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Rapid advancements in wastewater treatment technologies are essential for achieving sus-
tainability goals related to circular water use, carbon neutrality, and resource efficiency. This
review provides an integrative assessment of key advanced treatment systems including
membrane filtration, advanced oxidation processes, and anaerobic digestion by examining
their environmental performance, geochemical implications, and techno-economic feasi-
bility. Findings from life cycle assessment (LCA), carbon footprint evaluations, and cost—
benefit analyses identify technologies with high eco-efficiency and reduced greenhouse
gas emissions, particularly those enabling energy recovery and enhanced water reuse. The
synthesis demonstrates that combining environmental indicators with geochemical insights
supports the development of sustainable treatment pathways. Overall, the review highlights
the need for integrated evaluation frameworks that link technological function with environ-
mental and economic outcomes, guiding future wastewater treatment under circularity and
climate-resilient frameworks.
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» Provides an integrated sustainability assessment of advanced wastewater treatment technologies using life
cycle, geochemical, and techno-economic perspectives.

+ Identifies energy-recovery and water-reuse-oriented systems as the most eco-efficient options with reduced

greenhouse gas emissions.

+ Emphasizes the need for quantitative, circular-economy-based evaluation frameworks to guide climate-

resilient wastewater management strategies.

Rapid urbanization, industrial expansion, and popula-
tion growth in the 21st century have placed unprecedented
pressure on global freshwater resources, with water de-
mand projected to increase by 20-30% by 2050, intensi-
fying challenges related to pollutant loading, groundwater
depletion, and the energy—water nexus [1, 2]. As a result,
the treatment of wastewater has transitioned from being a
sanitation-focused necessity to a core aspect of environ-
mental management, and it plays an important role in the
attainment of the United Nations Sustainable Development
Goals (SDGs), particularly those pertaining to clean water
(SDG 6), sustainable settlements (SDG 11) and climate
action (SDG 13) [3-5]. Conventional wastewater treatment
methods, though capable of effective removal of contam-
inants, have received increased scrutiny related to sus-
tainability. Conventional treatment methods have relatively
high energy demands, produce high volumes of sludge,
have high chemical requirements, and are contributors to
greenhouse gas emissions [6—8]. Additionally, many tra-
ditional treatment systems were not designed for energy
efficiency, carbon neutrality, or to comply with contempo-
rary environmental standards focused on resource recov-
ery and circularity.

As a result of these challenges, the use of new
technologies and methods for wastewater treatment has
gained momentum, especially regarding sustainability and
the circular economy. Some of these new technologies in-
clude advanced oxidation processes (AOPs), membrane
filtration systems, electrochemical treatment technologies,
anaerobic digestion, and hybrid systems. These technolo-
gies represent a growing area of innovation with favourable
prospects regarding energy efficiency, environmental im-
pacts, and the likelihood of recovering valuable resources
from wastewater (water, nutrients, biogas) [9—11]. How-
ever, assessing the sustainability of these ‘green’ tech-
nologies requires far more than evaluating contaminant
removal alone. A comprehensive framework incorporat-
ing environmental and economic indicators such as Life
Cycle Assessment (LCA), carbon footprint analysis, and
techno-economic evaluation is needed to determine their
long-term sustainability and environmental compatibility
[12, 13]. LCA is particularly important as it captures the
cradle-to-grave impacts of treatment systems, including re-

source use, emissions, sludge management, and end-of-
life processes.

This article critically reviews the assessment of es-
tablished and emergent technologies for treating wastew-
ater in terms of sustainability. To articulate performance,
viability and global sustainability targets, it draws on life
cycle-based frameworks that quantify resource use and
emissions over treatment regimes, carbon footprint as-
sessments that address trade-offs for climate risk, and
techno-economic evaluations detailing economic viability
and sustainability over time. This review synthesizes mul-
tiple dimensions in order to propose a systematic frame-
work that facilitates evidence-based decision-making in
the implementation of clean, efficient and environmentally
sound wastewater treatment systems for a circular- and
sustainable-water future.

Although numerous studies have investigated indi-
vidual wastewater treatment technologies, there is a de-
ficiency of comprehensive evaluations that concurrently
consider their environmental efficacy, geochemical con-
sequences, and techno-economic feasibility. Most cur-
rent reviews concentrate on discrete technological efficien-
cies or contaminant removal metrics, failing to connect
these results to more comprehensive sustainability indica-
tors, including carbon neutrality, energy recovery poten-
tial, and circular resource flows. This review addresses
this deficiency by offering a thorough, interdisciplinary as-
sessment of advanced wastewater treatment technologies
through integrated methodologies including life cycle as-
sessment (LCA), carbon footprint analysis, and techno-
economic evaluation. The originality of this study resides in
the integration of these three dimensions to discern gen-
uinely sustainable treatment pathways and to suggest a
comprehensive framework that facilitates evidence-based
decision-making for circular and climate-resilient water
management.

A key novel contribution of this review is the inte-
gration of geochemical analysis into sustainability assess-
ment of wastewater treatment technologies. Unlike con-
ventional reviews that emphasize treatment efficiency or
economic performance in isolation, the geochemical per-
spective enables evaluation of contaminant speciation,
transformation pathways, by-product formation, and the
long-term environmental behavior of effluents and residu-
als. By linking geochemical processes with life cycle as-
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sessment and techno-economic evaluation, this review
provides a more comprehensive framework for assessing
environmental compatibility and circularity in wastewater
treatment systems.

2. Review of Current Technologies to Treat Wastewater

Contemporary wastewater treatment has shifted be-
yond conventional pollutant removal toward integrated sys-
tems that balance treatment efficiency with energy de-
mand, environmental impact, and resource recovery po-
tential. Rather than evaluating technologies in isolation,
recent research emphasizes comparative performance
across multiple sustainability indicators, including contam-
inant removal efficiency, energy intensity, greenhouse gas
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emissions, and by-product management [14, 15]. Within
this context, five treatment technologies have emerged
as particularly significant due to their widespread global
implementation, technological maturity, and demonstrated
capacity to support circular water management. These
technologies advanced oxidation processes, membrane
filtration systems, electrochemical treatments, anaerobic
digestion, and hybrid configurations exhibit distinct ad-
vantages and limitations that must be critically assessed
based on site-specific conditions, regulatory requirements,
and long-term sustainability objectives. This section syn-
thesizes current evidence to compare these technologies,
highlighting trade-offs, operational challenges, and oppor-
tunities for optimization rather than presenting a purely de-
scriptive overview (Figure 1).

P | D

Electrochemical Treatment Methods

Anaerobic Digestion and Biogas

Figure 1. Modern wastewater treatment technologies.
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2.1. Advanced Oxidation Process (AOP)

Advanced oxidation processes (AOPs) are chemical
treatment technologies designed to remove organic and
inorganic contaminants through the in situ generation of
highly reactive hydroxyl radicals (OH) [16]. These radi-
cals possess a high oxidation potential and react non-
selectively with a wide range of pollutants via hydrogen
abstraction, electron transfer, and radical addition mech-
anisms. Through these reactions, complex and persistent
contaminants are transformed into simpler intermediates
and, in favourable conditions, mineralized into harmless
end products such as carbon dioxide (CO.) and water
(H20).

Hydroxyl radicals in AOPs are generated through
various chemical, photochemical, and catalytic pathways.
Commonly applied AOPs include ozonation, Fenton and
Photo-Fenton reactions, UV/H,O, systems, and TiO.-
based heterogeneous photocatalysis [17]. The efficiency
of radical generation and subsequent contaminant degra-
dation is strongly influenced by operational parameters
such as oxidant dosage, pH, irradiation intensity, catalyst
availability, and the presence of radical scavengers in the
wastewater matrix.

From a performance perspective, AOPs demonstrate
high treatment efficiency, with reported removal rates of
emerging contaminants frequently exceeding 90% [18].
These processes are particularly effective for degrading
pharmaceuticals, endocrine-disrupting compounds, and
per- and polyfluoroalkyl substances (PFAS), which are of-
ten resistant to conventional biological treatment meth-
ods [19]. However, this high treatment performance is
accompanied by notable energy demands, especially
in UV-based AOP systems, where energy consumption
can exceed 1 kWh m~3 of treated wastewater. More-
over, under non-optimal operating conditions, incomplete
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oxidation may result in the formation of toxic transforma-
tion by-products, underscoring the need for careful system
design, monitoring, and process optimization to ensure en-
vironmental safety and sustainability [20].

In practical applications, AOPs have been success-
fully implemented for the treatment of hospital and phar-
maceutical wastewater, achieving effective removal of
compounds such as diclofenac and carbamazepine. They
are also widely applied in potable water reuse schemes,
notably in tertiary treatment systems such as the UV/H.O.
process employed by the Orange County Water District
in California. Additionally, AOPs are increasingly used for
industrial wastewaters characterized by high loads of re-
calcitrant organic contaminants, where conventional treat-
ment approaches are insufficient (Figure 2).

2.2. Membrane Filtration Systems

In membrane technologies a semi-permeable bar-
rier is used to separate contaminants based on size and
charge. Microfiltration (MF), ultrafiltration (UF), nanofiltra-
tion (NF), and reverse osmosis (RO) are some types of
membrane technologies. Membrane bioreactor (MBR) is a
combined system that combines biological treatment and
membrane filtration to improve the quality of effluents [21].

2.2.1. Performance Indicators

» High separation efficiency (RO removes >95% of
dissolved solids),

* MBRs remove >99% of suspended solids and BOD,
« Energy use of MBRs is typically 0.8—1.5 kWh/m3,

* Membrane fouling is a significant operational diffi-
culty that requires periodic cleaning and replace-
ments.

Overview of Modern Wastewater

Treatment Technologies

Microfiltration,
Ultrafiltration,
Nanofltration
Reverse osmosis,
Membrane bioreactor

Ozonation, Fenton,
UV/H202, Photocatalysis

T T T T

Electroccagulation,
Electrooxidation,
Electrodialysis

Anaerobic Digestion
and Biogas Recovery

AOP-biological treatment,
Combined processes

Figure 2. Overview of modern wastewater treatment technologies.
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» Municipal wastewater recycling and industrial efflu-
ent polishing,

» Water reuse for arid climates (e.g. NEWater program
in Singapore),

» Food and beverage industries, pharmaceuticals, tex-
tiles.

Electrochemical technologies can be characterized as
technologies that oxidize contaminants directly or indirectly
through the application of an electric current. These tech-
nologies include electrocoagulation (EC), electrooxidation
(EO), and electrodialysis. They are becoming more popu-
lar for their capacity for modularization and the absence of
chemicals [22].

 Effective for removal
pathogens, and dyes.

of COD, heavy metals,

« EC alone can remove COD by 80-95%, depending
on the electrode material.

» Energy consumption is reported to be in the range of
0.5-2.0 kWh/m3,

« Efficiency is dependent on pH, conductivity, and
electrode design.

» Treatment of textile dye wastewater (e.g., industrial
areas in India and Bangladesh).

» Small-scale decentralized systems in rural or peri-
urban communities.

» Pre-treatment of landfill leachate and brine from in-
dustrial processes.

Anaerobic digestion (AD) is a process in which mi-
croorganisms decompose organic material in the absence
of oxygen producing biogas (methane and CO,) and di-
gestate [23]. This technology is especially effective for
treatment of high-strength organic wastewater and sewage
sludge.

+ COD removal efficiency: 70-90%

+ Methane production: ~0.25-0.35 m® CHy4/kg of COD
removed

« Energy neutral or positive when biogas is collected
and used

* His process is very sensitive to temperature changes
and shock loading.

Earth Systems, Resources, and Sustainability, 2026, 1(2), 114—128

Hybrid systems consist of two or more treatment pro-
cesses, utilized to use the synergistic effects and avoid
the limitations of one technology on its own [24, 25]. Inte-
grated/hybrid systems would include biological/AOP treat-
ments, MBR/RO trains, constructed wetlands with electro-
chemical cells, or photocatalytic membranes, etc. Metrics
for performance include:

» High removal rates of conventional pollutants and
emerging pollutants

» Advantageous for system resilience and flexibility in
processes

» Degree of energy and cost savings will be variable to
system configuration

» Advanced control will also be challenged with the ad-
ditional complexity of integration.

+ Industrial parks and eco-industrial zones that are us-
ing zero-liquid-discharge (ZLD) models

» Water reuse systems, decentralized and urban

* Hybrid constructed wetlands with solar-powered
electrochemical oxidation in rural Asia and Africa.

A robust sustainability assessment of wastewater
treatment technologies must consider energy consump-
tion, economic feasibility, and environmental footprint. En-
ergy demand is often the main limiting factor, making it es-
sential to evaluate specific energy use and opportunities
for optimization or energy recovery [26]. Economic feasi-
bility should account for both CAPEX and OPEX, includ-
ing costs related to chemicals, maintenance, sludge han-
dling, and potential savings from resource recovery. The
environmental footprint must be quantified through life cy-
cle indicators such as greenhouse gas emissions, sludge
generation, and secondary pollution risks [27]. Incorporat-
ing these parameters within a circular economy framework
provides a more realistic basis for sustainability claims and
supports evidence-based technology selection.

Evaluation of the environmental sustainability of
wastewater treatment technologies must be done through
a comprehensive approach that is not limited to treatment
efficacy [28, 29]. It requires the quantification of important
indicators such as resource use, emissions, and global en-
vironmental burdens across the full life cycle of the sys-
tem. Life Cycle Assessment (LCA) offers a methodologi-
cally standardized scientific basis for evaluating these as-
sessments, and it is progressively being used as a study
tool for the evaluation of both contemporary and emerging
wastewater treatment technologies [30].
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Life Cycle Assessment (LCA) is a standardized,
cradle-to-grave analytical framework used to quantify the
environmental impacts of products and processes across
their entire lifecycle, encompassing raw material extrac-
tion, construction, operation, maintenance, and end-of-life
management. When applied to wastewater treatment sys-
tems, LCA provides a comprehensive evaluation of how
different technologies influence key sustainability indica-
tors, including energy consumption, greenhouse gas emis-
sions, eutrophication potential, acidification, and resource
depletion [31, 32].

Importantly, LCA outcomes extend beyond environ-
mental accounting and play a critical role in guiding
technology design and optimization. By identifying envi-
ronmental “hotspots” within treatment systems such as
energy-intensive units, chemical consumption, or sludge
handling stages LCA supports informed design decisions,
including process selection, operational optimization, and
integration of renewable energy or resource recovery com-
ponents. Comparative LCA further enables evaluation of
alternative treatment configurations and emerging tech-
nologies against conventional systems, allowing stake-
holders to balance environmental performance with oper-
ational and economic considerations. Consequently, LCA
serves as a decision-support tool that strengthens the de-
velopment and implementation of sustainable and circular
wastewater treatment technologies.

+ Cradle-to-Grave: Comprises all life cycle stages-from
raw material extraction through operational life and
final disposal.

+ Cradle-to-Gate: Includes the system stages from raw
material procurement through to when the treated ef-
fluent passes out of the facility and excludes down-
stream impacts, such as reuse or distribution.

Life Cycle Assessment is carried out following 1ISO
14040 and ISO 14044 protocols, and generally consists
of (i) Goal and scope definition, where system boundaries,
functional units (for example, per m® of treated wastew-
ater), and environmental impact categories, are defined,
(i) Life Cycle Inventory (LCI), where data on energy and
material inputs and emissions are collected for each stage
within the treatment system (iii) Life Cycle Impact Assess-
ment (LCIA), where the LCI data are converted into poten-
tial environmental impacts using characterization models,
and finally, (iv) Interpretation, where results are evaluated
to identify hotspots, trade-offs, and strategies for improve-
ment. There are several available commercial and open-
source software platforms that can be used for LCA mod-
elling, with life cycle inventory (LCI) databases:

— SimaPro (PRé Sustainability), which is one of
the most commonly used LCA platforms in both
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academia and industry and provides access to
databases such as Ecoinvent and ILCD

— GaBi (Sphera), which maintains process modelling
on water, energy, and emissions from wastewater
systems, with strong industrial applications

— OpenLCA, which is free and an open-source soft-
ware that is being increasingly used in academic re-
search

— Umberto NXT LCA, which combines process flow di-
agrams of wastewater treatment systems and mate-
rial flow analysis for complex models of wastewater
treatment processes.

LCA has compared various technologies:

* MBRs vs. CAS (Conventional Activated Sludge):
MBRs may consume more energy compared to CAS
but produce higher quality effluent and less sludge
[33].

» AOPs: seem to have a greater overall environmental
impact due to electricity use when not powered by
renewables [34].

» Anaerobic Digestion: Supports favourable LCA find-
ings if the energy from the biogas generated can
offset energy, labor, and feedstock drawn from habi-
tated operational inputs [35].

+ Data quality and insulation representativeness (site-
specific vs average datasets)

» System boundary definitions and functional unit

* Allocation of the environmental burden in multi-
output systems (biogas + treated effluent).

Carbon footprint, which is part of a life cycle as-
sessment (LCA), focuses on quantifying greenhouse gas
(GHG) emissions, typically in terms of COs-equivalent
(CO2-eq), and occurs across the life cycle of wastewater
treatment technologies [36, 37]. Sources of CO.-eq emis-
sions can be both direct (e.g., biological processes releas-
ing CH4 and N»O) and indirect (e.g., caused by the use of
electricity for aeration or membranes).

Research has shown that conventional activated
sludge (CAS) treatment systems are responsible for
carbon footprints from 0.3 to 0.7 kg CO,-eq m? of treated
wastewater, primarily due to the dependence on energy-
intensive aeration along with nitrous oxide emissions dur-
ing nitrogen removal processes [38]. Membrane biore-
actors (MBRs) also produce high-quality effluent, but
generally consume considerably more energy and have
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carbon footprints greater than approximately 0.8 kg CO.-
eq m? [39].

In favourable circumstances, systems based on
anaerobic digestion (AD) can result in less GHG emis-
sions, especially when sufficiently capturing methane gas
for use in generating electricity or heat, offsetting an exter-
nal energy footprint. However, depending on the efficiency
of the process and the boundaries set, some AD systems
will be close to net-zero or negative footprints [40]. Ad-
vanced oxidation processes (AOPs) and electrochemical
systems also produce higher carbon footprints as a result
of electricity use, but more sustainable or lower energy use
can help benefit the carbon footprints for infrastructures
utilizing them [41].

The integration of renewable energy technologies
such as solar PV, biogas produced from AD or wind tur-
bines into wastewater treatment facilities could greatly re-
duce their carbon footprint. For example, modular solar-
assisted electrochemical systems and electromagnetic UV
reactors powered by PV for AOPs have been shown to
achieve CO, emissions as much as 70% lower than grid
connection for conventionally operated systems [42, 43].
Energy neutral or positive operations capable of heat and
power generation have also been shown to work at full-
scale WWTPs employing anaerobic sludge digestion with
CHP units. Furthermore, hybrid systems that apply local
renewable energy are increasingly being investigated, not
only to mitigate climate change but also to reduce costs
under time-of-use pricing and trading schemes [44—46].

While the removal of nitrogen and phosphorus is a
critical action to prevent eutrophication of receiving wa-
ter bodies, the energy and chemical inputs necessary
to achieve nutrient removal (alum, ferric salts) results in
significant environmental impact burdens. While biologi-
cal nutrient removal processes work, they may also be a
source of nitrous oxide emissions, a GHG that is nearly
300 times as potent as CO, [47].

AOPs and coagulation processes generally require
considerable amounts of reagents, including H>.O, ozone,
and ferric chloride. If these materials of concern are not
dosed or managed efficiently, toxic residue could occur in
treated residuals, along with toxic by-products (e.g., bro-
mate from ozonation, or chlorinated organics from electro-
chemical processes) [48, 49].

The generation and disposal of sludge is a significant
environmental hotspot. Conventional systems will produce
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a lot of secondary sludge that will need to be dewa-
tered, stabilized, and land-applied or incinerated, each of
which carries a carbon and/or pollution burden. Anaero-
bic digestion reduces sludge volume and energy recovery,
while membrane systems typically produce less volume of
sludge, but it is more concentrated, which makes it harder
to manage overall [50].

LCA-based hotspot identification can show the stages
that have the highest environment burdens on the treat-
ment train. For example, as demonstrated in literature, a
substantial proportion of the total energy use and emis-
sions (over 60%) is contributed by aeration and membrane
cleaning in MBR systems, and the generation of oxidants
and UV lamps in AOP systems are also hotspots [51]. A
treatment train must find balance between the efficiency
of treatment and environmental impacts (e.g. centralized
versus decentralized or reuse) [52].

The applicability of large-scale wastewater treatment
technologies is strongly influenced by their economic vi-
ability and long-term sustainability. While environmental
performance is essential, treatment systems must also
be economically feasible over their entire lifecycle, includ-
ing capital investment, operational and maintenance costs,
and end-of-life management [53]. Techno-economic analy-
sis (TEA) therefore plays a central role in sustainability as-
sessment by evaluating cost-performance trade-offs, en-
ergy expenditures, and potential revenue streams from re-
source recovery, such as energy generation, nutrient re-
covery, and water reuse. In this section, modern wastewa-
ter treatment technologies are assessed using TEA to de-
termine their financial feasibility, scalability, and capacity to
deliver environmental benefits in a manner that supports
sustainable implementation across diverse economic and
regional contexts (Figure 3).

Capital expenditure (CapEx) covers expenditures re-
lated to infrastructure development, reactor and site-
specific equipment, whereas operational expenditure
(OpEx) covers expenditures on energy, labor, routine
maintenance, chemicals and disposal of sludge.

Membrane bioreactors (MBRs) and advanced oxida-
tion processes (AOPs) are associated with higher capital
expenditure (CapEx) and operational expenditure (OpEXx)
due to the use of specialized components such as mem-
branes, UV lamps, and ozonators. In many cases, the
CapEx of these systems can be 20-50% higher than
that of conventional wastewater treatment technologies
[54].
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Capital and Operational Costs
Infrastructure
Equipment
Maintenance

.
Cost-Benefit Analysis

of Resource Recovery
Water reuse
Energy

Techno-Economic
Evaluation of
Wastewater Treatment
Technologies

~ Scalability and Afforddbily
~ inDeveloping Regions
- Decentralized systems

: Cost-effectiveness

Energy Demand and Efficiency
Energy consumption
Energy recovery

Figure 3. Techno-economic evaluation of

In comparison to conventional systems, the OpEx of
membrane systems is greater because it is not only be-
cause of fouling and regular cleaning, but also because of
the energy used to aerate the tanks, and the expensive re-
placement of the fouled membranes. Actually, OpEx might
constitute up to 60 per cent of the lifecycle expenses.

The other one, namely, anaerobic digestion (AD) has
relatively moderate CapEx and, possibly, lower OpEx be-
cause of its energy-independent nature and lower volume
of sludge, however, some complexity is introduced with
process controls and gas management.

The local labor, the material availability and the treat-
ment volume have a very potent impact on cost variability.
Thus, it is necessary to conduct economic analysis of the
site.

4.2. Energy Demand and Efficiency

One of the leading operational costs drivers and envi-
ronmental burden in the systems of the wastewater treat-
ment is energy consumption.

modern wastewater treatment technologies.

Conventional activated sludge (CAS) systems usually
require between 0.3 and 0.6 kWh/m®, which is predomi-
nantly used as aeration.

» MBRs use a higher amount of energy, typically 0.8—
1.5 kWh/m® according to membrane design and in-
fluent strength [55].

« Electrochemical systems and AOPs often require
>2.0 kWh m~3, leading to high operating costs un-
less offset by low-cost renewable energy or incen-
tives.

» Anaerobic systems can be energy-neutral or net-
positive when biogas is efficiently recovered and
used in combined heat and power (CHP) units [56].

Recovery of energy (through AD or heat exchangers)
and gains to energy efficiency (e.g. low-energy blowers,
state-of-the-art process controls) are becoming more im-
portant to minimize OpEx and carbon footprint.
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Resource recovery has been added as a co-benefit in
many of the new treatment systems, to convert waste to
useful products, i.e.:

+ Biogas produced from anaerobic digestion can pro-
vide electricity or heat and has significant energy
value

» Nutrient recovery e.g. struvite precipitation of nitro-
gen and phosphorus,

» Treated water re-used for irrigation, industry, or
potable water supply.

Even though resource recovery may lead to higher up-front
capital costs, it can alleviate operational costs and provide
revenue generation opportunities after some time. For ex-
ample:

» Research by Lessmann et al. [57] found that nutri-
ent recovery decreased the demand for fertilizers by
20%, resulting in cost savings for agro-industrial sys-
tems.

* In Singapore’s NEWater system, the revenue from
water reuse paid for 25-30% of the operational cost
of using industrial-grade reclaimed water.

Cost-benefit analyses must assess the need for capital
investment in relationship to market dynamics, purity of
products generated, and incentives regulations provide in
assisting with integration into a circular economy.

Scalability and affordability are necessary for broader
uptake, especially in low- and middle-income countries
(LMICs), as stakeholders navigate budget concerns or in-
frastructure deficit issues.

» Decentralized treatment units, to include modular
MBRs and constructed wetlands with low-energy
AOPs, are being packaged in urban and peri-urban
areas in a variety of configurations.

 Electrochemical systems and solar-assisted ad-
vanced oxidation processes may provide options for
off-grid treatment needs, but many of these cases
require technological support and/or durable mainte-
nance capabilities.

» Many capital-light anaerobic baffled reactors (ABRs)
or Upflow Anaerobic Sludge Blanket (UASB) sys-
tems are adopted for use in domestic and institu-
tional wastewater in South Asia; here the costs are
minimal for energy input, maintenance, and opera-
tional training needs.

Cost models for affordability should include lifecycle cost
per m? treated, burden of maintenance, and the local ca-
pacity to implement and own technology.

Earth Systems, Resources, and Sustainability, 2026, 1(2), 114—128

The process for advancing to sustainable wastewa-
ter treatment is increasingly necessitated by the circu-
lar economy (CE) and global environmental policy. Mod-
ern wastewater treatment technologies are evaluated not
solely on contaminant removal efficiency, but also on their
capacity for resource recovery, waste reduction, and com-
pliance with social and environmental sustainability goals
(Figure 4) [58, 59].

Wastewater treatment systems contribute directly to
multiple United Nations Sustainable Development Goals
(SDGs) by improving water quality, enhancing resource
efficiency, and reducing environmental impacts. SDG 6
(Clean Water and Sanitation) is supported through ad-
vanced treatment technologies such as membrane filtra-
tion and advanced oxidation processes (AOPs), which
enable high-quality effluent suitable for reuse and effec-
tive removal of emerging contaminants using efficient and
cost-effective approaches [60].

SDG 12 (Responsible Consumption and Production)
is addressed through technologies that promote circular
resource use, including anaerobic digestion and nutrient
recovery systems that reduce waste generation while en-
abling the recovery of water, energy, and nutrients within
wastewater treatment processes [61]. SDG 13 (Climate
Action) is advanced by low-carbon treatment configura-
tions, energy-efficient systems, and the integration of re-
newable energy sources, which collectively contribute to
reducing greenhouse gas emissions and improving the
climate resilience of wastewater infrastructure [62]. The
successful implementation of these technologies requires
not only technical innovation but also supportive policy
frameworks and strong community buy-in to ensure long-
term operational success and alignment with sustainability
objectives.

Regulatory structures are influential in determining
how wastewater innovations will develop. In many industri-
alized countries, discharge limits on nutrients and microp-
ollutants, has primarily stimulated uptake of advanced ox-
idation technologies (AOPs) and membrane-based tech-
nologies [63]. However, developing economies are in-
creasingly beginning to use policy instruments i.e. pollu-
tion taxes, effluent trading, and/or green procurement pro-
grams [64].

In addition to regulatory frameworks, regional poli-
cies that fall under regional water management schemes
for example, EU Water Framework Directive, U.S. Clean
Water Act, and India’s National Mission for Clean Ganga
(NMCG), have identified water reuse, energy neutrality,
and nutrient recovery, as policy goals. Effective implemen-
tation of these policies will require aligning financial incen-
tives with environmental outcomes and enforcing assess-
ments of sustainability based on lifecycle analysis [65].
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Figure 4. Integration of modern wastewater treatment technologies with circular economy and environmental policy
frameworks.
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5.3. Barriers to Adoption and Scaling of Sustainable Technolo-
gies

Despite their potential, the broad-scale implementa-
tion of environmentally sustainable wastewater technolo-
gies faces a number of obstacles:

Upfront capital costs: Several technologies-including
membrane bioreactors or electrochemical systems—
require high amounts of supervision, leaving regions with
fewer material resources unable to implement sustainable
technologies [66].

Operational complexity and maintenance: Many ad-
vanced systems necessitate skilled operators, and a high
frequency of maintenance which may not be available in
rural or peri-urban contexts [67].

Regulatory fragmentation, including variations or out-
dated regulations across regions, can hinder adoption and
limit incentives for implementing circular practices [68].
Addressing these barriers will take a multi-faceted ap-
proach. This requires institutional capacity building, in-
centivizing decentralized treatment contract models, facil-
itating public-private partnerships and adopting a circular
economy lens to wastewater governance.

6. Case Studies and Comparative Analysis

An expanding body of real-world case studies demon-
strates the technical feasibility and sustainability perfor-
mance of advanced wastewater treatment technologies
across diverse geographic and socio-economic settings.

Earth Systems, Resources, and Sustainability, 2026, 1(2), 114—128

These applications enable comparative evaluation using
standardized sustainability indicators, including life cycle
environmental impacts, greenhouse gas (GHG) emissions,
energy-use efficiency, land-use requirements, capital and
operational costs, and resource recovery potential (Fig-
ure 5).

At the municipal scale, a membrane bioreactor (MBR)
system implemented in Sweden was evaluated using
Life Cycle Assessment (LCA), revealing improved effluent
quality and reduced land-use requirements compared with
conventional activated sludge systems. While the MBR
configuration achieved lower GHG emissions due to higher
treatment efficiency and compact design, it also exhibited
increased energy consumption, highlighting a key trade-off
between environmental performance indicators [69]. This
case illustrates how LCA outcomes can inform technology
selection by balancing effluent quality, spatial constraints,
and energy demand.

In Singapore, the NEWater initiative represents a
large-scale application of advanced oxidation and mem-
brane filtration technologies to achieve high levels of
potable water reuse. From a sustainability perspective, the
system performs strongly against indicators related to wa-
ter recovery efficiency, public health protection, and long-
term water security. Although energy-intensive, its integra-
tion within a supportive policy framework and strong pub-
lic acceptance demonstrates how governance and social
indicators are critical alongside technical performance in
enabling circular water infrastructure [70].

Singapore
NFWater,
Advanced Oxidation

Decentralised Treatment
System Windhock

Austria
Anarobic Digestion
Strass WWTP

South Korea
Constructed Wetland
India ‘N Suwon City
Membrane

Bioreactor

Figure 5. Global distribution of case studies and comparative sustainability assessments in wastewater treatment.
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Decentralized treatment systems show distinct sus-
tainability advantages in rural and peri-urban contexts,
particularly in developing regions. A comparative study in
India evaluated decentralized anaerobic baffled reactors
against centralized activated sludge plants and found that
decentralized systems exhibited lower GHG emissions, re-
duced capital costs, and improved overall sustainability
when energy recovery and local water reuse were included
within the system boundaries [71]. These findings empha-
size the importance of defining appropriate LCA and TEA
boundaries when assessing sustainability outcomes.

Comparative LCA studies further reinforce the role
of resource recovery in improving environmental perfor-
mance. Corominas et al. [72] assessed multiple wastewa-
ter treatment configurations and reported that systems in-
corporating energy recovery such as anaerobic digestion
and microbial fuel cells performed better across several
impact categories, including global warming potential, eu-
trophication, and human toxicity. However, these benefits
were shown to be highly context-dependent, influenced by
influent characteristics, electricity grid mix, and regulatory
discharge standards.

Socio-economic and institutional factors also strongly
influence sustainability outcomes. Case studies from sub-
Saharan Africa and Latin America highlight the effec-
tiveness of nature-based solutions, such as constructed
wetlands, in contexts where low maintenance require-
ments, cost efficiency, and co-benefits (e.g., biodiversity
enhancement and landscape aesthetics) are prioritized.
In Kenya, such systems demonstrated favourable perfor-
mance across economic and environmental indicators,
whereas centralized mechanical systems often struggled
due to limitations in funding, technical capacity, and main-
tenance infrastructure [73].

Overall, these case studies underscore the necessity
of a systems-based approach to wastewater treatment se-
lection. Sustainability performance cannot be generalized
across technologies without considering local environmen-
tal targets, economic constraints, governance structures,
and social acceptance. Consequently, aligning technol-
ogy choice with context-specific sustainability indicators
remains essential for achieving resilient and long-term
wastewater management solutions.

Future wastewater treatment research must move to-
ward quantifying sustainability indicators rather than re-
lying solely on qualitative assessments. Emerging tech-
nologies should be evaluated using measurable metrics
such as energy consumption, sludge generation rates,
operational costs, greenhouse gas emissions, and re-
source recovery efficiency. Comparisons with conventional
treatment systems are essential to demonstrate tangi-
ble improvements in environmental and economic perfor-
mance.

Advancing Life Cycle Assessment (LCA) methodolo-
gies will be critical to capturing the full environmental
footprint of treatment technologies, including upstream
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material use, operational emissions, and end-of-life im-
pacts. Future LCAs should also integrate cost analysis
and sludge management considerations to provide a more
holistic evaluation of sustainability outcomes.

In resource-limited regions, research should prioritize
decentralized, low-cost, and low-sludge technologies that
maintain treatment efficiency while reducing environmen-
tal burden. Nature-based solutions and modular systems
offer promising pathways for achieving lower sludge pro-
duction and reduced operational complexity. Further, im-
proved monitoring, data integration, and system modelling
will enable quantitative assessment of sustainability ben-
efits, supporting evidence-based decision-making. Inter-
disciplinary collaboration among engineers, environmental
scientists, economists, and policy-makers will be essen-
tial for developing wastewater treatment solutions that are
environmentally sound, economically feasible, and socially
equitable.

This review underscores the growing importance of
sustainable and advanced wastewater treatment technolo-
gies in addressing global freshwater scarcity and climate-
related water challenges. While advanced systems such
as AOPs, membrane processes, electrochemical treat-
ments, anaerobic digestion, and hybrid configurations
demonstrate strong contaminant removal and resource re-
covery potential, their practical application requires careful
consideration of site-specific conditions, energy use, oper-
ational demands, and overall sustainability.

From a practical management perspective, techno-
economic evaluations indicate that long-term sustainabil-
ity improves significantly when treatment systems incor-
porate resource recovery pathways, including nutrient cap-
ture, energy generation, and water reuse. Embedding cir-
cular economy principles into regulatory and operational
frameworks will be essential for enabling cost-effective and
environmentally responsible treatment strategies aligned
with global sustainability goals, particularly SDGs 6, 12,
and 13.

Insights from global case studies highlight that both
centralized and decentralized treatment models can be vi-
able when supported by strong governance, stakeholder
participation, and adaptive management. The increasing
adoption of loT-based monitoring and low-carbon tech-
nologies offers practical opportunities to enhance opera-
tional efficiency, improve system reliability, and expand ac-
cess to sustainable treatment solutions in resource-limited
settings.

Looking ahead, sustainable wastewater management
will depend on interdisciplinary collaboration to ensure
that technological innovation is matched with socioeco-
nomic feasibility and policy alignment. Advancing Life Cy-
cle Assessment (LCA) to incorporate regional, social,
and economic dimensions will strengthen its role in guid-
ing evidence-based decision-making. Ultimately, future
wastewater systems must prioritize resilience, circularity,
and equitable access, enabling communities to transition
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toward more sustainable and climate-adaptive water man-
agement practices.
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