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Abstract: Synthetic lethality (SL) is a genetic interaction that refers to the 
phenomenon of cell death caused by the simultaneous inactivation of two non-lethal 
genes. Due to high-cost constraints and time consumption of experimental 
screening, computational prediction methods have become the main research tool. 
Currently, methods based on machine learning have been widely used in SL 
research, and discovering effective features to enhance the accuracy of predictions 
remains the key challenge to overcome in current research. We propose an SL 
prediction method based on graph embedding. First, we transformed five types of 
raw omics data into graph structures to capture the complex associations among 
genes. Then, using the graph embedding technique, we extracted feature 
information for each gene and constructed the feature representation of SL pairs by 
mathematical operations. Finally, different from GNN, which infers a single graph, 
we used the machine learning classifiers to discriminate positive and negative 
samples. Our method achieved better AUC than GNN-based baseline methods. 
Overall, this study firstly proposed a prediction model for Escherichia coli (E. coli) 
SLs that integrates the advantages of graph embedding techniques and classifier 
ensembles, which significantly improves the accuracy and reliability of prediction, 
and also provides new perspectives and methods for this field. 
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1. Introduction 

The concept of synthetic lethality (SL) can be traced back to the early 20th century, when geneticist Calvin 
B. Bridges, in his study of mutants in the Drosophila melanogaster, discovered that some mutations did not cause 
death when left alone, but when they were inactive with other specific mutations in combination, they caused 
death [1]. This phenomenon suggests that the deletion of a single gene may not have a significant effect on normal 
cell growth and division, but when both genes are deleted at the same time, it can lead to organismal or cell death. 
Studying SL interactions between genes provides a more important perspective to our understanding of the 
fundamentals of cellular life activities, revealing the interactions and dependencies between genes [2–4]. This 
contributes to our understanding of disease mechanisms and provides a rationale for developing personalized 
targeted therapies [5–7]. Currently, databases based on SL have been designed to support the discovery of 
anticancer drug targets. For instance, the comprehensive knowledge database SynLethDB collects SL gene pairs 
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across species, and its upgraded version, SynLethDB 2.0, has included additional human SL data such as SLs 
identified through CRISPR screening, further enhancing the functionality of the database [8,9]. Zhu et al. designed 
a synthetic lethal and rescue interaction database for microbial genetics called Mslar [10]. In addition, the concept 
of SL is of great importance in microbial research. Studying SL in microorganisms can help to streamline the 
genome to obtain a minimal set of genes [11], and then design and construct microorganisms with specific 
functions and properties for use in bioenergy production [12]. 

The identification of SL gene pairs is mainly divided into experimental identification and computational 
predictions. The methods of experimental identification include high-throughput hybridization, RNA interference, 
gene editing, and other techniques [13,14]. However, experimental identification suffers from limited sample size, 
high cost, time consumption, and potential off-target effects. In recent years, with the wide application of 
technologies such as machine learning, there has been an increasing number of methods and tools for 
computational prediction of SL pairs [15]. Existing computational methods for SL prediction can be further 
grouped based on their underlying algorithms. Some methods leverage network or graph information; for instance, 
Li et al. proposed a graphical information centrality metric-based approach to identify SL pairs [16]. Kranthi et al. 
used functional networks to predict the SL of coding genes [17]. Another group utilizes matrix decomposition 
techniques; Liany et al. predicted SL interactions by integrating multiple heterogeneous data sources and applying 
matrix decomposition techniques [18]. SL2MF proposed by Liu et al. is based on logistic matrix factorization 
(Logistic MF), which combines protein-protein interaction (PPI) data and gene ontology (GO) for SL prediction [19]. 
More recently, methods incorporating graph neural networks (GNNs) and knowledge graphs (KGs) have emerged. 
KG4SL is a method for SL prediction that incorporates the knowledge graph (KG) into the graph neural network 
(GNN) model [20]. The predictive SL method in GCATSL uses a graph-contextualized attention network [21]. 
KR4SL is an interpretable deep learning model that utilizes knowledge graph reasoning and dynamic programming 
to identify the SL partner genes for primary genes [22]. Zhu et al. proposed a method of factor-aware knowledge 
GNN to predict SL in human cancers [23]. MPASL combines attention mechanisms, multi-view learning, and a 
knowledge graph to predict SL [24]. However, the current identification methods of SL focus on humans, with 
very few applications reported in microorganisms. 

Graph embedding is an effective means to transform the structural information of nodes in a graph into low-
dimensional, dense feature vectors suitable for machine learning models. These vectors are capable of capturing 
nonlinear relationships and higher-order interactions within complex biological systems, thereby enabling the 
identification of previously overlooked synthetic lethal (SL) pairs. Graph embedding mainly includes matrix 
factorization-based, random walk-based, and deep learning-based methods [25]. We have employed random walk-
based methods in our research because they are more computationally efficient than the other two types of 
methods, as they do not require complex matrix operations or a large number of parameter training operations. 
Meanwhile, it is more flexible in capturing diverse features in graph data. The DeepWalk algorithm proposed by 
Perozzi et al. generates a series of wandering paths by randomly walking through neighboring nodes with equal 
probability and then forms a node representation [26]. The biased random walk-based Node2vec algorithm takes 
into account the weight relationship between nodes on this basis [27], which allows for more flexible control of 
the wandering strategy and provides more comprehensive feature information for the node representation. 

Notably, existing graph-based multi-feature fusion methods typically integrate heterogeneous data into a unified 
graph structure, potentially compromising the structural specificity inherent to individual data modalities [28,29]. To 
address this limitation, we implement a modality-specific modeling strategy that constructs distinct graph 
structures for nucleotide sequence information, protein sequence similarity, gene expression profiles, protein-
protein interaction networks, and genetic fitness features, thereby preserving the intrinsic topological 
characteristics of each data type. Regarding feature fusion, conventional deep learning approaches employing 
simple multilayer perceptions (MLPs) may inadvertently propagate raw data noise into subsequent predictions. 
Our proposed framework addresses this challenge through a machine learning-based hierarchical feature 
processing architecture (Figure 1), implementing phased feature selection and optimized fusion to eliminate 
redundant information and significantly enhance predictive performance effectively. 
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Figure 1. An overview of the methods used for SL prediction of E. coli. (a) The aim is to convert the five classes 
of data into a graph form using appropriate methods and obtain a feature representation of each gene based on graph 
embedding. Missing values are imputed using VAE. (b) Positive and negative sample data obtained from two 
experiments are combined and deduplicated. (c) Different types of classifiers are used to compare prediction 
performance. (d) The model is validated using independent sets obtained from the iAF1260 metabolic mode 
(Genome-scale metabolic network model of Escherichia coli). 

2. Materials and Methods 

2.1. Data Collection 

We collected data on SL gene pairs from two studies by Côté et al. and French et al. [30,31]. The two studies 
respectively included 1881 [30] positive samples and 1373 [31] positive samples. Both studies identified SL gene 
pairs by creating double deletion mutants. By merging and deduplicating these two data sets, we obtained 3207 
positive samples and 294,318 negative samples. In preliminary experiments, we observed that the non-augmented 
dataset demonstrated marginally better performance than SMOTE-augmented data, showing slightly lower AUC 
but higher F1 scores. Given the significant difference in the number of positive and negative samples, to achieve 
a relatively balanced sample, we adopted all 3207 positive samples and randomly selected 20,000 pairs from the 
negative samples. Ultimately, we used 3207 positive samples and 20,000 negative samples for our analysis, 
involving a total of 3694 genes. 

2.2. Different Types of Raw Features 

We adopted five types of omics data and utilized them to extract raw features. 

2.2.1. Nucleotide Sequence Composition 

The nucleotide information of the sequence is the basis for determining the function of genes, and the 
nucleotide sequence can reflect the association information between genes [32]. A codon is composed of three 
adjacent bases. According to the position of the bases in the codon, it can be divided into three phases, phase I, II, 
and III. Taking a single nucleotide as an example, each phase of the base has the possibility of A, C, G, and T, 
four types of nucleotides. We aim to extract the frequency of these four types of nucleotide characters at each 
phase, totaling 3 ൈ 4 ൌ 12 variables. The formula is as follows: 

൝
𝑧ଵ ൌ 𝑎ଵ, 𝑧ଶ ൌ 𝑐ଵ, 𝑧ଷ ൌ 𝑔ଵ, 𝑧ସ ൌ 𝑡ଵ
𝑧ହ ൌ 𝑎ଶ, 𝑧଺ ൌ 𝑐ଶ, 𝑧଻ ൌ 𝑔ଶ, 𝑧଼ ൌ 𝑡ଶ
𝑧ଽ ൌ 𝑎ଷ, 𝑧ଵ଴ ൌ 𝑐ଷ, 𝑧 ൌ 𝑔ଷ, 𝑧ଵଶ ൌ 𝑡ଷ

 (1)

where a, c, g, and t denote the frequencies of the four nucleotides and 1, 2, and 3 denote the three phases. 
For single nucleotides, intervals cannot be formed. For dinucleotides and trinucleotides, we introduce the 

nucleotide interval l, which ranges from 0 to 5, and each set of intervals forms a set of data. For dinucleotides, two 
nucleotides can only be divided into a single nucleotide character before and after if an interval is formed between 
them. The interval l ranges from 0 to 5, and the number of variables corresponding to each interval is 3 ൈ 4ଶ, i.e., 
48, and each interval forms a set of independent variables. 
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For trinucleotides, if there are intervals within the nucleotides, according to the arrangement of the sequences, 
they can be divided into two basic patterns: one is the “pre-single nucleotide-post-dinucleotide” pattern, and the 
other is the “pre-dinucleotide-post-single nucleotide” pattern. The number of variables corresponding to interval l 
of 0 is 3 ൈ 4ଷ, i.e., 192 variables, and the number of variables corresponding to each interval is 2 ൈ 3 ൈ 4ଷ, i.e., 
384 variables when the interval l ranges from 1 to 5. A total of 13 sets of variables were formed for our involved 
oligonucleotides: 1 for single nucleotide, 6 for both dinucleotide and trinucleotide. 

2.2.2. Protein Alignment Similarity 

Similarly, protein sequences reflect the functional properties of genes, and the similarity between protein 
sequences can not only reveal the intrinsic linkage of gene functions but also provide clues for understanding 
potential interactions between genes [33]. Sequence alignment of E. coli’s proteome can be used to obtain 
similarity metrics between different genes. E-value measures the statistical significance of the alignment, while 
identity value shows the similarity between sequences. First, build a dedicated protein database for all protein 
sequences of E. coli itself. Then, using these two metrics obtained from the BLAST tool, we can quantify the 
similarities and differences between genes within the genome and thus establish links between gene pairs. 

2.2.3. Gene Expression Level 

The expression data were downloaded and collected from the Gene Expression Omnibus (GEO) database. 
After acquiring the gene expression data for E. coli from the database, the raw count data were normalized using 
the Transcripts Per Million (TPM) method to adjust for differences in sequencing depth and library size. 
Subsequently, a collective aggregation of all samples was conducted, followed by log2 transformation of the 
expression values to stabilize variance. The processed dataset comprises 2889 features and has been uploaded to 
the site (https://github.com/Christal6/ECSL-Predict/ (accessed on 3 March 2025)). 

2.2.4. PPI Interaction Strength 

Protein-protein interactions (PPIs) not only reflect direct associations between proteins but also provide 
important molecular-level information for exploring functional associations between gene pairs and identifying 
SL pairs [34]. The PPI data were downloaded from the STRING database [35]. 

2.2.5. Gene Fitness Value 

The fitness and necessity of a gene are both important indicators to measure the viability of a gene in a 
specific environment. The lower the fitness and essentiality of a gene, the more critical it is to the growth and 
development of an organism, and to a certain extent, it reflects the function of the gene [36]. Genes with lower 
fitness are more likely to form complex interactions with other genes in the genome. Therefore, the fitness of a 
gene can have an impact on the discovery of synthetic lethal pairs. Therefore, we collected experimental data on 
gene fitness and used geptop2 [37], a high-precision tool to predict the necessity of the E. coli genome [38], to 
obtain a set of datasets. 

Among these five types of feature data, the sequence composition and fitness are, for the first time, converted 
into a graph structure and extracted as discriminant features for SL prediction. 

2.3. Converting Raw Features to Graph Structures 

We intend to convert all the relationships between gene pairs of the five types of features into the form of a 
graph, the graph 𝐺 ൌ ሺ𝑉,𝐸ሻ, where V is the set of n genes involved in each graph, E is the set of linked gene pairs, 
and the magnitude of the weight of the edges is the scores between the gene pairs. The forms of the features 
aforementioned, except interaction features and sequence comparison features that are directly represented as gene 
pairs and their scores, are converted for the data as follows: 

2.3.1. Conversion Based on Correlation Coefficients 

The Pearson correlation calculation between gene pairs was performed after the expression data were taken 
as rank values, and finally, the gene pair data with a Pearson correlation coefficient r value greater than 0.7 were 
retained to construct the data [39]. 

Nucleotide sequence features were also calculated based on Pearson correlation for the similarity r value of 
nucleotide frequencies between genes for each of the 13 groups of data, and the top two million gene pair samples 
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with the highest correlation coefficients r were selected for each group by combining the computational volume 
and correlation considerations. 

The formula for calculating the Pearson correlation coefficient r is as follows: 

𝑟 ൌ
∑  ௡
௜ୀଵ ሺ𝑥௜ െ 𝑥̅ሻሺ𝑦௜ െ 𝑦തሻ

ඥ∑  ௡
௜ୀଵ ሺ𝑥௜ െ 𝑥̅ሻଶ ∑  ௡

௜ୀଵ ሺ𝑦௜ െ 𝑦തሻଶ
 (2)

where two of the genes are represented by variables X and Y. The corresponding expression or nucleotide 
frequencies of the genes are: 𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௡ and 𝑦ଵ,𝑦ଶ,⋯ ,𝑦௡. 

2.3.2. K-Nearest Neighbors Graph Construction 

To transform the gene fitness features, we employed the K-nearest neighbor method, commonly used for 
clustering and classification in machine learning, to uncover patterns and structures in the data [40]. We applied 
three gene fitness-related features and calculated the inter-gene distances using two metric measures. For each 
gene, the 𝐾 nearest connections were identified, with the distance magnitude serving as the weight for the gene’s 
connected edges, thereby creating a gene correlation network. 

2.4. Node2vec and Producing Topological Features 

The random walk selects the next node at each node with the same selection probability for each neighboring 
node, while the biased random walk, Node2vec, introduces two hyperparameters, 𝑝 and 𝑞, and takes into account 
the weights of the edges to compute the probability of the node, aiming to find the mapping 𝑓:𝑉 → ℝௗ mapping 
node 𝑣 ∈ 𝑉 to a 𝑑-dimensional vector of real numbers, and the concrete idea of the implementation is illustrated 
in Figure 2. Using Node2vec, we can transform the structural-functional information of a gene in a graph into a 
𝑑-dimensional feature vector representation. Node2vec is a second-order stochastic walk, where the walk of the 
current node is related to the previous node. 

 

Figure 2. The transformation of embedded data types and the schematic diagram of the core idea of a biased random 
walk. Node2Vec serializes the graph structure through biased random walks, then learns the rules of nodes in the 
sequence through the Skip-gram model, uses hierarchical softmax to efficiently optimize model parameters, and finally 
outputs node embedding vectors that retain network structure features. 
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Given a graph 𝐺 ൌ ሺ𝑉,𝐸ሻ, assume that a random walk sequence travels from node u to node v, from node v 
to the next node x via edge ሺ𝑣, 𝑥ሻ, the transfer probability 𝜋௩௫ on edge ሺ𝑣, 𝑥ሻ is: 

𝜋௩௫ ൌ
𝑤௩௫ ⋅ 𝛼௣௤ሺ𝑢, 𝑥ሻ

∑  ௬∈௏ 𝑤௩௬ ⋅ 𝛼௣௤ሺ𝑢,𝑦ሻ
 (3)

where 𝑤௩௫ is the weight on edge ሺ𝑣, 𝑥ሻ and the bias term 𝛼௣௤ is defined as follows: 

𝛼௣௤ሺ𝑢, xሻ ൌ

⎩
⎪
⎨

⎪
⎧

1
𝑝
⋯ if 𝑥 ൌ 𝑢

1⋯ if 𝑥 ് 𝑢 ⋅ andሺ𝑥,𝑢ሻ ∈ 𝐸
1
𝑞
⋯ if 𝑥 ് 𝑢 ⋅ andሺ𝑥,𝑢ሻ ∉ 𝐸

 (4)

where both 𝑝 and 𝑞 are parameters controlling the random walk strategy, 𝑝 is the return parameterand 𝑞 is the 
in-out parameter. 

Each graph produced a certain number of embedding features for each gene (Table 1). For each embedding 
feature, we needed to acquire transformed features for gene pairs according to Equation (5). Finally, gene pairs’ 
features from each data type are input into a classifier. We have five types of raw data and constructed 19 graphs. 
For k-mer, there are 128 × 13 = 1664 features from 13 graphs that are input to the first classifier of machine 
learning, and so on. 

Table 1. The number of features for each of the five categories. 

Categories Number 
k-mer 128 × 13 × 2 a,b 
blast 96 × 2 × 2 

express 192 × 1 × 2 
ppi 192 × 1 × 2 

fitness 128 × 2 × 2 
a There are 13 graphs corresponding to different pairs of k and l values; It is similar to the other data types. b For each graph 
embedding feature of single genes, each gene pair has two feature values transformed according to Equation (5); It is the same 
as the other data types. 

For SL pairs and negative samples, the feature vectors of the two genes are involved. Assume that the 
embedding dimension for genes extracted from a graph is d. For gene n and gene m, assume that the feature vector 
of gene a is 𝐴 ൌ ሺ𝑎ଵ,𝑎ଶ, . . . ,𝑎ௗሻ, the eigenvector of gene b is 𝐵 ൌ ሺ𝑏ଵ,𝑏ଶ, . . . , 𝑏ௗሻ, the encoding gene pair is 
characterized as follows. 

ቆ
𝐴 ൅ 𝐵

2
,𝑎𝑏𝑠ሺ𝐴 െ 𝐵ሻቇ ൌ ൤൬

𝑎ଵ ൅ 𝑏ଵ
2

൰ , … , ൬
𝑎ௗ ൅ 𝑏ௗ

2
൰ , |𝑎ଵ െ 𝑏ଵ|, … , |𝑎ௗ െ 𝑏ௗ|൨ (5)

To construct each classifier, we should combine all the transformed features (each graph corresponds to d × 
2 dimensions) from all the graphs of one data type as the input. For example, there are 128 × 2 × 13 = 3328 input 
vectors for the classifier of k-mer. 

2.5. Data Imputation 

For imputation of missing values, common imputation methods include simple imputation methods (such as 
mean imputation and median imputation), interpolation imputation methods (such as linear interpolation, spline 
interpolation), and fitting imputation methods [41,42], while VAE imputation has achieved remarkable results in 
the imputation of DNA methylation missing data and genomic data, etc. [43]. Moreover, compared to the former, 
VAE can learn the underlying distribution of the data and keep the features as consistent and reasonable as possible 
globally after filling. Therefore, we choose VAE as the filling method for this study. The principle of VAE involves 
probabilistic modeling and variational inference [44]. 

Assuming we have input data 𝑥, the VAE aims to learn the latent representation of the data 𝑧. The encoder will 
define a normal distribution of the latent variable 𝑧 based on the mean 𝜇 and standard deviation 𝜎 of the input 𝑥, 
𝑧 ∼ 𝑁ሺ𝜇,𝜎ଶሻ. The decoder then maps 𝑧 from the distribution sampling back to the reconstructed input 𝑥ො. 

The goal of VAE is to maximize a lower bound on the log-likelihood of the data, called the Evidence Lower 
Bound (ELBO): 
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ℒሺ𝜃,𝜙, 𝑥ሻ ൌ 𝔼௤ഝሺ𝑧|𝑥ሻሾlog 𝑝ఏሺ𝑥|𝑧ሻሿ െ 𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ|ห𝑝ሺ𝑧ሻ൯ (6)

where 𝜃 is a parameter of the decoder and 𝜙 is a parameter of the encoder. Log𝑝ఏሺ𝑥|𝑧ሻ is the probability of 
generating the data 𝑥 under the latent variable 𝑧. 𝐷௄௅ሺ𝑞థሺ𝑧|𝑥ሻ||𝑝ሺ𝑧ሻሻ is the KL scatter between the encoder-
defined distribution 𝑞థሺ𝑧|𝑥ሻ and the prior distribution 𝑝ሺ𝑧ሻ. 

2.6. Evaluation Metrics 

To evaluate the predictive performance, we used evaluation metrics, including Precision, Sensitivity (Recall), 
F1-score, the area under a Receiver Operating Characteristic (ROC) curve (AUC), and the area under the precision-
recall curve (AUPR). These metrics were defined as follows: 

Precision ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 (7)

Sensitivity ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (8)

𝐹1 െ 𝑠𝑐𝑜𝑟𝑒 ൌ
2 ∗ precision ∗ sensitivity

precision ൅ sensitivity
 (9)

where TP denotes the number of correctly predicted positive samples; TN denotes the number of correctly 
predicted negative samples; FN denotes the number of incorrectly predicted positive samples; and FP denotes the 
number of incorrectly predicted negative samples. (ROC) curves were obtained by plotting the True Positive Rate 
(TPR) and False Positive Rate (FPR) at different threshold settings. 

3. Results 

3.1. Feature Engineering by Graph Embedding of Five Types of Raw Omics Data 

We extracted five types of raw data: nucleotide sequence information, protein sequence similarity, gene 
expression profiles, protein-protein interaction networks, and genetic fitness. Then we transformed them into 19 
graphs, respectively. Subsequently, Node2vec was applied to each graph to generate low-dimensional embeddings 
for gene representations. The embedding dimension d will significantly influence the performance of the 
classifying model [25]. For the selection of embedding dimension d when transforming feature vectors using 
Node2vec, the AUC scores for the embedding dimension d ranging from 64 to 224 for features performed from 
expression, interactions, and sequence comparison are shown in Figure 3a. With the increase of dimension d, the 
AUC score increases significantly at first and then improves slowly. Therefore, we finally adopted the 192 graph 
embedding features for the omics data of expression level, protein-protein interaction, and 96 for blast alignment. 
Due to the large amount of data in sequence composition, and considering computational limitations, we set the 
embedding dimension d of the walk features derived from nucleotide frequency to 128, based on trials with the 
initial three features. The specific number of features used by each category is shown in Table 1. 

For the feature extraction part of sequence nucleotide frequency, we take the number of bases k composed of 
oligonucleotides from 1 to 3 and the interval l between nucleotides from 0 to 5. For each k and l, we got the 
oligonucleotide frequencies and transformed them into one graph based on the correlations of composition 
frequencies of gene pairs. Combining the graph embedding features of each parameter pair in turn, the change of 
the AUC scores for the same dataset during the training stage is shown in Figure 3b. As can be seen from the 
Figure, the prediction results of the fusion of the 13 network features are optimal when k is 3, l is 5, and the AUC 
reaches 0.925, which reflects most of the information contained in the sequence. Therefore, for the feature 
extraction of the nucleotide frequency of the sequence, we finally chose to take the k maximum value of 3, and l 
maximum value of 5 for combining sequence network features. 

With the fitness features, we employed two ways of measuring distance, Euclidean distance and cosine 
similarity, to construct the graph, respectively, which comprehensively consider the similarity between different 
aspects of the data, and improve the accuracy and robustness of the K nearest neighbor graph. At the same time, 
for the selection of the number of neighbors n in K nearest neighbors, the range of 35~100 with an interval of 5 
was tried, and different values of n were used to compose the map, and then Node2vec was applied to get the 
embedding vectors of the genes. The AUC change curve of the five-fold cross-validation is shown in Figure 3c. It 
can be seen that the AUC scores of cosine similarity and Euclidean distance measures are the highest when n-
values are 80 and 95, respectively. Then the results decrease with the increase of the n-value, which may be due 



Xu et al.   eMicrobe 2026, 2(1), 6  

https://doi.org/10.53941/emicrobe.2026.100006  8 of 14  

to the graph structure better capturing the distribution information of the data at these two n-values. Furthermore, 
we also trained models using graph embedding features combined with different values of n, and the AUC score 
trend for each combination of 1, 3, 4, 5, and 10 n-values with the two distance measures is shown in Figure 3d and 
Table S1. It can be observed that the best AUC (0.927) results are obtained when combining only one n-value, 
which may be attributed to the reduced noise and interference, or the diminished influence of important features 
after merging network features corresponding to different n-values. 

 

Figure 3. The selection of some parameters. (a) The influence curve of the embedding dimension d on the model 
performance. (b) The influence curve of the number of nucleotides k and interval l in the nucleotide sequence on 
the model. (c) The influence of the number of neighbors n of the fitness feature. (d) The influence of the number 
of groups of fitness composition, combined with different numbers of neighbors n, on the model. 

After extracting gene feature vectors for each data category, we noted that the number of genes included in 
each category was relatively limited compared to the total number of positive and negative samples. For different 
feature types, we separately trained Support Vector Machine (SVM) classifiers using available positive and 
negative samples with data through five-fold cross-validation. The resultant classification performance metrics are 
presented in Table 2. As can be seen, all types of embedding features illustrate similarly good prediction performance. 

Table 2. Comparison of results before and after imputing missing values. 

 Categories AUC AUPR Precision Sensitivity F1 

Before 
Imputation 

k-mer 0.9252 ± 0.0092 0.7882 ± 0.0169 0.8261 ± 0.0099 0.6049 ± 0.022 0.6982 ± 0.0135 
blast 0.8883 ± 0.0080 0.7220 ± 0.0116 0.8519 ± 0.0142 0.4779 ± 0.0085 0.6122 ± 0.0061 

express 0.8840 ± 0.0152 0.7069 ± 0.0230 0.8499 ± 0.0126 0.4524 ± 0.0161 0.5903 ± 0.0115 
ppi 0.8653 ± 0.0079 0.6564 ± 0.0180 0.7987 ± 0.0326 0.3919 ± 0.0301 0.5254 ± 0.0315 

fitness a − − − − − 

After 
Imputation 

k-mer 0.9252 ± 0.0067 0.7896 ± 0.0104 0.8300 ± 0.0152 0.8300 ± 0.0152 0.7021 ± 0.0106 
blast 0.8848 ± 0.0090 0.7207 ± 0.0121 0.8517 ± 0.0103 0.4874 ± 0.0236 0.6197 ± 0.0201 

express 0.8847 ± 0.0034 0.7076 ± 0.0111 0.8407 ± 0.0144 0.4590 ± 0.0218 0.5934 ± 0.0157 
ppi 0.8629 ± 0.0087 0.6657 ± 0.0205 0.8333 ± 0.0199 0.4047 ± 0.0225 0.5445 ± 0.0215 

fitness 0.9272 ± 0.0026 0.7566 ± 0.0077 0.7972 ± 0.0126 0.5778 ± 0.0093 0.6699 ± 0.0066 
a For fitness, we did not perform the imputation because this feature is complete for all samples. 
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3.2. Compare the Results Before and After Feature Data Imputation 

By utilizing VAE to impute missing values for the four types of features, with the exception of fitness, which 
had no missing data, and the original feature vectors were complete. This is depicted in Figure 4a, which presents 
the number of samples utilized for training the genes of the SL pairs before and after the completion of missing 
values. With five categories of re-representing features (Table 2), a SVM model could be trained and tested. Before 
and after imputing the missing values, the AUC scores of the SVM were assessed through a five-fold cross-
validation process. The findings demonstrate that the AUC scores of each category of feature remain nearly 
unchanged post-imputation, indicating the efficacy of this imputation method: through the imputation, more 
samples could be utilized, and the result would be more robust. Among them, sequence composition has the highest 
AUC, around 0.9252, whereas PPI’s AUC is the lowest (around 0.864). After the imputation, the training and test 
sets contained more samples, making the gene pair set complete. This enhanced the robustness of the model by 
reducing the bias introduced by missing data. 

 
Figure 4. Performance of data imputation and model classification. (a) Schematic representation of AUC score 
changes and sample size changes before and after VAE imputation. (b) ROC curves comparing ensemble classifier 
scores and direct feature fusion, and ROC curves adopting different classifiers when ensemble scores are used. (c) 
Schematic representation of sample scores from five classifiers. 

3.3. Performance Evaluation of the Fused Models 

After obtaining the complete features of the five categories, all methods (both different feature categories and 
classifiers) were evaluated using thorough randomized five-fold cross-validation to accurately partition the data 
into training and testing sets. For each method, the same training sets and test sets are involved. 

3.3.1. Comparing the Results of Different Classifiers and Methods 

Next, we implemented a feature fusion to establish the final prediction model. We tried the method of 
classifier score union, which integrates the predicted scores of the classifier output to form a new feature 
representation. To identify the optimal modeling strategy, we systematically compared different classification 
algorithms, including Logistic Regression, Gaussian Naive Bayes, Multilayer Perceptron, XGboost, 
RandomForest, and SVM under consistent experimental conditions. After rigorous five-fold cross-validation with 
parameter tuning, the SVM classifier demonstrated superior performance with an AUC of 0.9485, establishing 
itself as the most effective algorithm for processing these fused score features (Table 3). This outcome suggests 
that SVM better captures the intrinsic relationships within the combined classifier scores than the other methods. 
In addition, to visualize the performance of these classifiers, Figure 4b provides an intuitive view of the comparison 
of ROC curves. The results of visualizing the principal features formed by five fused scores for positive and 
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negative samples, as exemplified by the first division of the five-fold cross-validation with yellow representing 
positive samples and purple denoting negative samples, show a clear separation of two different categories, with 
visualization performed using both PCA and t-SNE methods (Figure 4c). 

Subsequently, we conducted a controlled comparison with the traditional feature fusion method that directly 
concatenates features from different sources. To ensure methodological fairness, this baseline approach was 
evaluated using the same optimized SVM model identified in the previous stage. After comparative analysis, as 
shown in Figure 4b and Table 3, the method of classifier score union has about 1% improvement (0.9395 to 0.9485) 
in AUC metrics compared to the traditional feature fusion method under the optimal parameters, which means that 
the method of classifier score union captures the intrinsic connection between data features more effectively. 

Under the benchmark of the complete model’s AUC being 0.949, the results of the ablation experiment show 
that the AUC of the model is maintained between 0.936 and 0.946 (data not shown) after removing any one of the 
five types of features alone. This result suggests that there may be feature redundancy among the five classes, 
resulting in insignificant differences in the importance of each feature when removed separately. 

Table 3. Evaluation of classifier performance: integrated classifier scores and direct feature fusion results. 

Method Categories AUC AUPR Precision Sensitivity F1 

Score unions 

LogisticRegression 0.9341 ± 0.0054 0.8199 ± 0.0103 0.9263 ± 0.0155 0.5111 ± 0.0223 0.6584 ± 0.0183 
GaussianNB 0.9413 ± 0.0046 0.8289 ± 0.0070 0.8930 ± 0.0213 0.5850 ± 0.0207 0.7066 ± 0.0146 

MLPClassifier 0.9413 ± 0.0050 0.8294 ± 0.0067 0.9489 ± 0.0242 0.4303 ± 0.0765 0.5878 ± 0.0732 
XGBoost 0.8912 ± 0.0170 0.7706 ± 0.0178 0.9491 ± 0.0122 0.4191 ± 0.0239 0.5811 ± 0.0237 

RandomForest 0.8858 ± 0.0066 0.7866 ± 0.0114 0.9690 ± 0.0137 0.5438 ± 0.0224 0.5438 ± 0.0224 
SVM 0.9485 ± 0.0037 0.8425 ± 0.0068 0.8036 ± 0.0299 0.7371 ± 0.0223 0.7683 ± 0.0096 

Direct feature fusion SVM 0.9395 ± 0.0057 0.8189 ± 0.0065 0.8255 ± 0.0145 0.6473 ± 0.0197 0.7254 ± 0.0115 

3.3.2. Baseline Comparison in E. coli 

After obtaining the source code of these models, we trained them using our positive and negative sample sets. 
All models adopted the identical data partitioning as our proposed method. For fair comparison, we re-collected all 
required inputs (including GO terms and other features) strictly following each baseline model’s original requirements. 

We compared our proposed method with the following methods: 
 GRSMF leverages graph-regularized self-representative matrix factorization to reconstruct the SL interaction 

graph, incorporating GO-based functional similarities to enhance the learning process [23]. 
 SL2MF employs logistic matrix factorization to learn gene latent representations from observed SL data, 

incorporating gene similarities based on GO annotations and PPI networks to predict SL pairs [19]. 
 DDGCN introduces a dual-dropout mechanism in a graph convolutional network (GCN) to address 

overfitting on sparse SL graphs [45]. 
 SLMGAE utilizes a multi-view graph autoencoder (GAE) to integrate the known SL graph, GO annotations, 

and PPI data, reconstructing the SL interaction graph for improved prediction accuracy [46]. 
Our method performs the best among all compared models, as shown in Table 4. With an AUC of 0.9485 

and an AUPR of 0.8425, our approach outperforms the second-best model. While our F1 score is slightly lower 
than SLMGAE, it still surpasses other baselines, including GRSMF, SL2MF, and DDGCN. Our method 
outperforms existing approaches by leveraging a unique framework that integrates five diverse feature categories 
transformed into gene-gene graph structures. Unlike matrix factorization-based methods (GRSMF, SL2MF), which 
rely on gene similarity, or GNN-based models (DDGCN, SLMGAE), which focus on SL graphs and multi-view 
learning, our approach uses Node2Vec for graph embedding to capture complex gene interactions and a VAE to 
handle missing data, significantly enhancing robustness. 

Table 4. Performance comparison of our method with baselines in AUC, AUPR, and F1 score. 

Method AUC AUPR Precision Sensitivity F1 
GRSMF 0.8622 ± 0.0159 0.7065 ± 0.0222 0.7050 ± 0.0201 0.6583 ± 0.0385 0.6804 ± 0.0195 
SL2MF 0.8852 ± 0.0143 0.7215 ± 0.0158 0.7152 ± 0.0215 0.7247 ± 0.0189 0.7197 ± 0.0180 

DDGCN 0.8996 ± 0.01090 0.7119 ± 0.0270 0.6712 ± 0.0236 0.7758 ± 0.0326 0.7288 ± 0.0171 
SLMGAE 0.9244 ± 0.0084 0.8328 ± 0.0113 0.7541 ± 0.0351 0.7830 ± 0.0377 0.7968 ± 0.0150 

Our methods 0.9485 ± 0.0037 0.8425 ± 0.0068 0.8036 ± 0.0299 0.7371 ± 0.0223 0.7683 ± 0.0096 
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4. Independent Testing 

To fully evaluate the performance of our trained SVM model, we employed an independent testing approach. 
The positive samples were derived from SL pairs predicted based on the iAF1260 metabolic model of E. coli [47], 
while the negative samples were derived from the data obtained in the experiment not used in the training [30,31]. 
From the 69 metabolic model-predicted positives, we removed pairs overlapping with our training set, obtaining 
44 positives. These were combined with 274,318 negatives (remaining after removing 20,000 training negatives), 
forming a final independent test set of 274,362 samples. Subsequently, we applied the complete-samples (3207 
positive samples and 20,000 negative samples) model built using the joint classifier scores to this independent test 
set and performed predictive analysis. Consequently, in the independent test, the model achieved an AUC of 0.821. 
The results show that the model shows good generalization ability on the independent data sets, and also reflects 
the efficient ability of the model to distinguish SL pairs. The lower AUC than the five-fold cross-validation may 
be partly caused by the fact that the metabolic model generated an independent set that probably has false 
predictions, and the independent test would be considered as a rough reference. 

5. Discussions 

In this work, we proposed a framework to predict synthetic lethal genes in E. coli. Previously, many models 
were developed for human SLs [19–21]. However, there are scarce reports on microbes. Here, we investigated this 
issue for the bacterium E. coli. Our study adopted five omics datasets and transformed them into a total of 19 
graphs. Using the graph embedding method, we extracted 2496 features. Among them, we devised a novel graph 
construction procedure for the sequence data. For each type of embedded features, we constructed one SVM 
classifier and combined the outputs of the five classifiers into a final SVM prediction model. This final model 
could get an AUC of 0.949 in five-fold cross-validation. Our work differs from usual GNN-based studies in that 
they transformed all graphs into a primary uniform graph. This graph fusion method would compromise the 
structural specificity inherent to individual data modalities. Compared with these baseline methods [19,23,45,46], 
our modality-specific modeling strategy illustrated better performance. However, the preliminary preparation work 
of feature extraction takes a long time and is difficult to popularize. It is difficult to verify our prediction results 
with experiments. This is also where we need to focus on improvement in the future. 

When constructing association networks for different types of features, we face the challenge of data 
integrity. Due to inconsistencies in the number of genes across different feature types during network construction, 
some gene information is missing in embedding feature integration. To solve this problem, we adopted VAE to 
fill in the missing values, a practical model that learns the underlying data distribution to generate and fill in 
missing points [48]. In our study, the AUC remained relatively stable after VAE imputation compared to the pre-
imputation values, indicating that the VAE effectively filled the data gap without compromising data integrity or 
model discriminative power. 

During our research, we raised concerns about the accuracy of the experimental samples. Hence, we utilized 
the ensemble classifier to predict the positive samples from the two wet experiments and calculated the recall rate, 
respectively [30,31]. The specific scores are detailed in Figure 3a, and this result may indicate that the second SL 
experiment, which was performed later, is more reliable than the first. We note that the two experiments are from 
the same group. One research investigated the synthetic lethal genes coupling with 82 nutrient stress genes [30], 
while the other concentrated on SLs associated with 111 cell-shape perturbing genes [31]. We think the authors 
should improve the precision of their experimental screening and produce more reliable results. Initially, we had 
used the raw expression features to predict the positive samples with the leave-one-out method and found that the 
higher frequency of positive samples from the second SL group (the remaining positive samples were from the 
first SL group) performed better on the test set (Figure 5b). These findings suggest that the positive samples from 
Experiment 1 would not be as accurate as those from Experiment 2. In fact, most wet experiments could not 
produce 100% accurate sample values [49]. However, computational biologists must use them as a gold standard 
because wet experiments will provide more confident validation than cross-validation based on different 
computational predictions [50,51]. 
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Figure 5. Results of sample accuracy experiments. (a) Comparison of recall results from two wet experiments. (b) 
Schematic representation of the performance of the leave-one-out experiment using the original expression data 
with various positive sample frequencies from Experiment 2. The horizontal axis represents the proportion of genes 
in the positive samples chosen from Experiment 2. With the change of the proportion, the total number of positive 
samples remains unchanged. The “1:1” and “1:10” denote the ratio of positive and negative sample sizes. 
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