning,
disregarding negative environmental impacts and the lack
of infrastructure appropriate to the city’s needs. These
negative impacts on urban land use are exacerbated by
the constant removal of trees and constructions located in
irregular areas, which contribute to the worsening of en-
vironmental problems, causing social, environmental, and
economic damage attributed to the population’s quality of
life [7, 8].

Dehghani et al. [9] and Ogara et al. [10] highlight that
environmental problems arising from inadequate urban ex-
pansion reveal a lack of projects aimed at the continuous
sustainable development of urban areas, capable of pro-
moting solutions to mitigate adverse impacts, and that this
will define future decision-making by government agents.
Consequently, for consolidating public policies that support
more effective urban projects, knowledge of the built envi-
ronment’s characteristics is necessary [11, 12].

To facilitate these studies, remote sensing presents
itself as an efficient tool for understanding the physical
characteristics of the built environment at different scales,
through the use of geotechnologies obtained via satel-
lite imagery, making it possible to get precise information
about the characteristics of the urban landscape [13, 14].
The scientific evolution of the applicability of geotechnolo-
gies enables the obtaining of geospatial detection and
analysis results, capable of achieving detailed information
on land use and land cover throughout the process of ur-
ban expansion, represented by computational simulation
using machine learning algorithms with a model based on
cellular automata and artificial neural networks (CA-ANN)
[15, 16].

Regarding the development of the artificial neural net-
work (ANN), the algorithm is based, according to Onsay

et al. [17] and Shukla et al. [18], on the functioning of the
human brain, where interconnected artificial neurons per-
form weighted sum operations applied to input data, being
subjected to non-linear activation functions. For Adhab et
al. [19], the use of ANN allows the adjustment of weights
between data connections by simulated neurons, aiming
to mitigate errors in predicted outputs and to learn and ex-
tract complex characteristics from the data. In this context,
the ANN algorithm has proven to be a promising approach
in land use and land cover simulation, due to its ability to
process a wide variety of input data, identifying patterns of
change in land use and land cover, enabling greater ac-
curacy in quantitative computational simulations, and po-
tentially integrating a cellular automata (CA) algorithm for
spatially based output [18–20].

Cellular automation (CA) models require the determi-
nation of weights to ensure proper functioning, with the
ability to change state at predefined iterations, regulated
by neighborhood conditions [20, 21]. Based on the cel-
lular automata and artificial neural network (CA-ANN) in-
strument, the model allows the CA weights to be config-
ured through machine learning to predict changes in land
use and land cover from the results of the ANN training
process, which occurs through land use and land cover
(LULC) base maps and their relationship with other vari-
ables, aiming at understanding the patterns of change in
land use and land cover in a given space-time [19, 22, 23].
These predictive data generated from CA-ANN can be
analyzed spatially and quantitatively using geoprocess-
ing techniques, enabling more assertive urban projects
[19, 23, 24].

The use of the CA-ANN method is justified by the ap-
plicability of new technologies in the built environment to
mitigate problems arising from urban expansion [25, 26].
Consequently, a study on urban expansion with the ap-
plication of CA-ANN instruments presents contributions to
the viability of this method, assisting the designer in the de-
velopment of urban projects, revealing potential for under-
standing and analyzing urban expansion in different cities
around the world [27, 28]. Furthermore, this study con-
tributes to new global discussions, using the city of Passo
Fundo, located in southern Brazil, as a case study. Passo
Fundo stands out for its importance within the region, with
the highest growth performance in the public and private
services sector, quantified at 40.4% [29].

The scientific contributions of this study promote
more efficient urban projects aligned with future urban ex-
pansion, potentially benefiting government agents in the
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construction of spaces that provide a higher quality of life
for the population, while preserving the urban landscape,
as indicated by other studies on a global scale [30–32].

Given this backdrop, this study aims to analyze future
urban expansion in the city of Passo Fundo through the
simulation of land use and land cover change (LULC) us-
ing a cellular automata-artificial neural network (CA-ANN)
model. With the interpretation of future urban expansion
carried out in this study, it is expected to support the de-
velopment of projects that incorporate the relationship be-
tween the future expansion of cities, enabling the replica-
tion of the method in different urban contexts around the
world, contributing to mitigating the problems associated
with urban expansion, to achieve a higher quality of life for
the world’s population.

2. Materials and Methods

2.1. Study Area and Methodological Definition of the Variables
Used

The study area is located in the city of Passo Fundo, in
the north of Rio Grande do Sul (RS), in the southern region
of Brazil, where 214,811 inhabitants were concentrated in
2025. The city’s area is 784.406 km2, totaling a population
density of 262.89 inhabitants/km2 [29]. It is considered a
regional capital due to its high economic and service influ-
ence, both direct and indirect, in southern Brazil [29].

Regarding the variables used in this study, they were
organized into distinct groups, as recommended by Pan et
al. [33], Rifat and Liu [34], and Zheng et al. [35], where
it became possible to structure them with the definition of
three categories: (A) Landscape factors, which correspond
to the main variables related to LULC and which form the
basis to be used in the simulations; (B) Resistance factors,
which represent variables capable of limiting or hindering
the expansion of urbanized areas; and (C) Driving factors,
consisting of urban elements that act as vectors and stim-
uli for horizontal expansion, driving urban growth [33–35].

Zheng et al. [35], Kuhn [36], and Parsch et al. [37] justify
the use of urbanized, forested, and non-urbanized classes,
as they are essential for understanding urban expansion in
cities, thereby supporting the selection of these variables
for this study.

Table 1 presents the representation of the three de-
fined groupings, with Landscape Factors (A) comprising
the variables that represent the main elements of LULC
within the Passo Fundo area. The variables categorized
in the landscape factors address the identified elements,
according to Zheng et al. [35], Kuhn [36], and Parsch et
al. [37] define them as: (1) Urbanized area—any built-up
area, pavement, or exposed soil intended for civil construc-
tion, located near the city’s urban perimeter; (2) Forests—
Any wooded area in the city; (3) Non-urbanized area—
Any other element that is not part of wooded areas or
urbanized areas, being mostly areas intended for agricul-
ture, livestock, or exposed soil, in addition to containing
other minor characteristics of open fields, buildings and ru-
ral communities, small bodies of water, roads, and some
quarries. The Resistance Factors group (B) includes the
variables: (4) Hypsometry, which represents the relation-
ship with topography; and (5) Proximity to Water bodies,
which relates to the proximity to the various bodies of water
present in the city. The Direction Factors group (C) deals
with the variables: (6) Proximity to Railways; (7) Proximity
to the Urban center; (8) Proximity to Main roads; and (9)
Proximity to Secondary roads [35–37].

Landscape factors (A) were represented by land use
and land cover maps [37]. Along with the group of resis-
tance factors (B), characterized by the representation of
varied maps containing the following information: topogra-
phy represented by hypsometric maps; and water bodies
by proximity maps [35, 38]. For the variables in the driving
factors group (C), proximity maps were used to provide a
more comprehensive representation, based on the studies
of Pan et al. [33] and Rifat and Liu [34], which used similar
mapping models to represent and quantify the variables.

Table 1. Definitions of groupings, variables, mapping models and collection date.

Groups Variables Mapping Models Collection Date

(A) Landscape factors
(1) Urbanized area

Land use and land cover maps 2002, 2007, 2013, 2018 and 2023(2) Forests
(3) Non-urbanized area

(B) Resistance factors
(4) Hypsometry Hypsometric map

2023
(5) Water bodies

Proximity maps

(C) Driving factors

(6) Railways
(7) Urban center
(8) Main roads

(9) Secondary roads Proximity maps 2002, 2007, 2013, 2018 and 2023
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The years for collecting the variables followed a reg-
ular five-year interval, adopting a retrospective approach
that began in 2023, as it was the most recent year avail-
able during the research. Data collection then went back to
2002, the furthest possible date given the Landsat 7 and
Landsat 8 images, selected for their more recent sensor
technologies and 30-m spatial resolution, which ensures
data comparability and consistency within the established
time frame. The LULC maps (1, 2, and 3) and the Sec-
ondary roads variable (9) followed this five-year interval,
due to the significant changes observed over the period,
aligning with the methodology adopted in benchmark stud-
ies on a global scale [39–41]. The other variables (4, 5, 6,
7, and 8) were observed within the same period, but only
2023 was collected, as none showed variation during the
analyzed period.

2.2. Methodological Procedures Applied to the Mapped Variables

The process of mapping the variables was based
on Geographic Information System (GIS), involving the
graphical and quantitative representation of variables, in
a georeferenced and standardized way for all cartography.
These maps were created in QGIS 3.16.7 using raster lay-
ers with a 30 m × 30 m resolution in the SIRGAS 2000-
UTM zone 22S (EPSG:31982) CRS, covering the geo-
graphic region of Passo Fundo [29]. LULC maps were
created in raster format from Landsat 7 satellite imagery,
launched in 1999, which enabled data collection for 2002
and 2007, and from Landsat 8, launched in 2013, which
was responsible for data collection for 2013, 2018, and
2023. All images were obtained from the United States
Geological Survey (USGS) via the Earth Explorer platform
[42].

Based on Landsat image color composites, a super-
vised classification algorithm was applied in QGIS 3.16.7
using the Dzetsaka plugin [43]. This enabled automatic
classification of the entire city of Passo Fundo into pre-
viously defined classes: urbanized area, forests, and non-
urbanized area. This process resulted in five base raster
maps at 30 m × 30 m resolution, representing land use
and land cover for 2002, 2007, 2013, 2018, and 2023. Sub-
sequently, the tool, native to QGIS, indicate to smooth the
areas generated by the supervised classification and make
them more consistent, as recommended by Aszkowski et
al. [44] and Jakimow et al. [45]. Each LULC class was
assigned a specific color, as per Mafiana et al. [46] and
Rodrı́guez-Ortega et al. [47], with the following contrasting
colors used for the three classes to facilitate visualization:
red for urbanized areas; green for forests; and yellow for
non-urbanized areas.

The hypsometry variable was represented using a
hypsometric map, constructed according to specific steps
for topographic representation. Using Digital Elevation
Model (DEM) data provided by the USGS [42], the base
of the hypsometric map was generated. In QGIS 3.16.7
with GRASS 7.8.5, altimetric variations in the city of Passo
Fundo were classified into the following ranges: 475–530
m, 530–580 m, 580–630 m, 630–680 m, 680–725 m, and

above 725 m. For the graphic representation, the “Topog-
raphy” color palette was adopted, commonly used to illus-
trate topographic surveys [46, 47].

Proximity maps represent the distance to the vector
elements of the analyzed variables: in the Resistance Fac-
tors group, proximity to water bodies; and, in the Direction
Factors group, proximity to railways, urban centers, main
roads, and secondary roads. In short, these maps indicate
radial distances from the reference elements, so that as
distance increases, the raster layer values increase, and
conversely, decrease in areas close to the analyzed ele-
ments [33, 34].

These maps were created in QGIS 3.16.7 using vec-
tor data from IBGE [29]. After all vector layers were added,
they were transformed into raster layers using the native
QGIS tool (rasterize) at a resolution of 30 m × 30 m, unit
in geographic coordinates and byte output type, where the
overlap of vectors with the raster being generated is trans-
formed into pixels with a value of 1, zeroing the pixel values
that are not being overlapped by vectors. Finally, the output
raster layer is inserted into the native QGIS tool “proximity
(raster distance)” [43], where radial distances for the vari-
ables were calculated, maintaining the quartile classifica-
tion standard provided by the software. For graphical rep-
resentation, a color palette was defined from red to blue,
where red indicates proximity to the variable and blue indi-
cates greater distance from the element [46, 47].

With all the maps generated, the rasters were stan-
dardized using the native raster standardization tool of the
QGIS 3.16.7 software, which allowed for the rectification
of the raster mesh pixels, in addition to standardizing all
maps in the same coordinate reference system (CRS) and
the same pixel size [48, 49]. Consequently, all maps used
in this study were standardized within the SIRGAS 2000-
UTM zone 22S CRS (EPSG:31982), with a pixel size of
30 m × 30 m and a total dimension for all rasters of X :
1517, Y : 1077.

2.3. LULC Simulation Procedures with the MOLUSCE Plugin

The mapping of the stipulated variables and the stan-
dardization of the maps produced in this study began with
integrating the data into the CA-ANN model using the Mod-
ules for Land Use Change Simulations (MOLUSCE) plugin
within QGIS 2.16.3. According to Kafy et al. [5] and Julien
et al. [50], it is necessary to include LULC variables for
the analyzed period, in chronological sequence, using an
initial and a final LULC map as the basis for the simula-
tion. These maps were calculated in conjunction with the
other variables defined previously (hypsometry, proximity
to water bodies, proximity to railways, proximity to the ur-
ban center, proximity to main roads, and proximity to sec-
ondary roads), based on the methodological application of
other similar studies on a global scale [5, 50, 51].

All generated maps were imported into the MOLUSCE
plugin and subjected to geometry checking, ensuring that
the dimensions were aligned correctly with the standard-
ization [5]. After inserting all variables, the MOLUSCE plu-
gin provides information for manual checking of quantita-
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tive statistical data, generating tables that show the num-
ber of areas in LULC classes during the analyzed spa-
tiotemporal interval, the transition matrix between LULC
classes, and the Pearson correlation table [5, 52].

The transition matrix enables a more precise analysis
of changes in LULC classes within the predetermined ini-
tial and final spatiotemporal intervals [52, 53]. This transi-
tion matrix demonstrates the frequency or probability with
which a given land use and land cover class is converted
into another class, allowing the identification of patterns
and trends in LULC transformations [52, 53]. High values
(close to 1) in a cell indicate a high conversion rate be-
tween classes, while low values (close to 0) suggest less
frequent changes. The diagonal of the matrix identifies
the variables that remained in the same class over time,
thereby assessing the stability of land use and land cover
categories [5, 50, 51].

Regarding Pearson’s correlation coefficient, it shows
a variation from −1 to 1, providing a quantitative measure
of the relationship between two variables, where values
close to 1 indicate a strong positive correlation, suggest-
ing that as one variable increases in value, the other tends
to increase [52–54]. On the other hand, values close to −1
indicate a strong negative correlation, suggesting that an
increase in one variable is associated with a decrease in
another variable [52, 54]. Values close to 0 indicate little
or no correlation, suggesting no clear linear relationship
between the variables [53, 54].

In this study, an Artificial Neural Network with a Mul-
tilayer Perceptron (ANN-MLP) architecture indicate. Ac-
cording to Khalid et al. [20], Khan and Sudheer [55], and
Shomope et al. [56], the ANN-MLP is a mathematical
model that interprets hidden urban growth patterns based
on the variables provided, enabling it to generalize and
predict from hidden data. The algorithm’s weight calibra-
tion process is guided by the projection efficiency achieved
in each simulation attempt (iteration) during the machine
learning stage, taking into account the patterns of change
in LULC, according to the LULC maps (2002, 2007, 2013,
2018, and 2023) inserted in the start and end year layers
(dependent variable), in addition to the variables that make
up the groups of resistance factors and driving factors (in-
dependent variables) used by the same algorithm to for-
mulate the logic of the patterns of change in LULC (transi-
tion potential) that is used as input for cellular automata in
the classification of future LULC, as determined by Khalid
et al. [20], Khan and Sudheer [55], in the methodological
procedures of their research.

Parameters related to the transition potential were de-
fined, which directly alter the result of ANN training, as
shown by Khalid et al. [20], Khan and Sudheer [55], and
Shomope et al. [56]: (1) “number of samples”, which refers
to the number of samples used to train the model; (2)
“neighbourhood”, which defines the size of the neighbor-
hood by calculating the influence of pixels adjacent to
the sampled pixel; (3) “learning rate”, which controls the

speed at which the model adjusts its weights during train-
ing; (4) “maximum iterations”, which defines the number
of iterations for training, influencing the number of times
the model will process the data; (5) “hidden layers”, which
specifies the number of hidden layers in the artificial neu-
ral network; and (6) “Momentum”, which accelerates the
model’s trend, preventing oscillations during training in an
adjusted transition of the ANN weights.

After the transition potential calculation stage, pre-
dictive urban expansion scenarios were developed using
cellular automata (CA). The CA integrated into the MO-
LUSCE plugin can be defined as a stochastic cellular au-
tomaton model based on a Markov chain, which evaluates
the current state of the sampled pixel using adjacent pixels
and calculates neighborhood randomness in conjunction
with the transition potential. This transforms the patterns
of the hidden datasets from the ANN processing stage
into new simulations of future land use and land cover
scenarios [16, 20]. It is worth noting that, in this study,
the CA-ANN consists of a structure trained using historical
data organized into distinct calibration and validation peri-
ods related to the analyzed timeframe from 2002 to 2043.
The data generated for the period from 2002 to 2043 were
used in the calibration phase, which refers to model train-
ing for independent validation. This approach, according
to Onsay et al. [17] and Shukla et al. [18], allows the as-
sessment of the model’s generalization capability, in addi-
tion to reducing risks that could compromise model perfor-
mance, thereby ensuring high robustness in the estimates
obtained in the final results.

In the CA-ANN model, the iteration number parame-
ter objectively determines the time interval of the simulated
future scenario. When this value is 1, the simulation is cal-
culated, representing a future scenario that advances by
several years, equivalent to the period defined between
the initial and final LULC maps; if defined as 2, it will be
comparable to twice this period, and so on [20, 55]. In this
study, the value 1 was always used as the iteration num-
ber parameter to generate each scenario, varying only the
periods of the input LULC maps (initial and final), accord-
ing to the period allocated to each simulation within the
scenarios presented in the results section [16].

The MOLUSCE tool provides a means to validate re-
sults by comparing the simulated LULC map with another
LULC map from the same date, created from satellite im-
agery [57, 58]. The application of this validation yielded
the correlation percentage (which assesses map similar-
ity) and the Kappa index for each simulated scenario. Ac-
cording to Foody [59], Ismaeel and Kumar [60] state that
the Kappa index ranges from 0 to 1, where: a Kappa value
greater than 0.80 indicates strong agreement and accu-
racy of the simulation; a Kappa index between 0.40 and
0.80 reflects intermediate accuracy of the simulation; and
a Kappa value less than 0.40 reveals a low correlation be-
tween the simulated scenario and the LULC map created
from satellite imagery [59–61].
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Figure 1 illustrates the logical process for quality con-
trol of results during CA-ANN model calibration and testing
in the application, using the MOLUSCE plugin. When per-
forming the simulation method, it begins with the definition
of the LULC variables (2002, 2007, 2013, 2018 and 2023),
according to the methodological standards of Blissag et
al. [57] and Ali et al. [58], where the allocation of the other
variables that make up the groups of resistance factors and
direction factors (hypsometry, proximity to water bodies,
proximity to railways, proximity to the urban center, prox-
imity to main roads and proximity to secondary roads) was
considered; calibration of the ANN and the definition of its
parameters (number of samples; neighborhood; learning
rate; maximum iterations; hidden layers; and momentum);
the generation of the transition potential by the ANN; the
configuration of the CA, with the simulation iteration pa-
rameter; and the final stage of validating the generated
simulation.

When validation did not yield satisfactory results, the
ANN parameters were reviewed and adjusted until bet-
ter performance was achieved [20, 55, 56]. After obtain-
ing results deemed adequate by the ANN methodology,
according to Shomope et al. [56], Tola and Deyassa [61],
the simulated maps were analyzed in detail to identify po-
tential errors or inconsistencies. If the projected scenario
did not conform to the LULC maps derived from satellite
images—or presented insufficient correlation and Kappa
index values—the process was repeated, with the redefi-
nition of the ANN parameters [20, 55, 56].

When the simulation was adequate, the results (maps,
parameters, tables, and graphs) were exported and stored
[56, 59], to enhance the reliability of the data acquired
in this research. This cycle of validation, adjustment, and
analysis was essential to ensure the statistical quality of
the simulations before determining the final results. The

model parameter specification that yielded the most reli-
able simulations indicate to project future LULC scenarios
for 2033 and 2043, thereby ensuring greater reliability rel-
ative to the data obtained in the simulations validated in
this study.

3. Results and Discussion

3.1. Mapping Applied to Landscape Factors

The mapping of variables within the landscape fac-
tor grouping was represented by land-use and land-cover
maps. Figure 2 shows the constant changes in both LULC
classes that characterize the area within the limits of Passo
Fundo/RS, Brazil. The urbanized area class shows contin-
uous expansion, while the other courses exhibit fewer vari-
ations over the analyzed time periods. Regarding the ur-
banized area (red scale), it represents the consolidated ur-
ban fabric and its expansion over the analyzed period from
2002 to 2023, together with forested areas (green scale),
which include areas with denser arboreal vegetation cover,
and non-urbanized areas (yellow scale), which encompass
agricultural lands, fields, pastures, and exposed soils (Fig-
ure 2).

When this information was analyzed in conjunction
with Table 2, it was complemented by trends in temporal
landscape transformation, which related the interactions
analyzed across the entire study area. According to Zhang
et al. [62] and Dinh et al. [63], studying landscape inter-
actions is necessary for understanding land use. It has
become increasingly significant over the years, requiring
government action to create future public policies that will
contribute to the environmental, social, and economic reor-
ganization of cities. These data related to urban expansion
can motivate the development of new public policies, en-
abling the consolidation of actions by governmental agents
in urban governance [62, 63].

Figure 1. Flowchart of the testing phase of the LULC simulation using CA-ANN.
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Figure 2. LULC maps produced through supervised classification of satellite images for the years 2002 (A), 2007 (B),
2013 (C), 2018 (D), and 2023 (E).

Table 2. Summary of the percentage of change in LULC in 2002, 2007, 2013, 2018 and 2023 in relation to the total area
of the municipality of Passo Fundo.

LULC 2002/2007 2007/2013 2013/2018 2018/2023 2002/2013 2013/2023 2002/2023
Classes ∆% ∆% ∆% ∆% ∆% ∆% ∆%

Urbanized area 0.24% 1.10% 0.31% 0.30% 1.34% 0.61% 1.95%
Forests −0.81% −0.074% −0.63% −1.79% −0.88% −1.87% −2.75%

Non-urbanized area 0.57% −1.03% −0.25% 1.49% −0.46% 1.26% 0.80%

Table 2 demonstrates that forest areas gradually
give way to urbanized and non-urbanized zones, reveal-
ing a continuous suppression and possible fragmentation
of their patches over the analyzed time period (∆% =

−2.75%, over approximately 20 years). These urbanized
areas reveal themselves as a suppressive element in the
surrounding areas, with consistently positive growth rates
and an area (km2) that increases continuously over time
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(∆% = 1.95% over approximately 20 years). Meanwhile,
non-urbanized areas reveal a more complex pattern of
change, supporting an assertive interpretation, as they
show less linear characteristics across all analyzed sce-
narios, with a tendency for their area to increase over a
more extended period (∆% = 0.80%, over approximately
20 years).

It is worth noting that the most unusual scenario ob-
served in Table 2 was the period between 2007 and 2013
(≈5 years), which showed a growth in the urbanized area
close to half that of the expansion over the 20 years an-
alyzed. It was noted that, in the most recent period, from
2018 to 2023, the greatest loss of forest area within the
city occurred (∆% = −1.79%) over a 5-year period. This
loss of forest areas occurred to a lesser extent through
suppression by urbanized areas (∆% = 0.30%) and mainly
due to the transition to non-urbanized areas (∆% =
1.49%), which was probably driven by agriculture and/or
livestock farming, given the dominant activities for this
LULC class. Agricultural and livestock activities change
significantly with the season, varying in intensity and al-
tering the optical properties of pixels and the visual repre-
sentation on maps [64, 65].

In this Figure 3, urban evolution is represented by
the urbanized areas mapped for the years 2002 (black),
2007 (dark gray), 2013 (purple), 2018 (light gray), and

2023 (white), highlighting the progressive expansion and
consolidation of the urban fabric over the analyzed pe-
riod. The spatial pattern indicates a continuous outward
growth from the central urban core, with successive incor-
poration of surrounding areas over time. Forested areas
(green scale) correspond to regions with denser arboreal
vegetation cover, predominantly distributed in the periph-
eral portions of the study area, while non-urbanized ar-
eas (yellow scale) include agricultural lands, grasslands,
pastures, and exposed soils. The interaction between ur-
ban expansion and surrounding land-use and land-cover
classes reveals a gradual conversion of non-urbanized ar-
eas, particularly in zones adjacent to the urban perimeter,
emphasizing the dynamics of land-use change associated
with urban growth between 2002 and 2023. Through the
urban expansion evolution map (Figure 3), it is possible to
spatially visualize these transformations in the urbanized
area class for 2002, 2007, 2013, 2018, and 2023, demon-
strating an evolution, especially in 2013. The urbanized
area patches closest to the urban center are increasingly
consistent with each other, as shown in Figure 3, relative
to the generated land use and land cover maps. These ob-
served trends indicate a possible urban direction, capable
of occupying urban voids, as reported by Cáceres et al.
[66] and Moravej et al. [67], who state that this occurs in
more consolidated, densely populated areas of the city.

Figure 3. Map of the urban evolution in Passo Fundo for the years 2002, 2007, 2013, 2018, and 2023.
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Table 3 shows the dimensions of changes in urban-
ized areas, analyzing this variable in isolation from the
other LULC classes. For comparative analysis, official
IBGE [29] data were presented, showing the city’s popu-
lation and growth during the analyzed periods. Analyzing
these data (Table 3) and the map of urban expansion evo-
lution (Figure 3), it is observed that, as urbanized areas
continue to expand, the number of inhabitants has been
increasing over time. In this context, it was observed that
both the percentage of population growth and the percent-
age increase in the urbanized area in the period from 2002
to 2013 were greater than in the last 10 years. Specifi-
cally, the urbanized area shows growth approximately 3
times greater (31.41%) than in the most recent 10 years
(10.87%). Over 20 years, the urbanized area increased by
45.71% and population growth was 23.24%, indicating that
the city of Passo Fundo has expanded considerably, as
shown in LULC data.

The mapping and quantification of LULC in the city
of Passo Fundo proved adequate for understanding and
representing urban expansion. However, a limitation of the
methodological application is observed: population growth
and urban expansion were not entirely proportional (for
example, during the period from 2007 to 2013), leaving
the causes of this finding unclear. This demonstrates that
LULC provides a macro-scale view of the city’s horizon-
tal expansion and is relevant to the analysis of urban ex-
pansion indicators. To capture other dimensions of anal-
ysis, it was necessary to incorporate variables related to
the dynamics of the city’s vertical growth, enabling an inte-
grated quantification of both horizontal and vertical expan-
sion [67]. The database derived from the urban expansion
simulation could provide a more nuanced understanding of
these findings, generating consolidated projections to sup-
port future decision-making, including the implementation
of public policies related to urban expansion, and may also
serve as a reference for other cities worldwide [63, 67].

3.2. Mapping of Resistance and Direction Factors

The results of mapping the variables of resistance and
direction factors enabled a spatial understanding of the

quantitative data of each element analyzed within the lim-
its of Passo Fundo (Figure 4). The proximity maps were
essential for the CA-ANN model to quantify the relation-
ships between the resistance and direction factors and the
landscape factors (LULC), accounting for their spatial rela-
tionships.

Using Digital Elevation Model (DEM) data from the
United States Geological Survey (USGS), a hypsometric
map (Figure 5) was created. This cartographic element il-
lustrates the altimetric variation of the city area of Passo
Fundo, located in the state of Rio Grande do Sul, Brazil
[29]. Altitudes were categorized into a range from the low-
est points at 475 m to the highest points exceeding 725 m.
Using a color scale, it is possible to identify the distinct
topographic configurations that characterize the region of
analysis. When analyzing the cartography, some charac-
teristics are noted, such as the association of hydrography
with areas of topographic depressions, where water flows
around regions of lower altitude relative to the immediate
vicinity, revealing a strong correlation between these two
elements in the studied locality. It can be observed that the
city’s urban perimeter lies in some of the highest-altitude
areas within the study area, predominantly between 630 m
and 725 m.

Based on Pearson’s correlation (Table 4), the main
characteristics observed are moderate positive correla-
tions between the urban center and the railways (0.47243)
and the main roads (0.37837), indicating a close relation-
ship between these infrastructures. In addition, a strong
positive correlation (0.77410) is shown between the ur-
ban center and the secondary roads, reflecting the dense
road network of the overlapping regions. Hypsometry ex-
hibits moderate negative correlations with distance to main
roads (−0.47), the urban center (−0.30), and railways
(−0.43), indicating lower elevations closer to these fea-
tures. This reveals that these variables are correlated with
the city of Passo Fundo’s topographic elevations and can
help understand variables containing resistance and direc-
tion factors, which are related to each other, as determined
by Gui et al. [26] and Qi et al. [68].

Table 3. Changes in urban area and estimated population over periods of approximately 5, 10, and 20 years.

Periods Urban Area
Changes (km2)

Percentage
Increase

Estimated Population
(Inhabitants)

Percentage
Increase

2002 to 2007 33.30 km2 to 35.16 5.59% 174,107 to ≈185,882 ≈6.76%

2007 to 2013 35.16 km2 to 43.76 24.46% ≈185,882 to 194,432 4.60%

2013 to 2018 43.76 km2 to 46.20 5.58% 194,432 to 201,767 3.77%

2018 to 2023 46.20 km2 to 48.52 5.02% 201,767 to ≈214,564 ≈6.34%

2002 to 2013 33.30 km2 to 43.76 31.41% 174,107 to 194,432 11.67%

2013 to 2023 43.76 km2 to 48.52 10.87% 194,432 to ≈214,564 ≈10.35%

2002 to 2023 33.30 km2 to 48.52 45.71% 174,107 to ≈214,564 ≈23.24%
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Figure 4. Proximity maps of the variables within the clusters of resistance factors and driving factors in the city of Passo
Fundo.

3.3. Calibration of the CA-ANN Model

Calibration of parameters for the CA-ANN instrument.
As a first step, the ANN parameters were defined to
achieve the most suitable results for interpreting changes
in LULC and, consequently, more reliable simulations
[16, 20]. After several attempts to calibrate the parameters,
it was concluded that the configuration achieved during the
ANN training stage, as shown in Table 5, would yield the
highest Number of Samples and the maximum possible
value for the Maximum iterations parameter. To this end,
30,000 samples and 1,000 iterations were defined, so that
the ANN-MLP Min. The Validation Overall Error decreased
(Table 5), with a moderate number of simulation iterations
per round. According to the studies by Khalid et al. [20]
and Jain [25] the efficiency achieved by the model in sim-
ulating the scenarios in the testing phase, the neighbour-
hood, learning rate, hidden layers and momentum param-

eters were defined, described by Table 5, where the final
parameters that generated the best results were inserted
into the CA-ANN model to simulate the LULC scenarios in
the testing phase, and subsequently, for the prediction of
future LULC scenarios.

At the end of the ANN calibration, the CA configuration
was defined, where it was observed that the best results
were obtained with the LULC inputs (initial and final) with
the longest time intervals (10 and 20 years) and with the
fewest simulation iterations (1), prioritizing these parame-
ters for the final simulations. The greater efficiency of these
parameters occurs because, when considering longer time
intervals, it results in a larger sample of changes in LULC,
as well as, within the logic of CA operation, the fewest sim-
ulation iterations result in more reliable scenarios, consid-
ering a time frame more consistent in the relationship be-
tween the data input and the simulated period [20, 24, 25].

179



Schmitz et al. Habitable Planet, 2026, 2(1), 170–189

Figure 5. Map of the hypsometry variable in the city of Passo Fundo.

Table 4. Results of the Pearson Correlation between the variables of resistance and driving factors used in CA-ANN.

Variables Hypsometry Main Roads Water
Bodies

Urban
Center Railways Secondary

Roads
Hypsometry – −0.47031 0.20563 −0.30014 −0.43473 −0.02966
Main roads – – −0.20013 0.37837 0.50504 0.18546

Water bodies – – – −0.22370 −0.14223 −0.09348
Urban center – – – – 0.47243 0.77410

Railways – – – – – 0.54297
Secondary roads – – – – – –

Table 5. Final calibration parameters of the artificial neural network (ANN-MLP).

Parameters Values
Number of Samples 30000

Neighbourhood 1
Learning rate 0.001

Maximum iterations 1000
Hidden Layers 10

Momentum 0.050

180



Schmitz et al. Habitable Planet, 2026, 2(1), 170–189

3.4. Testing Phase of the CA-ANN Model

Figure 6 presents the observed and simulated Land
Use and Land Cover (LULC) maps for the years 2013,
2018, and 2023. Urbanized areas (red scale) are pre-
dominantly concentrated in the central portion of Passo
Fundo, forming a consolidated urban core that progres-
sively expands over time. From 2013 to 2023, both ob-
served maps in Figure 6 demonstrate a growth pattern ori-
ented toward the urban fringe, mainly over adjacent non-

urbanized areas, indicating a consistent spatial trend of
urban expansion. In this context, forested areas (green
scale) are primarily distributed in peripheral and environ-
mentally constrained regions and remain relatively stable
throughout the analyzed period, although localized frag-
mentation can be observed near the urban–rural inter-
face. Non-urbanized areas (yellow scale), which include
agricultural lands, pastures, and exposed soils, dominate
the landscape and represent the main land-use class con-
verted into urban areas over time.

Figure 6. Results from the testing phase comparing LULC maps classified from satellite images for the years 2013 (A),
2018 (C), and 2023 (E), with the simulated LULC maps for 2013 (B), 2018 (D), and 2023 (F).
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The main results of the simulations performed in the
testing phase are shown in the mapping in Figure 6, which
illustrates simulations from previous years (2013, 2018,
and 2023), allowing the validation of the CA-ANN model
based on consistent and verifiable data [24, 61]. To obtain
these results, the ANN training parameters defined during
model calibration (Table 5) were used, along with a simu-
lation iteration count of 1 in the CA configuration. For the
year 2013, the input LULC data from the years 2002 (ini-
tial) and 2007 (final) were used; for the 2018 simulation,
the input LULC data from the years 2007 (initial) and 2013
(final) were used; For the year 2023, the input LULC data
from the years 2013 (initial) and 2018 (final) were consid-
ered. The simulated maps (Figure 6) were compared to
the LULC maps generated with supervised classification
of satellite images (Figure 2), allowing the model’s accu-
racy in replicating the observed conditions for the analyzed
year to be evaluated.

In addition to the spatial data obtained through
cartography, quantitative data were generated to
comparatively describe (Table 6) the changes between
LULC classified from satellite images, and LULC gener-
ated through simulations within predefined periods, allow-
ing a quantitative analysis of the efficiency of the CA-ANN
model for LULC simulation. These data, presented in Ta-
ble 6, indicate that the 2013 simulation showed a large
difference in LULC classes, with the urbanized area show-
ing the highest proportional error among the analyzed
categories. For the other classes, the error is less rele-
vant given the city’s overall area. The results of the ANN
training validation showed a low minimum validation error
(0.03208) and a high Kappa index (0.91288). The valida-
tion of the LULC map simulation indicated an accuracy
of 95.59% and a Kappa index of 0.90910, demonstrating
adequate precision for LULC simulation in the study area.

Despite the positive indicators, the focus on the ur-
banized area class revealed that the simulation for 2013

estimated an urbanized area of 37.15 km2 (Table 6), a
value significantly lower than that obtained from satellite
imagery (43.76 km2), representing a difference of approx-
imately 15%. This discrepancy stems from the inconsis-
tency in urban growth between 2007 and 2013, a period
during which expansion occurred outside the pattern ob-
served between 2002 and 2007. These patterns arise from
external factors, as urban fringe areas are more suscepti-
ble to irregular residential invasions, given the lower urban
land values at the city outskirts when compared to the real
estate speculation values observed in the central area of
Passo Fundo. The algorithm projected 2013 based on the
repetition of the previous pattern, which prevented it from
predicting the anomalous growth that occurred. These re-
sults, while imprecise, highlight a limitation of the method-
ology in the face of abrupt changes in the pattern of urban
expansion, influenced by highly variable factors and diffi-
cult prediction [61].

Unlike the 2013 simulation, the results in Table 6
are satisfactory, with good model accuracy in simulating
changes in LULC proportions. An error of only 0.86 km2

more urbanized area, 0.55 km2 more forested areas, and
1.41 km2 less non-urbanized areas was observed, demon-
strating good predictive capacity to represent urban ex-
pansion and its impact on the other classes, generat-
ing environmental consequences from forest loss, partic-
ularly with respect to biodiversity, ecosystem services, and
urban planning. ANN training validation yielded a mini-
mum validation error of 0.03124 and a Kappa index of
0.92314, confirming the model’s consistent, accurate per-
formance in simulating LULC changes. Validation of the
simulated 2018 map against LULC derived from satellite
imagery yielded 97.41% accuracy and a Kappa index of
0.94762, indicating adequate model performance. These
results demonstrate a satisfactory ability to reproduce the
characteristics of the 2018 LULC, with good agreement be-
tween the simulated data and satellite imagery.

Table 6. Areas and proportions of LULC classes derived from satellite images and simulated LULC data for the years
2013, 2018, and 2023.

Year LULC Class Classification Simulation ∆ ∆

(km2) (km2) (km2) (%)

2013
Urbanized area 43.76 37.15 6.61 −0.85

Forests 233.47 230.73 2.74 −0.35
Non-urbanized area 503.3 512.64 −9.35 1.2

2018
Urbanized area 46.24 47.1 0.86 0.11

Forests 233.01 233.56 0.55 0.07
Non-urbanized area 501.14 499.73 −1.41 −0.18

2023
Urbanized area 48.52 47.58 −0.93 −0.12

Forests 218.93 232.75 13.81 1.77
Non-urbanized area 512.85 499.97 −12.88 −1.65
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As shown in Table 6, the simulation for 2023 indicated
a difference of −12.88 km2 for the non-urbanized area
class and +13.81 km2 for forested areas, compared to
the LULC derived from satellite image classification. How-
ever, as observed in the 2018 simulation, the results were
consistent across the urbanized area class, with an error
of only 0.93 km2 relative to the proportions derived from
the images, which can be considered a satisfactory result
given the analysis’s main focus on this class. The ANN
training-validation set showed the lowest minimum error
among all simulations (0.01901) and a Kappa index of
0.90533, indicating high coherence in reproducing the data
patterns. Validation of the simulated LULC map based on
2023 satellite imagery showed an accuracy of 97.55% and
a Kappa index of 0.95008, demonstrating that the model
overall accurately represented the characteristics of the ur-
banized area within the city of Passo Fundo.

Tests demonstrated the good efficiency of the CA-
ANN model in simulating LULC within the limits of Passo
Fundo. 2013 presented the largest proportional area er-
ror compared to the other simulations, with 15.11% less
urbanized area than the reference LULC map, while the
2018 and 2023 simulations registered errors of 1.86%
and −1.92%, respectively, for the urbanized area class,
demonstrating satisfactory results for the last two simula-
tions, with 2018 being the year with the most consistent
predictions of changes in LULC classes.

The evaluative metrics applied to the maps may not
fully reflect the model’s efficiency in predicting urban ex-
pansion, as the MOLUSCE tool does not allow isolating
LULC classes for individual validation of quantitative data
and maps. In this sense, the analysis of LULC classes in
isolation allowed us to observe differences proportional to
the total area of each class, making it possible, according
to Khalid et al. [20] and Jain [25], to identify the proportions
with the changes detected in the environment with greater
precision, demonstrating a high reliability of the analyzed
time period.

3.5. Simulation of Future Scenarios with CA-ANN

The first simulation of a future urban expansion sce-
nario using LULC was conducted to predict changes for
2033. To generate the LULC simulation for 2033, the 2013
initial and 2023 final LULC maps were used, with the CA
simulation limited to 1 iteration. The cartographic results of
the 2033 simulation are shown in Figure 7B, along with the
2023 land use and land cover map (Figure 7A), for graph-
ical comparison of LULC class changes. The validation
process for the artificial neural network (ANN-MLP) train-
ing yielded consistent results [56, 69]. The model achieved
a low minimum validation error (0.02743) and a Kappa in-
dex of 0.93595. These data indicate that the ANN performs
well in predicting the transition potential of LULC classes.

Based on the quantitative data presented in Table 7,
it is possible to observe changes in land use and land
cover proportions, indicating trends in the city’s configu-
ration in 2033. A notable increase of 3.66 km2 in the ur-
banized area is observed, accompanied by a reduction of

3.30 km2 in the forested area and a decrease of 0.36 km2

in non-urbanized areas. These data suggest that, among
all LULC classes, only the urbanized area expanded its
territory. While the other courses experienced contraction,
these quantitative variations reflect patterns of increasing
urbanization, with a direct impact on green areas, suggest-
ing a possible intensification of urban occupation in areas
near the city limits in the future [70, 71].

The land use and land cover simulation mapping for
the year 2043 is shown in Figure 7C, which can be com-
pared with the LULC map from the most recent date when
supervised classification was performed, in the year 2023
(Figure 7A). The simulation was performed using inputs
from the years 2002 (initial) and 2023 (final). The 20-year
interval was combined with a simulation iteration value of
1, so the algorithm could interpret patterns from the past
20 years and replicate them in a future scenario. Valida-
tion of the ANN training stage revealed good performance
of the artificial neural network model (ANN-MLP) for pre-
dicting the transition potential of land use and land cover
classes, with Kappa index values of 0.91843 and a min-
imum validation error of 0.03708. Based on the quantita-
tive description of each LULC class, Table 7 shows that
the urbanized area increased by 6.83 km2 from 2023. This
indicates that, in this scenario, the urbanization of the re-
gion suppressed a large part of the forests (2.98 km2) and
some areas previously classified as non-urbanized (3.85
km2) over the 20 years observed in the CA-ANN simula-
tion. Table 7 shows that, in 2033, the largest discrepancy
occurs in the urbanized area, where the model overesti-
mates the observed area by 3.66 km2 (0.47%). In con-
trast, forest and non-urbanized classes present marginal
underestimations, with differences below 0.5%, indicat-
ing a high level of agreement between the simulated val-
ues. Subsequently, in the 2043 scenario, forest and non-
urbanized areas maintain moderate negative differences
(−0.38% and −0.49%, respectively). These results sug-
gest that the model tends to prioritize urban expansion,
mainly reallocating non-urbanized areas and, to a lesser
extent, forested areas as a consequence of urban growth.

This simulated expansion pattern highlights that urban
growth is advancing predominantly in non-urbanized ar-
eas, which in this case are mainly agricultural and pasture
lands. Such dynamics indicate a land-use conflict between
urban development and agricultural functionality. The on-
going conversion of rural productive territories threatens
the continuity of food systems, ecosystem services, and
the livelihoods of rural populations. This conflict shows the
broader territorial disputes frequently observed in medium-
sized cities across the Global South, where limited gover-
nance instruments often fail to prevent spatial competition
between urban and agricultural interests.

The differences in LULC between the 2043 forecast
and the 2033 simulation indicate the trend of future urban
expansion in Passo Fundo over this 10-year interval. This
phenomenon can be seen in the 3.17 km2 increase in ur-
banized areas, which occurred at the expense of neigh-
boring land uses. The results of quantifying forest areas

183



Schmitz et al. Habitable Planet, 2026, 2(1), 170–189

(0.32 km2), while positive, represent only 0.04% of the city
area, indicating that for this period (2033 to 2043), the
trend is that this variable will not be significantly altered.
To provide a unified understanding of the LULC simula-
tions for 2033 and 2043, a map was created showing the
evolution of urbanized area classes across the study area,

starting in 2023. This graphic data (Figure 8) can be ana-
lyzed in conjunction with Table 8, which provides quantita-
tive data on changes in urbanized areas within the scope
of the simulated scenarios, providing a better understand-
ing of LULC changes over the 20 future years simulated
with the CA-ANN instrument.

Figure 7. Mapping of the supervised LULC classification data for 2023 (A) and the maps showing the results of the
LULC simulations for 2033 (B) and 2043 (C).

Table 7. Areas and proportions of LULC classes derived from satellite images and simulated LULC data for the years
2033 and 2043.

Year LULC Class Classification Simulation ∆ ∆
(km2) (km2) (km2) (%)

2033
Urbanized area 48.52 52.18 3.66 0.47

Forests 218.93 215.64 −3.30 −0.42
Non-urbanized area 513.24 512.88 −0.36 −0.046

2043
Urbanized area 48.52 55.35 6.83 0.87

Forests 218.93 215.95 −2.98 −0.38
Non-urbanized area 513.24 509.39 −3.85 −0.49
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Figure 8. Map of urban evolution in the city of Passo Fundo, starting from the year 2023, showing simulated data for the
years 2033 and 2043.

Table 8. Summary of changes in the urban area class during the simulated periods, considering the individual area of
the variable itself.

Periods Urban Area Changes Urban Area Increase (%)
2033 to 2043 52.18 km2 to 55.35 km2 6.08
2023 to 2033 48.52 km2 to 52.18 km2 7.54
2023 to 2043 48.52 km2 to 55.35 km2 14.08
2002 to 2033 33.30 km2 to 52.18 km2 56.70
2002 to 2043 33.30 km2 to 55.35 km2 66.21

Based on an analysis of the data in Table 8 and Fig-
ure 8, it is understood that the urban expansion of Passo
Fundo, based on observations from the 2033 and 2043
simulations, follows a moderately increasing urbanization
rate, considering that the simulated years indicate an in-
crease in urbanized areas throughout the analyzed peri-
ods since 2002. From the initial year of 2002 to 2043, the
city of Passo Fundo is predicted to experience a 66.21%

increase in its total urbanized area. The simulations indi-
cate a 14.08% increase in the urbanized area between
2023 and 2043. Based on the analysis, this growth will oc-
cur in a dispersed manner, mainly in the western region,
followed by less expansion to the north and east relative to
the current urban perimeter. It is noteworthy that the forest
class, despite offering some resistance to the urbanized
area class, is constantly being suppressed by the other
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LULC classes (especially in recent years), having an initial
area of 240.48 km2 in 2002, with a projected reduction to
215.95 km2 by the year 2043 (−10.20%).

As noted in the results description, the MOLUSCE tool
yielded primarily satisfactory data. However, some reser-
vations were noted regarding certain plugin functionali-
ties, which were discussed throughout the text. The cen-
tral reservation is the lack of a function to validate land use
and land cover classes individually, making it impossible
to evaluate the model’s efficiency in predicting each LULC
class. It was only possible to analyze it in conjunction with
the other classes at the territorial scale, where the urban-
ized area represents approximately 7% of the total area in
2043, rendering the validation analysis disproportionate.

Tola and Deyassa [61] presented their objects of study
at scales similar to the city of Passo Fundo. The study by
Baidoo et al. [72] observed that the city studied showed a
similar rate of expansion, despite its larger scale. In this
context, the results of the urban expansion simulation of
the city of Passo Fundo showed some agreement with the
expansion of cities of different scales and locations world-
wide, suggesting that the projections follow a path aligned
with what may occur in reality.

4. Conclusions

The simulations demonstrated satisfactory results for
understanding current scenarios based on the collected
data on land use and land cover within the city’s bound-
aries. The analyses revealed moderate-scale growth of the
city during the analyzed period, totaling a 45.71% increase
in urbanized area from 2002 to 2023, with simulations in-
dicating an additional increase of at least 14.08% by 2043.
This growth in urban areas indicated a 10.20% decrease
in forest areas from 2002 to 2043. In this context, it was
concluded that although the CA-ANN instrument with the
MOLUSCE plugin presented certain limitations in its exe-
cution, the results showed good indicators of the propor-
tions and directions of the expansion of the city of Passo
Fundo, and can be used in new urban projects, relating to
the future impacts of urban expansion.

It has been observed that Passo Fundo is expanding,
underscoring the need to plan for its growth. The projected
66.21% expansion of the urbanized area from 2002 to
2043 reveals that the impact of this urbanization is heading
towards a future that requires planning. The public body
responsible for managing the city has a duty to design the
urban environment, aiming for sustainable development,
based on in-depth studies of the urban area. This allows
for more efficient resource management in implementing
public infrastructure in areas of the city experiencing the
greatest growth, thereby enabling the control or mitigation
of environmental degradation caused by urban expansion,
as observed in the predictive results.

Based on the findings throughout the study, and con-
sidering the results obtained and the entire process carried
out with the CA-ANN instrument used in the MOLUSCE
plugin, some improvements were defined that could be

made within the tool itself. Since QGIS is open-source soft-
ware, there are plugins like MOLUSCE created by users.
In this context, the suggested improvements are: (1) A tool
within the plugin itself to perform the alignment of input
rasters for the ANN: considering that MOLUSCE prevents
the creation of simulations if the input layers are not pro-
portionally aligned, the availability of a tool that makes this
process easier is a good option. (2) A way to automati-
cally export tables and graphs directly to spreadsheet soft-
ware, considering that this process has become exces-
sively time-consuming due to the various tests and ap-
plications, this suggestion would have the positive conse-
quence of saving time in exporting the generated data.

A validation method for each of the LULC classes.
This is the functionality most relevant to obtaining more re-
liable validation results (3). (4) The option to add as many
LULC maps as necessary to the input layer, because in
this way, the ANN can be calibrated to interpret all LULCs
at the same time, enabling the model to predict scenarios
based on the patterns found in various LULC maps, in-
creasing the amount of data analyzed simultaneously. (5)
A tab with a user manual for the tool: providing more spe-
cific details from the methodological application to the de-
scription of the algorithms and formulas that make up the
model.

These considerations can be applied to the creation of
proprietary software for LULC simulation. Creating a sys-
tem independent of the QGIS environment would provide
greater flexibility, enabling the implementation of more ad-
vanced and customized functionality and ensuring greater
control over the program’s code and structure. By avoid-
ing dependence on plugins that are frequently incompati-
ble with new versions of QGIS, it would be possible to en-
sure a more stable, long-term tool better adapted to the
specific needs of LULC studies.

These findings reinforce the need for integrative land
use policies capable of balancing urban development with
the preservation of agricultural and ecologically significant
areas. By identifying areas at risk of land-use conflict, sim-
ulation models such as CA-ANN can support evidence-
based decision-making and proactive spatial planning.
In this context, sustainable land governance becomes a
strategic way—particularly in mid-sized cities of the Global
South—where urban expansion increasingly overlaps with
agribusiness zones, compromising food security, biodiver-
sity, and long-term rural productivity.
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