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Abstract: This paper investigates the prescribed-time projective synchronization (PTPS)
for complex networks (CNs) with different dimension. To solve this problem, a projective
synchronization error is constructed and a novel performance value function integrated
with the prescribed time and desired accuracy is proposed. Subsequently, a fuzzy
controller is introduced to address the prescribed-time projective synchronization issue.
The controller is realized through a fuzzy adaptive dynamic programming (ADP)-based
framework. Additionally, the convergence analysis of the proposed methodology is
provided, demonstrating that the projective synchronization error can converge to a
predefined residual set within the prescribed time, which means the synchronization of
CNs is solved. Finally, a numerical example is presented to verify the obtained results.
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1. Introduction

Recently, complex networks (CNs) have received a lot of attentions due to their widely applications in many
fields such as power grids, social networks, transportation systems and so on [1–5]. Synchronization has been
the research focus of CNs. It refers to the phenomenon where nodes in two CNs gradually adjust from different
initial states and eventually reach a consistent state through control. To achieve synchronization, a variety of control
strategies have been proposed such as event-triggered control strategy [6–9], finite-time control strategy [10–12],
adaptive control strategy [13–16], and impulsive control strategy [17–20].

Reinforcement learning (RL) is a powerful machine learning technique that systematically adjusts an agent’s
behavior based on observed environmental responses. Due to the fact that reinforcement learning algorithms do not
require knowledge of the system’s dynamic model, they are widely used in complex network synchronization [21–32].
In [21], a secure RL algorithm is proposed to address the secure synchronization problem of two-time-scale CNs
under malicious attacks. In [22], a distributed RL algorithm is proposed to address the synchronization problem of
CNs. In [23,24], a two-level value iteration algorithm is proposed to solve the synchronization problem of CNs. In
[26], a data-based off-policy RL algorithm is proposed to solve the synchronization of CNs with input saturation.
In [25,28,29], three cluster synchronization methods based on state-flipped control and QL algorithm is proposed
to solve the cluster synchronization of the Boolean network. In [30], an RL-based control method is proposed
to address the synchronization of CNs with unknown non-identical dynamics. In [32], a synchronization control
method based on RL and Graph Convolution Networks is proposed to address the synchronization of complex
networks [33–35,38–41]. It can be seen that, although many RL-based algorithms have been proposed to solve
synchronization problems for various CNs, there is still little research on prescribed-time synchronization of CNs.
Prescribed-time synchronization is that CNs can achieve synchronization within a predefined time by designing
control alogrithms.

Inspired by the above discussion, this paper studies the PTPS of two different dimension CNs via fuzzy RL.
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The main contributions of this paper are as follows:

1. A projective synchronization error is constructed and a novel performance value function integrated with
the predefined time horizon and desired accuracy is proposed. This pivotal step translates the challenge of
achieving projective synchronization within a predefined time into an optimal regulation problem.

2. A novel controller is proposed to solve the prescribed-time projective synchronization problem. A fuzzy
ADP-based framework is used to realize the controller. Moreover, the convergence analysis of the proposed
algorithm is given, which shows that the projective synchronization error can converge to the predesigned
residual set within a prescribed time.

The remainder of this paper is organized as follows: Section 2 presents the system model and problem
formulation. Section 3 develops the prescribed-time control strategy. Section 4 provides the main results. Section 5
offers numerical simulations to validate the proposed approach.

2. Problem Description and Some Preliminaries

2.1. Model Description

Consider two CNs: driving network and response network. The driving network consists of N nodes. The
dynamic of each node is described as follows:

ζ̇i = fi (ζi) +

N∑
j=1

aijH1ζj (i = 1, 2, · · · , N) , (1)

where ζi ∈ Rn is the ith node state, fi (·) ∈ Rn is the ith node dynamic, H1 ∈ Rn×n is the inner coupling matrix,
aij is the connection weight from node i to node j (i ̸= j).

The response network tracking the driving system also consists of N nodes. The state of each node is an
m-dimensional vector, and the dynamic of i node is described as follows:

ξ̇i = zi (ξi) +

N∑
j=1

cijH2ξj + gi (ξi)ui, (2)

where ξi ∈ Rm is the ith state of the node, which is an m- dimension vector, zi (·) ∈ Rm is the ith system dynamic,
which is unknown, H2 ∈ Rm×m is the internal coupling matrix, gi (·) ∈ Rm×m is the control gain, ui is the control
input, and cij is the connection weight from node i to node j (i ̸= j).

Assumption 1. (1) gi (·) are bounded, i.e. ∥gi (·)∥ ≤ gM,i, where gM,i > 0. (2) fi (·), zi (·), gi (·) are Lipschitz
continuous.

Define a projective synchronization error as:

ei = ξi − Bζi, (3)

where B ∈ Rm×n and ei ∈ Rm is a projective matrix.
By (1) and (2), one has

ėi = ξ̇i − Bζ̇i
= Fi(ei) + gi(ξi)ui, (4)

where Fi (ei) = zi (ξi)− Bfi (ζi) +
N∑
j=1

(cijH2ξj − aijBH1ζj).

Definition 1. For a pre-defined time T and a pre-defined accuracy 0 < τ < 1, if lim
t→T

∥ei∥ < τ holds, the PTPS of

(1) and (2) can be achieved.

Define a piecewise function as:

p =

{
(1− τ)

(
T−t
T

)2
+ τ, 0 ≤ t < T

τ, t ≥ T,
(5)
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where T > 0 is the pre-defined time and τ > 0 is the pre-defined accuracy.

Lemma 1. p defined in (5) has two properties: (1) p (0) = 1 and p is strictly decreasing on [0, T ); (2) p is smooth,
p and ṗ are bounded for all t ≥ 0.

Proof: See Appendix A.
Define a transformation function:

yi = tan

(
π

2

ei
p

)
, (6)

where yi = [yi1, ..., yim]
T ∈ Rm, |eil (0)| < p (0), ℓ = 1, ...,m. m denotes the dimension of ei.

By (6), if yil is bounded and −p(0) < eil(0) < p(0), then one has −p < eil < p. According to Lemma 1,
one has −p < eil < p for ∀t ≥ T , which means that if −p(0) < eil(0) < p(0) is satisfied and the bounded of p is
guaranteed, lim

t→T
∥ei∥ < τ holds.

By (4) and (6), one has

ẏi =
π
2p

[(
1 + y2i1

) (
ėi1 − ṗ

pei1

)
, ...,

(
1 + y2im

) (
ėim − ṗ

peim

)]T
= λ̄i

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
, (7)

where λ̄i = diag
{

π
2p

(
1 + y2i1

)
, ..., π

2p

(
1 + y2im

)}
.

2.2. Fuzzy Logic System

For a FLS, the fuzzy rule Rk is defined as:
IF: z1 is F k

1 , ..., zl is F k
l , k = 1, ...,K

THEN: yB is Bk

where, K is the number of fuzzy rules and z = [z1, ..., zl]
T is the input of the FNN. F k

i and Bk are the fuzzy sets.

yB is the output of FNN, which is defined as yB (z) =

∑K
l=1 Ψk∏l

i=1 µ
Fk
l
(zi)∑K

k=1

[∏l
i=1 µ

Fk
i
(zi)

] , where µFk
i
(zi) is the membership

function of F k
i , Ψk satisfies µBk

(
Ψk

)
= maxyB∈R

µBk (yB). Let Ψ =
[
Ψ1, ...,ΨK

]T
, Φ =

[
Φ1, ...,ΦK

]T
, and

Φk =

∏l
i=1 µ

Fk
i
(zi)∑K

k=1

[∏l
i=1 µ

Fk
i
(zi)

] , one has yB (z) = ΨT (z)Φ.

Lemma 2. (See [36]): For any ρ > 0, there exists fuzzy logic system (FLS) ΨT (z)Φ and defined a continuous
function h (z) on a compact set Ξ, can supz∈Ξ

∣∣h (z)−ΨT (z)Φ
∣∣ ≤ ρ.

3. Prescribed-Time Synchronization Control Design

Define a performance value function as:

Ji (yi) =

∫ ∞

t

r (yi (τ) , ui (τ))dτ, (8)

where ri (yi, ui) = yTi Qiyi + uT
i Riui, Qi and Ri are positive definite matrices. The optimal value of (8) is:

J∗
i (yi) = min

u∈Ψ(Ω)

∫ ∞

t

r (yi (τ) , ui (τ))dτ. (9)

By (9), one can obtain:

Hi (yi, ui,∇Ji)=

∇Ji
T ·

(
λ̄i

(
Fi (ei) + gi (ξi)ui − ṗ

pei

))
+ r (yi, ui) .

(10)

Then, we have
min

u∈Ψ(Ω)
{Hi (yi, ui,∇Ji

∗)} = 0, (11)
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where ∇Ji
∗ = ∂Ji

∗/∂yi. The optimal control policies is as follows:

u∗
i = −1

2
R−1

i gTi (ξi) vi, (12)

where vi = λ̄i∇Ji
∗. Substituting (12) into (11), one has:

yTi Qiyi + vTi

(
Fi − ṗ

pei

)
− 1

4v
T
i giRi

−1gTi vi = 0, (13)

with J∗
i (0) = 0.

In the following we use fuzzy actor-critic framework to realize the controller. The control diagram is given in
Figure 1.

Controller（22）
Transformation

Function（6）

Drive Network

（1）

Piecewise

Function （5）

Value Function

（8）

Actor network

critic network

Update the 
critic network

（20）

Update the 
actor network

（27）

Response 

Network（2）

System

iu ieai̂

ci̂

Figure 1. The control system

3.1. Critic Network Design

By Lemma 2, we know that the FLS can approximate any function. Therefore, we use FLS to bulid critic
network. The critic network is used to approximate vi, which is described as

vi (Zi) = ΨT
i (Zi) Φi + εi (Zi) , (14)

where Zi = [ei, pi, yi]
T , Φi ∈ Rl

i, l where l is the number of fuzzy rules and Ψi ∈ Rl×n is the basis function
matrix. The optimal parameter vector and the approximation error are denoted as Φi and εi ∈ Rn, respectively. The
error εi satisfies ∥εi∥ ≤ δ ; where δ is a constant, ∥Ψi∥ ≤ cΨ with cΨ > 0.

By (14), one has
εHi

= Hi (yi, ui,Φi) = yTi Qiyi + uT
i Riui +ΦT

i Ψi (Zi)

×
(
Fi (ei) + gi (ξi)ui −

ṗ

p
ei

)
,

(15)

where εHi = −εi
T
(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
. Then, one can obtain:

v̂i (Zi) = ΨT
i (Zi) Φ̂ci, (16)

where v̂(Zi), Φ̂ci are the estimate vi (Zi). Therefore, we can further obtain that

εBi
= Hi

(
yi, ui, Φ̂ci

)
= yTi Qiyi + uT

i Riui + Φ̂T
ciΨi (Zi)

×
(
Fi (ei) + gi (ξi)ui −

ṗ

p
ei

)
.

(17)
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The weight estimation error is defined as:

Φ̃ci = Φi − Φ̂ci. (18)

Then, one has
εBi

= (Φ̃ci − εi
T )

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
.

Define the error function:
EBi =

1

2
ε2Bi

. (19)

From (19), the update law of the critic system is designed as:

˙̂
Φci = − ϖ1i(

λT
i λi + 1

)2 ∂EBi

∂Φ̂ci

= − ϖ1iλi(
λT
i λi + 1

)2 [
λT
i Φ̂ci + yTi Qiyi + uT

i Riui

]
, (20)

where λi = Ψi

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
, ϖ1i > 0 is the learning rate.

3.2. Action Network Design

By (12), the idea control input u∗
i is:

u∗
i = −1

2
R−1

i gTi (ξi)Ψ
T
i (Zi) Φi. (21)

where Φi is unknown. The actor network is also a FLS, which is used to approximate u∗
i :

ûi = −1

2
R−1

i gTi (ξi)Ψ
T
i (Zi) Φ̂ai, (22)

where Φ̂ai is the current estimated value of Φi in (21). Then, we have:

εHJBi = yTi Qiyi +ΦT
i Ψi (Zi)

(
Fi − ṗ

pe
)

− 1
4Φ

T
i Ψi (Zi) giRi

−1gTi Ψ
T
i (Zi) Φi.

(23)

where
εHJBi = εi

T
(
Fi − ṗ

pe
)
+ 1

2Φi
TΨigiRi

−1gi
T εi +

1
4εi

T giRi
−1gTi εi.

The estimation error is:
Φ̃ai = Φi − Φ̂ai. (24)

Let ũi = u∗
i − ûi. By (24), the error of the action network can be rewritten as:

εAi
=εi

T
(
Fi − ṗ

pei

)
+ 1

2 (Φi − Φ̂ai)
T
ΨigiRi

−1gi
T εi

+ 1
4εi

T giRi
−1gTi εi.

(25)

Define the mean square error is:

EAi =
1

2
ε2Ai

. (26)

The update law of the action network is designed as:

˙̂
Φai = −ϖ2i

[(
ιaiΦ̂ai − ιciϑ̄

T
i Φ̂ci

)
− 1

4θi (Zi) Φ̂aiϑi
T (Zi) Φ̂ci

]
, (27)

where ϖ2i > 0 is the learning rate, θi (Zi) = ΨigiR
−1gi

TΨi
T , ϑi (Zi) =

λi

(λi
Tλi+1)

2 , ιai > 0 and ιci > 0 are

tuning parameters, ϑ̄i =
λi

(λi
Tλi)+1

.

Thus, we propose a novel algorithm for the task, namely the Prescribed-Time Synchronization Control Design.
The detailed procedure is summarized in Algorithm 1.
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Algorithm 1 Prescribed-Time Synchronization Control Design

Input: prescribed time T , convergence accuracy 0 < τ < 1, matrices Qi > 0, Ri > 0

Initialization: state ζi(0) and ξi(0), critic weight Φc(0), and actor weight Φa(0)

Parameters: learning rates ϖ1 > 0 and ϖ2 > 0; tuning parameters ιai > 0 and ιci > 0

for i = 1, ..., n

By (3), compute ei
By (5), compute p

By (6), compute yi
Define fuzzy IF-THEN rules, input Zi = [ei, p, yi]

T , determine fuzzy basis function Ψ(Zi)

By (22), compute ui

Update Φci

Update Φai

end for

4. Main Theoretical Results

In this section, the main theoretical results are given.

Theorem 1. For CNs (1) and (2) with the action network (21) and critic network (16), along with weight law of
the critic network in (20) and the action network in (27), it is guaranteed that the lim

t→T
∥ei∥ < τ , which means the

projective synchronization of (1) and (2) can be achieved.

Proof. Consider the following Lyapunov function:

Vi = J (yi) +
1

2
Tr

{
Φ̃T

ciκ
−1
1i Φ̃ci

}
+

1

2
Tr

{
Φ̃T

aiκ
−1
1i Φ̃ai

}
. (28)

Then

V̇i =
(
∇Ji

T λ̄−1
i

)
λ̄i

(
Fi (ei) + gi (ξi)ui −

ṗ

p
ei

)
+Φ̃T

ci

λi(
λi

Tλi + 1
)2

(
λi

T Φ̂ci + yTi Qiyi +
1

4
Φ̂T

aiθi (Zi) Φ̂ai

)

+Φ̂ai

((
ιaiΦ̂ai − ιciϑ̄

T
i Φ̂ci

)
− 1

4
θi (Zi) Φ̂aiϑi

T (Zi) Φ̂ci

)
.

(29)

Let λ1i ≡ Ψi (Zi)
(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
, one has

ΦT
i λ1i = −yTi Qiyi − 1

4 Φ̂
T
i θi (Zi) Φ̂ai + εHJBi

. (30)

By (30), one has

V̇i =
(
λ̄i∇Ji

)T (
Fi (ei) + gi (ξi)ui − ṗ

pei

)
+ Φ̃T

ci
λi

(λi
Tλi+1)

2

(
λi

T Φ̂ci + yTi Qiyi +
1
4 Φ̂

T
aiθi (Zi) Φ̂ai

−ΦT
i λ1i − yTi Qiyi − 1

4Φi
T θi (Zi) Φi + εHJBi

)
+ Φ̃ai

((
ιaiΦ̂ai − ιciϑ̄

T
i Φ̂ci

)
− 1

4θi (Zi) Φ̂aiϑi
T (Zi) Φ̂ci

)
.

(31)

By using (17), from λi = Ψi

(
Fi (ei) + gi (ξi) ûi − ṗ

pei

)
and λ1i ≡ Ψi (Zi)

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
,

we have

λT
i Φ̂ci − ΦT

i λ1i =− Φ̃T
ciΨi (Zi)

(
Fi (ei)− ṗ

pei

)
− 1

2
Φ̂aiθi

T (Zi) Φ̂ci +
1

2
Φiθi

T (Zi) Φi. (32)
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Then, by combining (14) and (32), (31) can be expressed as

V̇i = ΦT
i Ψi (Zi)

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
+ Φ̃T

ci
λi

(λi
Tλi+1)

2

×
(
λi

T Φ̂ci + yTi Qiyi +
1
4 Φ̂

T
aiθi (Zi) Φ̂ai + εHJBi

− Φ̃T
ciΨi (Zi)

×
(
Fi (ei)− ṗ

pei

)
− 1

2
Φ̂aiθi

T (Zi) Φ̂ci +
1

2
Φiθi

T (Zi) Φi

)
+ Φ̃T

ai

((
ιaiΦ̂ai − ιciϑ̄

T
i Φ̂ci

)
− 1

4θi (Zi) Φ̂aiϑi
T (Zi) Φ̂ci

)
+ εTi (Zi)

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
.

(33)

From Φ̃ci = Φi − Φ̂ci and Φ̃ai = Φi − Φ̂ai, we have

Φ̃T
ai

(
ιaiΦ̂ai − ιciϑ̄

T
i Φ̂ci

)
=Φ̃T

aiιaiΦi − Φ̃T
aiιaiΦ̃ai − Φ̃T

aiιciϑ̄
T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci.

(34)

So,
1
4 Φ̂

T
aiθi (Zi) Φ̂ai − 1

4Φi
T θi (Zi) Φi

= 1
4 Φ̃

T
aiθi (Zi) Φ̃ai − 1

2 Φ̃
T
aiθi (Zi) Φi.

(35)

And,
− 1

2 Φ̂
T
aiθi (Zi) Φ̂ci +

1
2Φi

T θi (Zi) Φi

= 1
2Φi

T θi (Zi) Φ̃ci +
1
2 Φ̃

T
aiθi (Zi) Φi − 1

2 Φ̃
T
aiθi (Zi) Φ̃ci

= 1
2 Φ̃

T
aiθi (Zi) Φi +

1
2 Φ̂

T
aiθi (Zi) Φ̃ci.

(36)

Substituting (30), (31), and (32) into (29) and combining (18), one has

V̇i =ΦT
i Ψi (Zi)

(
Fi (ei) + gi (ξi)ui − ṗ

pei

)
+ εTi (Zi)

×
(
Fi (ei)− 1

2gi (ξi)R
−1
i gTi (ξi)Ψ

T
i (Zi) Φ̂ai

− ṗ
pei

)
− ΦT

i Ψi (Zi)

2
gi (ξi)R

−1
i gTi (ξi)Ψ

T
i (Zi) Φ̂ai

+ Φ̃T
ci

λi

(λi
Tλi+1)

2

(
1
4 Φ̂

T
aiθi (Zi) Φ̂ai + εHJBi

+ 1
2 Φ̂

T
aiθi (Zi) Φ̃ci −

(
Fi (ei)− ṗ

pei

)T

ΨT
i (Zi) Φ̃ci

)
− 1

4 Φ̃
T
aiθi (Zi) Φ̂aiϑi

T (Zi) Φ̂ci + Φ̃T
aiιaiΦi

− Φ̃T
aiιaiΦ̃ai − Φ̃T

aiιciϑ̄
T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci.

(37)

By using the definitions of λi and θi (Zi), and combining (18), one has

V̇i =ΦT
i Ψi (Zi)

(
Fi (ei)− ṗ

pei

)
+

1

2
ΦT

i θi (Zi)
(
Φi − Φ̂ai

)
− 1

2
ΦT

i θi (Zi) Φi +Υ1i (Zi) + Φ̃T
ci

λi

(λi
Tλi+1)

2

×
(

1
4 Φ̂

T
aiθi (Zi) Φ̂ai + εHJBi

− λT
i Φ̃ci

)
− 1

4 Φ̃
T
aiθi (Zi) Φ̂aiϑi

T (Zi) Φ̂ci + Φ̃T
aiιaiΦi

− Φ̃T
aiιaiΦ̃ai − Φ̃T

aiιciϑ̄
T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci,

(38)

where
Υ1i=εTi

(
Fi − 1

2giR
−1
i gTi Ψ

T
i Φ̂ai −

ṗ
pei

)
. (39)
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Substitute λi into (17) and (26) yields

V̇i =ΦT
i λ1i +

1

2
ΦT

i θi (Zi) Φ̃ai +Υ1i (Zi)

− 1
4 Φ̃

T
aiθi (Zi) Φ̂aiϑi

T (Zi) Φ̂ci

+ Φ̃T
ci

λi

(λi
Tλi+1)

2

(
1
4 Φ̂

T
aiθi (Zi) Φ̂ai + εHJBi

− λT
i Φ̃ci

)
+ Φ̃T

aiιaiΦi − Φ̃T
aiιaiΦ̃ai

− Φ̃T
aiιciϑ̄

T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci

= −yTi Qiyi −
1

4
ΦT

i θi (Zi) Φi + εHJBi

+
1

2
ΦT

i θi (Zi) Φ̃aiΥ1i (Zi) + Φ̃T
ci

λi

(λi
Tλi+1)

2

×
(

1
4 Φ̂

T
aiθi (Zi) Φ̂ai + εHJBi

− λT
i Φ̃ci

)
− 1

4 Φ̃
T
aiθi (Zi) Φ̂aiϑi

T (Zi) Φ̂ci + Φ̃T
aiιaiΦi − Φ̃T

aiιaiΦ̃ai

− Φ̃T
aiιciϑ̄

T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci.

(40)

From Φ̃ci = Φi − Φ̂ci and Φ̃ai = Φi − Φ̂ai, we have

1

4
Φ̃T

ci
λi

(λi
Tλi+1)

2 Φ̃
T
aiθi (Zi) Φ̃ai

=
1

4
Φ̃T

aiθi (Zi) Φ̃ai
ϑ̄T
i

ms
Φi −

1

4
Φ̃T

aiθi (Zi) Φi
ϑ̄T
i

ms
Φi

+
1

4
Φ̃T

aiθi (Zi) Φ̃i
ϑ̄T
i

ms
Φ̃ci +

1

4
Φ̃T

aiθi (Zi) Φ̂ai
ϑ̄T
i

ms
Φ̂ci,

(41)

where ms=λi
Tλi + 1. Then, using (36), (37) can be rewrite as

V̇i =− yTi Qiyi −
1

4
ΦT

i θi (Zi) Φi + εHJBi
+

1

2
ΦT

i θi (Zi) Φ̃ai

+Υ1i (Zi) + Φ̃T
ciϑ̄i

(
−ϑ̄T

i Φ̃ci+
εHJBi

ms

)
+

1

4
Φ̃T

aiθi (Zi) Φ̃ai
ϑ̄T
i

ms
Φi −

1

4
Φ̃T

aiθi (Zi) Φi
ϑ̄T
i

ms
Φi

+
1

4
Φ̃T

aiθi (Zi) Φ̃ai
ϑ̄T
i

ms
Φ̃ci + Φ̃T

aiιaiΦi − Φ̃T
aiιaiΦ̃ai

− Φ̃T
aiιciϑ̄

T
i Φi + Φ̃T

aiιciϑ̄
T
i Φ̂ci.

(42)

By Lemma 1, we know that ṗ
p is bounded. Let cxi

is the upper bound of
∣∣∣ ṗp ∣∣∣, one can obtain

∥Υ1i∥ ≤ (δcfi + cζi) ∥yi∥

+
1

2
δc2gσmax

(
R−1

)
cΨi

(
∥Φi∥+

∥∥∥Φ̃ai

∥∥∥) .
(43)

According to [32], we know that εHJBi converges to 0. select ε̄HJBi > 0 such that supXi∈Φ ∥εHJBi∥ <

ε̄HJBi
. Let X̃i =

[
yi, ϑ̄

T Φ̃ci, Φ̃ai

]T
, (34) becomes

V̇i ≤
1

4
∥Φi∥2 ∥θi (Zi)∥+ ε̄HJBi

+
1

2
δc2gσmax

(
R−1

)
cΨi

∥Φi∥

− X̃T
i MX̃i + X̃T

i d

= −X̃T
i MX̃ + X̃T

i d+ c,

(44)
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where σmax

(
R−1

)
is the maximum eigenvalue of matrix R−1,

M =

Qi 0 0

0 1
(
− 1

2 ιciI2li−
1

8msθiΦi

)T

0 − 1
2 ιciI2li−

1
8msθiΦi ιaiI1li−

1
8 (θiΦiϑ

T
i +ϑiΦ

T
i θi)

 ,

d =


(δcfi+cxi)I2n

ε̄HJBi

ms(
ιaiI1li+

θi
2 −ιciI2li ϑ̄

T
i −

θiΦiϑ
T
i

4

)
φi+

δc2gσmax(R−1)cΨi
I2li

2

 ,

c =
1

4
∥Φi∥2 ∥θi (Zi)∥+ ε̄HJBi

+
1

2
δc2gσmax

(
R−1

)
cΨi

∥Φi∥

and I1li = diag {1, ..., 1}, I2li = [1, ..., 1]
T .

Using Sylvester’s criterion [], one can obtain that M > 0 when ιaiI1li > 1
8

(
θiΦiϑ

T
i + ϑiΦ

T
i θi

)
+
(
1
2 ιciI2li +

1
8msθiΦi

)
,

×
(
− 1

2 ιciI2li −
1

8msθiΦi

)T
. Select ιai such that M > 0. Then, (40) becomes

V̇i ≤ −σmin (M)
∥∥∥X̃i

∥∥∥2 + ∥di∥
∥∥∥X̃i

∥∥∥+ c, (45)

where σmin (M) is the minimum eigenvalue of M .
If ∥∥∥X̃i

∥∥∥ ≥ di
2σmin (M)

+

√
di

2

4σ2
min (M)

+
c

σmin (M)

∆
= BXi , (46)

one has V̇i ≤ 0, which means that Vi ∈ L∞, yi ∈ L∞, Φ̃ci ∈ L∞, and Φ̃ai ∈ L∞ can be obtained. As yi ∈ L∞,
by (3), we have −p <||ei|| < p which means that ei can converge to Ωe within a prescribed time T . By Lemma 1,
one can obtain that the prescribed time synchronization of (1) and (2) are achieved.

5. Simulation

In this section, a numerical example [37] is given to verify the obtained results. The topology of driving
network and response network is given in Figure 2.

1 2

3

45

6

(a) Drive network.

1

2

3

45

6

(b) Response network.

Figure 2. Comparison of Drive and Response networks.

The dynamics of driving network are as follows:

ζ̇i = fi(ζi) +

N∑
j=1

aijH1ζj , (47)

where

fi (ζi)=

[
−ζi1 + ζi2
−0.5ζi1 − ζi1(0.1ζi1 sin (ζi2)− ζi2)

2

]
, (48)
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where i = 1, · · · , 6.
The dynamics of response network is as follows:

ξ̇i = zi(ξi) +

N∑
j=1

cijH2ξj + gi(ξi)ui, (49)

where

zi (ξi)=

[ −ξi1+ξi2−3.5ξi3

−0.5ξi1−0.5ξi2(1−cos (2ξi2+2)2+sin(ξi3))
2

ξ3i1+sin(ξ2i2)−ξi3−ξ4i2

]
, (50)

gi(ξi) =

0.5 0 0

0 cos(2ξi1 + 2) 0

0 0 sin(ξi2)

 . (51)

By (4), one has ei = (e1, e2, e3)
T , i = 1, ..., 6. The topology of two networks is given in Fig.2a and Fig.2b.

Then, we have: aij = 1(i = 1, · · · , 6, j = 1, · · · , 6, i ̸= j), a11 = a22 = a33 = a44 = a55 = a66 = −5,
c11 = −5, c22 = c33 = c44 = c55 = c66 = −1, c12 = c21 = 1, c13 = c31 = 1, c14 = c41 = 1, c15 = c51 = 1,
c16 = c61 = 1. Let the inner coupling matrix H1 = diag{0.1,−0.1} and H2 = diag{0.1,−0.2, 0.1}, B = −1 0

−1 0.64

−0.51 −0.85

.

The fuzzy sets of FNN ΨT (Z) Φ̂c are defined as [−3, 3]. Let Z = [e, p, y]
T , and for k = 1, 2, ..., 7 define

Z0 =

[
[−4 + k,−4 + k,−4 + k]T , ..., [−4 + k,−4 + k,−4 + k]T︸ ︷︷ ︸

3

]T
the fuzzy membership functions are de-

signed as µFk (Z) = exp

(
− (Z−Z0)

T
(Z−Z0)

2

)
. The fuzzy basis function are defined Ψ(Z) =

[
Ψ1,Ψ2 (Z) , ...,Ψ7

]
,

and Ψk =
µ
Fk (Z)∑7

k=1 µ
Fk (Z)

. Let Q = R = I3. We initialize the system with ζk (0) =
[
k
N , k

N

]T
, ξk (0) =[

k
N , k

N , k
N

]T
k = 1, ..., N . The initial values for (16) and (21) are set as Φ̂c (0) = [0.2]7×1, Φ̂a (0) = [0.3]7×1,

ϖ1 = 1, ϖ2 = 1, ιa = 5, and ιc = 0.7, −0.1 < τ < 0.1, T = 9.
The simulation results are given in Figures 3–5. Figure 3 gives the trajectory of the projective synchronization

error ei = (e1, e2, e3)
T , i = 1, ..., 6. It can be seen that ei converges to the expected accuracy −0.1 < τ < 0.1

within T = 9. Figure 4 shows the trajectory of the performance function of all nodes. Figure 5 shows the
evaluation network trajectory Φci of nodes 1 and 5. Figure 6 shows the control strategy trajectory u of node 5. From
Figures 3–6, it can be concluded that the projective synchronization between (47) and (48) is achieved within T = 9.

To demonstrate the superiority of the proposed method, we compare our algorithm with three reinforcement
learning-based control approaches: fuzzy RL [36], adaptive RL (ARL) [15], and standard RL [38]. The performance
value are illustrated in Figure 7. The control input of different methods are shown in Figure 8. The corresponding
tracking error are depicted in Figure 9. The quantitative comparison of key performance metrics, including convergence
time, synchronization error, and control effort, is summarized in Table 1. It can be observed that our method has better
performance and faster convergence speed than the three existing methods.

Table 1. Performance metrics for different control methods.

Control Method Convergence Time (s) Synchronization Error (RMSE) Control Effort (IAE)

Standard RL [38] 12.1 0.098 0.7
Fuzzy RL [36] 14.2 0.087 2.4

Adaptive RL (ARL) [15] 16.8 0.072 1.7
Proposed Method 9.0 0.042 0.2
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Figure 3. The trajectories of synchronization error.
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Figure 4. The trajectory of the performance function of all nodes.
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Figure 5. Weights of critic.
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Figure 6. Trajectories of control policy u.

https://doi.org/10.53941/jmlis.2026.100002 12 of 17

https://doi.org/10.53941/jmlis.2026.100002


Qu and Dong J. Mach. Learn. Inf. Secur. 2026, 2(1), 2

0 3 6 9 12 15 18 21 24 27 30
Time

0

2

4

6

8

10

12

Pe
rf

or
m

an
ce

 In
de

x

Prescribed-Time Fuzzy RL algo ithm
Standa d RL algo ithm
Fuzzy RL algo ithm
Adaptive RL algo ithm

Figure 7. The node Trajectory of the performance function for PTFRL, FRL, RL, ARL.
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Figure 8. The node Trajectory of u for PTFRL, FRL, RL, ARL.
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Figure 9. The node Trajectory of e for PTFRL, FRL, RL, ARL.

6. Conclusions

This paper investigates the prescribed-time projective synchronization problem for complex networks (CNs)
with nodes of different dimensions. A projective synchronization error is first formulated, and a novel performance
value function incorporating prescribed-time constraints and accuracy requirements is introduced. A fuzzy controller
based on an A fuzzy actor-critic neural network (FACNN) framework is then developed to address the prescribed-time
synchronization challenge. Furthermore, rigorous convergence analysis is provided, proving that the synchronization
error converges to a predefined residual set within the prescribed time, independent of initial conditions. Finally,
a numerical example is presented to validate the effectiveness of the proposed approach, demonstrating that the
synchronization objective is achieved as expected.
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Appendix A

In this section, we proof Lemma 1.

Proof. For 0 ≤ t < T , get

ṗ = −2
(1− τ) (T − τ)

T 2
< 0. (A1)

So p is strictly decreasing over [0, T ), with p (0) = 1, and p = τ for ∀t ≥ T ;
Since p is defined at T , from (6),

lim
t→T−

p = lim
t→T+

p = p (T ) = τ. (A2)

By (6), we can obtain that
ṗ− (T ) = ṗ+ (T ) = 0. (A3)

So, ṗ exists at T . Using (6), the has

ṗ =

{
−2 (1− τ) T−τ

T + τ , 0 ≤ t < T

0, t ≥ T.
(A4)

This means that limt→T− ṗ (t) = limt→T+ ṗ (t) = 0, i.e., ṗ is continuous for all t ≥ 0. Since, ṗ (0) = −2(1−τ)
T ,

we have that ṗ is bounded. Therefore, both p and ṗ are bounded and p is continuously differentiable. Moreover, by
(6) and (43), we have that

ṗ

p
=

{
−2(1−τ)T−τ

(1−τ)(T−t)2+τT 2 , 0 ≤ t < T

0, t ≥ T
. (A5)

From (A2), one can obtain

lim
t→T−

ṗ

p
= lim

t→T+

ṗ

p
=

ṗ

p
(T ) = 0. (A6)

Since, ṗ
p (0) = −2 (1− τ) /T and ṗ

p is continuous, it can be concluded that ṗ
p is bounded.
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