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1. Introduction

Recently, complex networks (CNs) have received a lot of attentions due to their widely applications in many
fields such as power grids, social networks, transportation systems and so on [1-5]. Synchronization has been
the research focus of CNs. It refers to the phenomenon where nodes in two CNs gradually adjust from different
initial states and eventually reach a consistent state through control. To achieve synchronization, a variety of control
strategies have been proposed such as event-triggered control strategy [6—9], finite-time control strategy [10-12],
adaptive control strategy [13—16], and impulsive control strategy [17-20].

Reinforcement learning (RL) is a powerful machine learning technique that systematically adjusts an agent’s
behavior based on observed environmental responses. Due to the fact that reinforcement learning algorithms do not
require knowledge of the system’s dynamic model, they are widely used in complex network synchronization [21-32].
In [21], a secure RL algorithm is proposed to address the secure synchronization problem of two-time-scale CNs
under malicious attacks. In [22], a distributed RL algorithm is proposed to address the synchronization problem of
CNss. In [23,24], a two-level value iteration algorithm is proposed to solve the synchronization problem of CNs. In
[26], a data-based off-policy RL algorithm is proposed to solve the synchronization of CNs with input saturation.
In [25,28,29], three cluster synchronization methods based on state-flipped control and QL algorithm is proposed
to solve the cluster synchronization of the Boolean network. In [30], an RL-based control method is proposed
to address the synchronization of CNs with unknown non-identical dynamics. In [32], a synchronization control
method based on RL and Graph Convolution Networks is proposed to address the synchronization of complex
networks [33-35,38—41]. It can be seen that, although many RL-based algorithms have been proposed to solve
synchronization problems for various CNs, there is still little research on prescribed-time synchronization of CNs.
Prescribed-time synchronization is that CNs can achieve synchronization within a predefined time by designing
control alogrithms.

Inspired by the above discussion, this paper studies the PTPS of two different dimension CNs via fuzzy RL.

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).
[

Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.sciltp.com/journals/jmlis
https://doi.org/10.53941/jmlis.2026.100002
https://creativecommons.org/licenses/by/4.0/

Qu and Dong J. Mach. Learn. Inf. Secur. 2026, 2(1), 2

The main contributions of this paper are as follows:

1. A projective synchronization error is constructed and a novel performance value function integrated with
the predefined time horizon and desired accuracy is proposed. This pivotal step translates the challenge of
achieving projective synchronization within a predefined time into an optimal regulation problem.

2. A novel controller is proposed to solve the prescribed-time projective synchronization problem. A fuzzy
ADP-based framework is used to realize the controller. Moreover, the convergence analysis of the proposed
algorithm is given, which shows that the projective synchronization error can converge to the predesigned
residual set within a prescribed time.

The remainder of this paper is organized as follows: Section 2 presents the system model and problem
formulation. Section 3 develops the prescribed-time control strategy. Section 4 provides the main results. Section 5
offers numerical simulations to validate the proposed approach.

2. Problem Description and Some Preliminaries
2.1. Model Description

Consider two CNs: driving network and response network. The driving network consists of N nodes. The
dynamic of each node is described as follows:

N
éi:fi(ﬁi)+zainle(i:1,2,"'aN)7 M
=1

where (; € R" is the ith node state, f; (-) € R™ is the ith node dynamic, H; € R™*" is the inner coupling matrix,
a;; is the connection weight from node ¢ to node j (i # j).

The response network tracking the driving system also consists of NV nodes. The state of each node is an
m-dimensional vector, and the dynamic of ¢ node is described as follows:

N
§i=2 (&) + ) ciHa&s + gi (&) wi, @)
=1

where & € R™ is the ith state of the node, which is an m- dimension vector, z; (-) € R™ is the ith system dynamic,
which is unknown, Hy € R™*™ is the internal coupling matrix, g; (-) € R™>™ is the control gain, u; is the control
input, and ¢;; is the connection weight from node ¢ to node j (¢ # j).

Assumption 1. (1) g; () are bounded, i.e. ||g; (*)|| < gnr,s, where gar; > 0. (2) fi (+), z: (+), gi (+) are Lipschitz
continuous.

Define a projective synchronization error as:

e; =& — B, 3)

where B € R™*™ and e; € R™ is a projective matrix.
By (1) and (2), one has

éi =& — B
= Fi(ei) + g9i(&)ui, 4

N
where F; (e;) = zi (&) — Bfi (Gi) + 21 (cijHag; — aigBH1G;).
=

Definition 1. For a pre-defined time T and a pre-defined accuracy 0 < 7 < 1, if thrr% leill < T holds, the PTPS of
—
(1) and (2) can be achieved.

Define a piecewise function as:

p:{(1—r)(TT—t)2+r, 0<t<T )
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where T' > 0 is the pre-defined time and 7 > 0 is the pre-defined accuracy.

Lemma 1. p defined in (5) has two properties: (1) p (0) = 1 and p is strictly decreasing on [0,T); (2) p is smooth,
p and p are bounded for all t > 0.

Proof: See Appendix A.

Define a transformation function:
T e;

i — t P R 6
yi = tan <2 p) Q)
where y; = [Yi1, -, Yim] € BR™, |eq (0)] < p(0), £ = 1,...,m. m denotes the dimension of ¢;.

By (6), if y;; is bounded and —p(0) < e;;(0) < p(0), then one has —p < e;; < p. According to Lemma 1,
one has —p < e;; < p for Vt > T, which means that if —p(0) < e;;(0) < p(0) is satisfied and the bounded of p is
guaranteed, liH% |le;]l < 7 holds.

t—

By (4) and (6), one has

. X T
i = 5 {(1 +y7) (éil - %61‘1) oo (14 i) (éim - %eim)}

Ai (]:i (€:) + gi (&) wi — 1;?%) ; @)

where \; = diag {% (1 + y121) yeees 21,, (1 + y?m)}

2.2. Fuzzy Logic System

For a FLS, the fuzzy rule Ry, is defined as:

IF: 2y is Ff, ..., 2 is Flk k=1,. K

THEN: yp is B*
where, K is the number of fuzzy rules and z = [21, ..., z/]" is the input of the FNN. F* and B are the fuzzy sets.
ZlK=1 ok 1_I§=1 HFlk(Zzi)
i, |:H'li:1 Pk (Zi)}
function of F}, U* satisfies e (U*) = max,,_,pupe (yp). Let U = [U, ., \I/K]T, o= [0, .., @K]T, and
Hé:l /"LF"IC (Zi)

S [Tl e )]

yp is the output of FNN, which is defined as yp (2) =

, where pipr (2;) is the membership

(Dk

,one has yp (2) = U1 (2)®.
Lemma 2. (See [36]): For any p > 0, there exists fuzzy logic system (FLS) W™ (2)® and defined a continuous
function h (z) on a compact set Z, can sup,, ¢z ‘h (z) =T (2)®] < p.

3. Prescribed-Time Synchronization Control Design

Define a performance value function as:

)= [ () s (), ®)
t
where 7; (y;, u;) = yiTQiyZ- + uiTRZ-ui, Q; and R; are positive definite matrices. The optimal value of (8) is:
Ji(y;) = mi i (T), U dr. 9
f) = min [ ) ()i ©

By (9), one can obtain:

H; (yi,ui,vji):
vt (S\i (}} (ei) +9i (&) wi — %61')) + 7 (Y wi) - o

Then, we have

in {H; (yi,u;, VJ;i")} =0,
ug};(r;)){ (i, u )} (11)
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where V.J;* = 0.J;* /0y;. The optimal control policies is as follows:

3

1
up = —5Rzlg? (&) vi, (12)

where v; = \;V.J;*. Substituting (12) into (11), one has:

y! Quy + vl (Fi = Lei) = bl giR gl vi =0, (13)

with J* (0) = 0.
In the following we use fuzzy actor-critic framework to realize the controller. The control diagram is given in
Figure 1.

(" critic network R

-—_———— - L VaIue(F:)nction }

|

ci
l /Lﬁa_te the
critic network

(20)

pdate the
actor network

Q7

v O,

Controller (22) J

Drive Network
(
Response
Network (2)

Piecewise Transformation
Function (5) Function (6)

Actor network )

Figure 1. The control system

3.1. Critic Network Design

By Lemma 2, we know that the FLS can approximate any function. Therefore, we use FLS to bulid critic
network. The critic network is used to approximate v;, which is described as

vi (Z) = T (Z;) ®; 4+ (Zy), (14)

where Z; = [e;, pi, yi]T, P, € Rﬁ,l where [ is the number of fuzzy rules and ¥; € R™™ is the basis function
matrix. The optimal parameter vector and the approximation error are denoted as ®; and ¢; € R", respectively. The
error ¢, satisfies ||¢;|| < d ; where ¢ is a constant, || U;|| < cg with cg > 0.
By (14), one has
e, = Hi (yi,wi, @) = 4] Quyi + uj Ryw; + ©] 3 (Z))

X (]:i (i) + g (&) ui — §6i> ; (4>
where e, = —¢;T (}-Z- (i) + gi (&) u; — %ei). Then, one can obtain:
0 (Z:) = U] (Z) e, (16)
where 0(Z;), d.,; are the estimate v; (Z;). Therefore, we can further obtain that
e, = H; (yi, Uj, (i)a') =yl Qiyi + ul Riu; + @59, (Z;)
(17)

« (fi (e0) + g () ui — iei) .
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The weight estimation error is defined as:
Qi = 0 — Do (18)

Then, one has

Define the error function: L
Ep, = 55231,. (19)

From (19), the update law of the critic system is designed as:

x w1 OFEp,
Do = — 2 03
()\?Ai + 1) 0P.;
iAi 2
= P T+ o7 Quys + ul Ruu] (20)

2
(IA+1)

where \; = ¥; (}'i (i) + gi (&) u; — %ei), wy; > 0 is the learning rate.

3.2. Action Network Design

By (12), the idea control input u; is:

uf = 5 RT (€)W (Z) % @)

where ®; is unknown. The actor network is also a FLS, which is used to approximate u;:

" 1 . -

i = =5 Rl (&) 9T (Zi) P, (22)
where @ai is the current estimated value of ®; in (21). Then, we have:

engp, =y Qiyi + 7TV, (Z;) (}—i - %e)

1pT -1 7T (23)
—1® Vi (Z;) giRi ™ g; Vi (Z;) .
where
EHIB: = €il (]:i - %6) + 30 VigiR, g e+ ja iR g e
The estimation error is:
Dy = 0 — Dy (24)
Let u; = u; — ;. By (24), the error of the action network can be rewritten as:
__T P 1 2 \T -1 T
€A; =€i (-/Tz' - *ei) +5(Ps — Pui) Vigii™gi" &
P 2l ) (25)
+ iEiTginlg?€i~
Define the mean square error is:
1
Ea, = 54, (26)
The update law of the action network is designed as:
(j:)ai = —W2; [(Lai(i)ai - Lciﬁ;'r(i)ci) - iez (Zz) Ci)ai'lgiT (Zz) qA:)ci ) (27)
where wsy; > 0 is the learning rate, 6; (Z;) = W;q; R 1,70, T, 9; (Z;) = (/\T:\\ifﬂ)g, tai > 0and t; > 0 are
tuning parameters, ¥; = (/\T’\ﬁ

Thus, we propose a novel algorithm for the task, namely the Prescribed-Time Synchronization Control Design.
The detailed procedure is summarized in Algorithm 1.
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Algorithm 1 Prescribed-Time Synchronization Control Design

Input: prescribed time 7', convergence accuracy 0 < 7 < 1, matrices Q); > 0, R; > 0
Initialization: state ¢;(0) and &;(0), critic weight ®.(0), and actor weight ®,(0)
Parameters: learning rates w; > 0 and ws > 0; tuning parameters t,; > 0 and ¢; > 0
fori=1,...,n

By (3), compute e;

By (5), compute p

By (6), compute y;

Define fuzzy IF-THEN rules, input Z; = [e;, p, y;] , determine fuzzy basis function ¥ (Z;)

By (22), compute u;

Update ®;

Update ®,;
end for

4. Main Theoretical Results

In this section, the main theoretical results are given.

Theorem 1. For CNs (1) and (2) with the action network (21) and critic network (16), along with weight law of
the critic network in (20) and the action network in (27), it is guaranteed that the thn% |
-

e;|| < 7, which means the

projective synchronization of (1) and (2) can be achieved.

Proof. Consider the following Lyapunov function:
1 5T, —1F 1 ET  —1§
Vi=J(y)+ 5T {@Cin“ <I>m-} + 3T {@M-/{H %} . (28)

Then .
Vi= (VAT N (]:i (i) + gi (&) ui — i%)

N \i . 1. .
+olL— N @i+ yl Qiyi + ~ 010, (Z:) D
(M2 +1) 4 29
3 3

+(i)ai ((Lm"i)m' - Lci'gzrqscz) -

0.(2) B0 (2) <I>> .

Let )\li = \I/Z (Zz) (.E (61) + g (51) Ui — %ei), one has

T\ = —yl Qiys — 1070, (Z) ®ui +crim,. (30)

By (30), one has

Vi :(S‘iin)T (}—i (i) + gi (&) ui — Bei)

P

5 i o . .
+ @sz ()\i Do+ yl Qiyi + 1010, (Z)) Oy

—®7 A — yf Qiyi — 19,70, (Z:) @i + cns,)
+ i ((Lai(i)ai - Lcig;-[‘i)ci) —10:(2:) 2.0:." (Z:) o,

(3D

By using (17), from \; = ¥, (]-",- (e;) + g: (&) h; — %ei) and \; = VU, (Z;) (]—"i (ei) + gi (&) u; — 2@-),
we have

1. . 1
_ §®ai0iT (Z;) @i + §<1>i9iT (Z;) ®;. (32)
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Then, by combining (14) and (32), (31) can be expressed as
7 — Ty, (7. (o, () 11 T A
Vi= @0 () (Fi(en) + 91 (6 wi = bes) + B ks
X(MTém+nyWr+i@§@(Z?ém+fﬂJ&‘*égwﬂzﬁ
. 1 A 1
X (-E (e;) — BGi) - 5q>ai9iT (Z;) @i + iq)ieiT (Z;) ‘I’i>

+ o7 ((Lm“i’ai - Lcié?‘ici) - 10:(Z;) T (Z) i;ci)
Z,

(33)

From i)mv =&, — @Ci and i)m, =&, — @ai, we have

(i)g;‘ (Lai(i)ai - Lcﬂgzr(i)ci) (34)
:(iT-Laiq)i — &)Zibaii)ai — (i)z;lbcﬂg?(bl + i)g;-bci’lg;r(i)ci.

So,
(33

) Pai — 20,70, (Z:) ®;
1) @ai — 050, (Z;) ;.

And, X .
- 10T0,(z;) <I>m- +120,70,(Z;) @,
=10,70,(2;,) @i + 1050, (Z;) ; — L8T0,(Z;) D (36)
= 1050, (Z;) ®; + %@fiei (Z) Doy
Substituting (30), (31), and (32) into (29) and combining (18), one has
Vi =07, (Z;) (]:i (ei) + g (&) ui — %ei) +ei (Z:)
< (Fiter) — 39 (€) BT (6) VT (20) @u, — e
T, (2 _ .
SOV g eyl () W (20
i (37)

+ ‘pgm (iq’fﬁi (Z;) @oi + €HiB,

~ ~ . T ~
+ %@fﬂz (Zz) (Pm _(]:z (61) — %61) \I/lT (Zz) CI)CZ)

- i@fﬂi (Zi) O,0;" (Z;) o, + ‘i)?;ibaiq)i
— &)Z;Lai(iai — (i)gi[,ci’lglr(bi —|— &)Z—;Lcirg;‘r&)ci-
By using the definitions of \; and 6; (Z;), and combining (18), one has
. . 1 o
Vi =@] U, (Z;) (-Fi (€i) — %ei) + *‘I’?ei (Z:) ((I’i - ‘I’ai)

1 T T i
= 5@ 0i (Z) @i+ T (Zi) + %W

R . 38
X (iq’:ﬂ-ei (Z;) Pai + €HIB, — )\Z(bci) %)
—107.0,(2)) ©0:0:" (Zi) Des + PL10:P;
— L1 Py — BT 10T By + L0 0T D,
where
Ti=el (Fi = d9iR gl Wl by, — Lei). (39)
7 of 17
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Substitute \; into (17) and (26) yields

. 1 ~
Vi =07 \y; + 5@?91 (Z;) @i + T1i (Z5)

- i‘i)aTﬂi (Z:) 00" (Z) D

+ &’gm (ii’fﬂi (Zi) ®ai +emap,— /\ini’ci)
+ L1 — L1 Dy

— (i)fiLciﬁiT‘bi + @aTiLciﬁiT(fci

T L _p (40)
= -y, Qiyi — Z(I)i 0 (Zi) @i +enss;
Lo % 5T i
X (%(i)g;al (ZZ) ‘iai + EHJB; — )\ZT(i)CZ>
—19%0,(2;) D07 (Zi) Bei + OLi10i®i — OLi1yi P
- &)Z—;Lci’g?@i + &)gibciﬁ?é)ci.
From i)ci =&, — éci and @ai =&, — éai, we have
LoT A T4 (7)) b
4 cl ()\iTAi+1)2 ar’ 7 ar
1= - oF 1= 7
= Z‘Pfﬂi (Z;) Poi P, — 1%91 (Z;) i@, (41)
1= = 07 1= . 0T,
=00, (Z2;) B~ 0y + — D10, (Z;) Py —— D,
BL0 (Z0) B + {0, (7) Bui
where ms=\; T \; + 1. Then, using (36), (37) can be rewrite as
y T Lo Lo %
Vi=—vy; Qivi — 1‘1)1- 0; (Z;)®; +enip, + 5‘1%- 0; (Z;) Pai
1 (Z) + BLD: (07 doirt 2224
1= R 1= 9T
~8T0,(Z;) Boi——B; — ~DT.0, (Z;) B; —— P, (42)
+ 4 al ( ) ,'ZLS 4 al ( ) ms
Lzp L £T T, &
+ Z(I)aiai (Z;) @az‘%@ci + Poitai®i — PpitaiPas
— ‘i)Z;LcﬂiT‘I)i + i)Z;Lciqgg(i)ci-
By Lemma 1, we know that % is bounded. Let c,, is the upper bound of ‘ 13; , one can obtain
IT1ill < (dey, + c¢) lwill
Lo —1 % (43)
+ 5062 0max (R e, (4] +||@ai|) -
According to [32], we know that €7 75, converges to 0. select £y, > 0 such that SUPx, co legas |l <
. . _ AT
Enyp,. Let X; = {yi, IT D, <I>M} , (34) becomes
S 1 2 _ 1o, ~1
Vi < LIl 110 (Zi)ll + Errap; + 5 0¢50max (R7Y) cu, |94
(44)

—XI'MX; + XTd
= -X'MX+X[d+c,
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w Omax (R77) 1 ximum eigenvalu ix R,
here R~1) is the maximum eigenvalue of matrix B!

Qi 0 0

1 1 T
M=1]20 1 (_§Lci121i_%9i¢’i) ,

L ro L 60d 11 —L(0.09T+9.dT0,

0 —5eeil2ii—gps0i®i taillii—3 (0:2:07 +0:276;)

(§Cfi+cm1)l2n
EHJIB;
d: ms ,
0, o 0:®,97 5C§Umax(3_l)6\pi12u
La,illli+§l_bczl2li'§i - 1 . pit p)

1 1
c= 1 10: (Zo)l| + €y, + 50c50max (R™Y) cu, |||

4
and I'1y; = diag{1,...,1}, I2;; = [1,...,1]".
Using Sylvester’s criterion [], one can obtain that M > 0 when t;11;; > § (6;®07 + 0;9760;)+ (F1cil2i + 520: i),
X (75%112” — LGiCI)i)T. Select ¢; such that M > 0. Then, (40) becomes

8ms
Vi < —aman (M) |||+ Il | %] + . 45)
where opin (M) is the minimum eigenvalue of M.
If
. 2
%] Qszl(M) * \/402:5; an t gmmc(M) = Bx., (46)

one has V; < 0, which means that V; € Lo, y; € Lo, i)ci € L, and &Jm- € L, can be obtained. As y; € Lo,
by (3), we have —p <||e;|| < p which means that e; can converge to ), within a prescribed time 7. By Lemma 1,
one can obtain that the prescribed time synchronization of (1) and (2) are achieved. O

5. Simulation

In this section, a numerical example [37] is given to verify the obtained results. The topology of driving
network and response network is given in Figure 2.

(a) Drive network. (b) Response network.

Figure 2. Comparison of Drive and Response networks.

The dynamics of driving network are as follows:

N
G = [i(G) + ) agHig, @7)

J=1

where
—Ci1 + iz

—0.5Ci1 — Gi1(0.1¢i1 sin (Giz) — Gia)? | (48)

fi(G) =

https://doi.org/10.53941/jmlis.2026.100002 9 of 17
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where ¢ =1,--- ,6.
The dynamics of response network is as follows:

N
& = zi(&) + Z cijHa&j + gi(&i)us, (49)
j=1
where
—&i1+&€i2—3.583
2 (&)= —0.55“—045&2(1—005(2512+2)2+sin(5i3))2 ’ (50)
£ +sin(€3)—&is—&

0.5 0 0
gi(&) =10 cos(2&1 +2) 0 . (51)
0 O Sin(gig)

By (4), one has ¢; = (e1, e2,e3)T,i = 1, ..., 6. The topology of two networks is given in Fig.2a and Fig.2b.
Then, we have: Qi = 1(Z = 17 ,6,j = 1, ,6,i 7é ]), 11 = A9 = Q33 = Q44 = Qx5 = A — 75,
€11 = —9,C2 = C33 =C44 = C55 = Co = —L, 12 =¢co1 = L,ciz =c31 =1L, ciu = cq1 = 1, ¢15 = ¢51 = 1,
c16 = c¢1 = 1. Let the inner coupling matrix H; = diag{0.1, —0.1} and Hy = diag{0.1,-0.2,0.1}, B =

-1 0

-1 0.64

—0.51 —-0.85

The fuzzy sets of FNN 7 (Z) ®, are defined as [-3,3]. Let ZT: le, p, y]T, and for k = 1,2, ..., 7 define

79 = {[4 ThoAt kAR AR Ak AR the fuzzy membership functions are de-
3

. B (z2-2°)"(2-2°) . . ol a2 7
signed as ppr (Z) = exp (—2>. The fuzzy basis function are defined ¥ (2) = [¥', % (Z), ..., ¥7],
and UF = Zk“:kli(i)(z) Let Q = R = I3. We initialize the system with (x (0) = [, £]" ¢ (0) =
(£, % 1T} — 1, N. The initial values for (16) and (21) are set as . (0) = [0.2],,.,, ®q (0) = [0.3];,,,
w1 =1, wy=1,1,=5,and ¢, =0.7, -0.1 < 7<0.1, T =09.

The simulation results are given in Figures 3-5. Figure 3 gives the trajectory of the projective synchronization
error e; = (e, ea,e3)”,i = 1,...,6. It can be seen that e; converges to the expected accuracy —0.1 < 7 < 0.1
within T = 9. Figure 4 shows the trajectory of the performance function of all nodes. Figure 5 shows the
evaluation network trajectory ®.; of nodes 1 and 5. Figure 6 shows the control strategy trajectory u of node 5. From
Figures 3-6, it can be concluded that the projective synchronization between (47) and (48) is achieved within 7' = 9.

To demonstrate the superiority of the proposed method, we compare our algorithm with three reinforcement
learning-based control approaches: fuzzy RL [36], adaptive RL (ARL) [15], and standard RL [38]. The performance
value are illustrated in Figure 7. The control input of different methods are shown in Figure 8. The corresponding
tracking error are depicted in Figure 9. The quantitative comparison of key performance metrics, including convergence
time, synchronization error, and control effort, is summarized in Table 1. It can be observed that our method has better
performance and faster convergence speed than the three existing methods.

]T

Table 1. Performance metrics for different control methods.

Control Method Convergence Time (s) Synchronization Error (RMSE) Control Effort (IAE)
Standard RL [38] 12.1 0.098 0.7
Fuzzy RL [36] 14.2 0.087 2.4
Adaptive RL (ARL) [15] 16.8 0.072 1.7
Proposed Method 9.0 0.042 0.2
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Figure 3. The trajectories of synchronization error.
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Figure 4. The trajectory of the performance function of all nodes.
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Figure 6. Trajectories of control policy u.
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Figure 8. The node Trajectory of u for PTFRL, FRL, RL, ARL.
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This paper investigates the prescribed-time projective synchronization problem for complex networks (CNs)
with nodes of different dimensions. A projective synchronization error is first formulated, and a novel performance
value function incorporating prescribed-time constraints and accuracy requirements is introduced. A fuzzy controller
based on an A fuzzy actor-critic neural network (FACNN) framework is then developed to address the prescribed-time
synchronization challenge. Furthermore, rigorous convergence analysis is provided, proving that the synchronization
error converges to a predefined residual set within the prescribed time, independent of initial conditions. Finally,
a numerical example is presented to validate the effectiveness of the proposed approach, demonstrating that the
synchronization objective is achieved as expected.
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Appendix A

In this section, we proof Lemma 1.

Proof. For 0 <t < T, get

(1—7)(T—7)
2 T2

So p is strictly decreasing over [0, T), with p (0) = 1, and p = 7 for V¢ > T,
Since p is defined at T', from (6),

p=— <0. (A1)

lim p= lim p=p(T) =1. (A2)
t—T— t—T+
By (6), we can obtain that
p—(T) = pi (T) = 0. (A3)

So, p exists at T'. Using (6), the has

. 20 -7 47, 0<t<T
This means that lim, _,p-p (¢) = lim;_,7+p (¢) = 0, i.e., p is continuous for all ¢ > 0. Since, p (0) = %,

we have that p is bounded. Therefore, both p and p are bounded and p is continuously differentiable. Moreover, by
(6) and (43), we have that

. —2(1—7)T—71
P_) aoorer 0st<T (A3)
p 0, t>T
From (A2), one can obtain ) . .
D DD
lim == lim === (T)=0. (A6)
t—-T—p t=>T+t D p
Since, g (0)=-2(1—-7)/T and %’ is continuous, it can be concluded that 127 is bounded. O
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