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Abstract: Network Intrusion Detection Systems (NIDS) play a crucial role in safe-
guarding computer networks against increasingly sophisticated cyber threats. However,
the performance of machine learning–based NIDS is often constrained by severe class
imbalance, in which benign traffic dominates and rare attack types are underrepre-
sented, resulting in biased learning and reduced detection of minority classes that
are critical to identify. This study presents a comprehensive comparative analysis of
traditional and deep learning–based oversampling methods to mitigate class imbalance
and enhance classification performance in NIDS. The evaluation is conducted on the
UNSW-NB15 and TON IoT benchmark datasets using a range of machine learning
and deep learning classifiers, with performance assessed using metrics suitable for
imbalanced data. Results show that traditional and hybrid oversampling methods
provide stable and interpretable improvements, whereas deep generative approaches
exhibit strong potential but greater variability across classifiers. In the UNSW-NB15
dataset, severe class imbalance and class overlap limit performance gains from resam-
pling, while in the TON IoT dataset, classifiers achieve strong baselines even without
oversampling. XGBoost consistently demonstrates robust and reliable performance
across datasets. Overall, KMeans-SMOTE, SMOTE-NC, and CVAE emerge as the
most effective oversampling techniques under varying conditions. This study highlights
the trade-offs between interpretability, stability, and detection performance, offering
practical guidance for selecting oversampling strategies to improve rare attack detection
in practical cybersecurity applications.
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1. Introduction

In this day and age, where every device is connected to the network, the security of computer networks is
of paramount importance. Network Intrusion Detection Systems (NIDS) are critical security mechanisms that
monitor network traffic to detect potential intrusions or anomalous activities indicative of security breaches in
networks, computer systems, and Internet of Things (IoT) devices. According to Garcı́a-Teodoro et al. [1], anomaly
detection techniques can be classified into three main categories: statistical-based, knowledge-based, and machine
learning–based, depending on the approach used to model normal and abnormal behavior.

Signature-based intrusion detection, also referred to as knowledge-based intrusion detection, identifies known
attacks by by matching network activity against predefined patterns, or signatures. While this approach is highly
effective at identifying previously known threats with a low false positive rate, it has notable limitations in detecting
sophisticated and novel cyberattacks [2]. The fundamental weakness of this approach lies in its reactive nature, as it
requires prior knowledge of attack patterns to create effective detection rules, rendering it ineffective against previ-
ously unseen or evolving attack variants until corresponding signatures are developed [3]. Moreover, the proliferation
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of attack variants and the emergence of zero-day threats have made the maintenance of signature repositories both
computationally expensive and time-consuming [4,5].

Anomaly-based NIDS, also referred to as statistical-based NIDS, creates a baseline of normal network activity,
flagging any deviations from this baseline as potential anomalies or abnormal behaviour [6]. These systems
continuously monitor and analyze network traffic, including metrics such as traffic volume, IP addresses, and service
ports, to construct a statistical model representing normal or legitimate behaviour [7]. While capable of detecting
novel attacks, anomaly-based approaches often produce high false positive rates, as unfamiliar yet benign traffic in
dynamic network environments can be misclassified as malicious [7,8].

To mitigate these issues, researchers have explored the integration of machine learning (ML) and deep
learning (DL) techniques. Notably, DL-based NIDSs have garnered significant attention due to their capability
to automatically learn intricate patterns from raw network traffic without relying on feature engineering [9]. The
adoption of artificial intelligence (AI) into intrusion detection has enhanced automated monitoring capabilities and
improved detection performance.

Despite significant progress in applying AI to network intrusion detection, a key challenge persists: severe
class imbalance between normal and malicious network traffic, where the volume of normal traffic significantly
exceeds that of attack traffic [10]. In real-world environments, malicious activities typically represent only a small
fraction of total traffic, with legitimate behavior often exceeding 90%. This imbalance is not merely a technical
artifact but an intrinsic characteristic of operational network environments that intrusion detection systems must
effectively address. Similarly, benchmark network security datasets exhibit this imbalance, where normal traffic
vastly outnumbers attack traffic and certain attack types appear extremely infrequently. As a result, models trained
on such data tend to become biased toward the majority (benign) class, leading to poor detection of rare yet critical
attack instances that pose substantial security threats [11,12].

The class imbalance problem can be addressed through three primary approaches, which Al-Qarni and Al-
Asmari categorize as data-level, algorithm-level, and hybrid techniques [13]. Among these, data-level methods
such as oversampling have been widely adopted to balance class distributions by generating additional samples
for minority classes. Traditional techniques, including Synthetic Minority Oversampling Technique (SMOTE) and
its variants, create synthetic examples through interpolation, while more recent deep generative models such as
Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN) enable the generation of more realistic
and diverse synthetic data. Although extensive research has been conducted on evaluating resampling methods
to address class imbalance in NIDS [14–17], most studies have primarily focused on traditional oversampling
techniques such as SMOTE, Adaptive Synthetic Sampling (ADASYN), and Random Oversampling (ROS). The
potential of deep learning–based approaches derived from VAE and GAN architectures, however, has not been
thoroughly explored. These advanced methods can generate more complex and realistic synthetic samples, yet their
comparative effectiveness and suitability in the NIDS domain remain largely underexamined.

Another important limitation in prior studies relates to the selection and evaluation of classifiers. Many
investigations of oversampling methods consider only a single classifier, either a traditional machine learning
model or a deep learning model [16–18]. Some studies focus exclusively on a limited subset of well-performing
machine learning algorithms [14,19], leaving out potentially powerful deep learning approaches. Consequently,
there is a notable gap in comparative research that systematically examines the performance differences between
machine learning and deep learning classifiers under conditions of class imbalance. Given the demonstrated
representational capacity of deep learning models, addressing this gap presents a valuable opportunity to improve
detection performance in network intrusion detection systems.

In this paper, we investigate the impact of various oversampling methods on machine learning– and deep
learning–based NIDSs. The study evaluates how different oversampling techniques affect overall classification
performance for both minority and majority classes and identifies which combinations of oversampling approaches
and classifiers achieve the most reliable and balanced detection.

Our main contributions are summarized as follows:

• We analyze and compare multiple oversampling techniques applied to network intrusion detection datasets
and evaluate their impact on both minority and majority class detection, using appropriate metrics for overall
classification performance.

• We determine the optimal oversampling ratio that enhances minority class detection while minimizing noise
and overfitting.

• We evaluate and compare the performance of machine learning-based and deep learning-based classifiers
trained on oversampled network intrusion detection datasets using suitable metrics for imbalanced data.
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2. Related Work

Oversampling has emerged as a widely adopted strategy for addressing the challenges of imbalanced datasets,
particularly in classification tasks where minority classes are underrepresented. This section offers an overview
of the main categories of oversampling strategies, highlighting their underlying principles and reviewing selected
studies that examine these techniques. Broadly, these techniques can be divided into three groups: traditional
oversampling methods, hybrid approaches that integrate oversampling with other techniques, and more recent deep
learning-based oversampling strategies.

2.1. Traditional Methods

2.1.1. Synthetic Minority Oversampling Technique for Nominal and Continuous (SMOTE-NC)

SMOTE-NC is a variant of SMOTE designed to handle datasets containing a mix of nominal (categorical) and
continuous (numerical) features. For numerical features, SMOTE-NC operates on the same principle as the original
SMOTE: it generates synthetic samples by interpolating between an instance of the underrepresented class and one
of its k-nearest neighbors (KNN). For categorical features, where interpolation is not feasible, SMOTE-NC assigns
the most frequent value (mode) among the k-nearest neighbors to the generated sample [20]. Except for SMOTE-NC,
most oversampling methods do not natively support categorical features and therefore require these features to be
encoded into a numerical format prior to application. Derhab et al. [21] developed a temporal convolutional neural
network (TCNN) for IoT-based intrusion detection, achieving up to 99% multiclass classification accuracy through
the application of SMOTE-NC to balance the Bot-IoT dataset. In the study by Bulavas et al. [22] on multiclass
classification using highly imbalanced network intrusion datasets, SMOTE-NC was combined with fixed random
undersampling to mitigate class imbalance in the LITNET-2020 dataset, enabling more reliable detection of rare
malicious classes. Although not directly related to NIDS, a study on phishing website detection compared three
resampling methods using the Extreme Gradient Boosting (XGBoost) classifier, with SMOTE-NC proving most
effective in enhancing detection performance and efficiency [23].

2.1.2. Adaptive Synthetic Sampling (ADASYN)

ADASYN builds on SMOTE’s core idea of generating synthetic minority class samples through interpolation
but introduces an adaptive mechanism to focus on regions where the minority class is underrepresented or difficult
to classify. Using a KNN approach, it estimates the density of minority samples and computes a density ratio based
on the proportion of majority class neighbors for each minority sample. Low-density (hard) regions are assigned
higher weights, generating more synthetic samples, while high-density (easy) regions produce fewer. Synthetic
samples are created by interpolating between a minority sample and its neighbors, effectively rebalancing the
dataset [24]. Liu et al. [25] leveraged the computational efficiency and high accuracy of Light Gradient Boosting
Machine (LightGBM) in combination with ADASYN to address class imbalance in the NSL-KDD, UNSW-NB15,
and CIC-IDS2017 datasets, resulting in improved overall accuracy across all three test sets. In [26], ADASYN was
employed to address the class imbalance problem, enhancing the feature extraction capability of a sparse autoencoder
and the classification and detection performance of a Random Forest (RF), resulting in superior outcomes compared
to other approaches in the study. Pan and Xie [27] aimed to reduce the false positive rate (FPR) caused by class
imbalance and feature redundancy in the KDD-Cup’99 dataset by applying principal component analysis (PCA)
for dimensionality reduction and ADASYN for oversampling, achieving significantly lower FPR and improved
F1-scores.

2.2. Hybrid Approaches

2.2.1. K-Means Synthetic Minority Over-Sampling Technique (KMeans-SMOTE)

KMeans-SMOTE enhances traditional SMOTE by integrating k-means clustering to mitigate issues with
class overlap. The feature space is first partitioned into k clusters, highlighting regions where the minority class is
most concentrated. Clusters with a high proportion of minority samples are selected for oversampling, while those
dominated by the majority class or containing significant overlap are avoided. Within the selected clusters, SMOTE
is applied to generate synthetic minority samples through interpolation between existing minority samples and their
nearest neighbors. This strategy minimizes the creation of synthetic samples in noisy or overlapping areas, resulting
in more effective and reliable oversampling [28]. Wu et al. [29] proposed a network intrusion detection algorithm
combining an enhanced Random Forest with KMeans-SMOTE to address class imbalance in the NSL-KDD dataset,
achieving improvements over related works despite not being fully optimized. A recent study proposes a hybrid
machine learning model that combines KMeans-SMOTE for data balancing with PCA for dimensionality reduction
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in wireless sensor network intrusion detection, achieving outstanding classification performance while reducing
training and prediction times for real-time applicability [30]. In another approach to the KDD-Cup’99 dataset,
Priyadarsini et al. [31] proposed an ensemble classification model that combines ordered weighted averaging (OWA)
for feature selection with KMeans-SMOTE to address class imbalance, achieving superior performance over other
oversampling-classifier combinations.

2.2.2. Borderline-SMOTE (B-SMOTE)

Borderline-SMOTE is an enhanced SMOTE variant that targets minority class samples near the decision
boundary, where they are most likely to be misclassified. Using a KNN approach, minority samples are categorized
as “safe” (mostly minority neighbors), “danger” (mixed minority and majority neighbors), or “noise” (mostly
majority neighbors). Only “danger” samples in borderline regions are oversampled by interpolating between them
and their nearest neighbors. There are two variants: Borderline1-SMOTE generates synthetic samples only from
minority neighbors to keep them within minority-dominated regions, while Borderline2-SMOTE incorporates
majority neighbors, placing samples closer to the decision boundary but increasing the risk of noise [32]. In
the study by Zhang et al. [33], the ReliefF algorithm and B-SMOTE were employed for feature selection and
oversampling, respectively, on the NSL-KDD dataset. Tested across three base classifiers, the approach significantly
improved the detection accuracy of minority class samples. Similarly, Sun et al. [34] evaluated different feature
subsets based on information gain rate, using B-SMOTE for data balancing, across three basic machine learning
algorithms to determine the optimal feature selection strategy for the CIC-IDS2017 dataset.

2.3. Deep Learning-Based Techniques

2.3.1. Conditional Variational Autoencoder (CVAE)

An autoencoder (AE) is a neural network designed to learn efficient representations of input data by compress-
ing it into a lower-dimensional latent space and subsequently reconstructing the data to approximate the original
input as closely as possible [35]. An AE consists of two components: an encoder and a decoder. The encoder
transforms the input data into a compact latent representation by progressively reducing its dimensionality, thereby
capturing the most important features of the input. The decoder then takes this latent representation and attempts to
reconstruct the original data, minimizing the reconstruction error between the input and the output. Autoencoders
have diverse applications, including data denoising, data generation, dimensionality reduction, and feature learning.

The VAE [36,37] is a probabilistic generative framework that extends the standard autoencoder for tasks such as
synthetic data generation. Like an AE, the VAE consists of an encoder and a decoder; however, the encoder outputs
the parameters of a probability distribution, typically fully-factorized Gaussian, including the mean and standard
deviation. A latent vector is then sampled from this distribution using the reparameterization trick, which ensures
differentiability during training. This latent vector is fed into the decoder to reconstruct the original input. The VAE
is trained to minimize both the reconstruction loss, which measures the similarity between the input and output, and
the Kullback–Leibler (KL) divergence, which encourages the learned latent distribution to remain close to a prior
(usually a standard normal distribution). By optimizing these objectives, the VAE learns a structured and continuous
latent space suitable for generative tasks. The CVAE [38] is a variant of the VAE that incorporates auxiliary
information, enabling the generation of data conditioned on specific attributes or categories. Xu et al. [39] proposed
a novel loss function based on the log hyperbolic cosine (log-cosh) to better capture the discrete characteristics of
intrusion data in a CVAE, naming the resulting model the Log-Cosh Conditional Variational Autoencoder (LCVAE).
The LCVAE was employed to generate diverse synthetic samples for underrepresented classes in the NSL-KDD
dataset, while a convolutional neural network (CNN) served as the classifier. Their experiments demonstrated that
this approach not only outperformed other methods cited in their study but also exhibited remarkable computational
efficiency. Yang et al. [40] leveraged the CVAE to assign weights to the hidden layers of a deep neural network
(DNN) classifier via the encoder, achieved by embedding intrusion labels exclusively in the decoder, and termed
this model the Improved Conditional Variational Autoencoder (ICVAE). Compared with well-known and state-
of-the-art classifiers, ICVAE achieved superior performance, demonstrating higher accuracy and detection rates
for minority and unknown attacks, along with a lower false positive rate. Another study proposed the Conditional
Variational Laplace Autoencoder (CVLAE), an extension of the Variational Laplace Autoencoder (VLAE) that
conditions on class labels [41]. CVLAE employs a full-covariance Gaussian as the posterior distribution, enhancing
posterior expressiveness and reducing the difference between the true and learned approximate posterior through
Laplace approximation. Although its classification performance on minority classes was less competitive compared
to other methods, the approach demonstrated promising potential for further improvements through refinement
and optimization.
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2.3.2. Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP)

GANs are among the most widely used deep generative models, with applications spanning text, image, and
video generation, style transfer, and data synthesis. First introduced by Goodfellow et al. [42], GANs are capable of
learning the underlying distribution of training data to address the generative modeling problem. The architecture is
composed of two neural networks, a generator and a discriminator, which are trained to compete in an adversarial
manner. The generator learns to capture the latent distribution of real samples and produces realistic synthetic
data, while the discriminator attempts to distinguish between real and generated samples. This interaction forms
a zero-sum game, where the discriminator seeks to maximize its ability to differentiate real from fake, and the
generator simultaneously strives to minimize this objective by producing increasingly convincing synthetic data. The
vanilla GAN uses Jensen–Shannon (JS) divergence as the minimization objective, aiming to reduce the divergence
between the real data distribution and the generator’s distribution during training.

Arjovsky et al. [43] proposed the Wasserstein GAN (WGAN) to address key issues present in the original
GAN, including convergence instability, mode collapse, and vanishing gradients. Unlike vanilla GANs, which
rely on the JS divergence to measure the difference between real and generated distributions, WGAN employs the
Wasserstein distance. When the real and generated distributions have little or no overlap, the JS divergence provides
limited information, whereas the Wasserstein distance can still accurately quantify the discrepancy between the
two distributions. WGAN replaces the discriminator with a critic, which does not perform binary classification
of real versus fake samples but instead assigns a score reflecting how “real” a sample is. The critic is trained to
satisfy the 1-Lipschitz constraint, initially enforced through weight clipping. However, weight clipping can cause
slow convergence and vanishing gradients; to address this, Gulrajani et al. [44] replaced it with a gradient penalty
(WGAN-GP), which enforces the 1-Lipschitz constraint by penalizing the norm of the critic’s gradient with respect
to its input. Similar to CVAE, the addition of “conditional” denotes the inclusion of conditioning data, enabling the
generation of samples based on specific attributes or categories. Mu et al. [45] proposed the use of WGAN-GP
in the intrusion detection domain to enhance the detection of zero-day attacks on the NSL-KDD dataset. Both
the original and generated samples were evaluated across multiple classifiers, with CNN achieving the greatest
improvement, approximately 2% for both binary and multiclass classification tasks. Although the detection rate
for certain categories decreased in multiclass tasks due to class overlap in the generated data, the approach still
demonstrates promising potential. Zhang et al. [46] introduced a pretraining procedure into WGAN-GP to address
class imbalance in Industrial IoT (IIoT) networks. The model is first trained on normal network traffic, after which
the imbalanced data is fed into the pretrained model for retraining and synthetic data generation. NSL-KDD and
CIC-IDS2018 were used as benchmark datasets for evaluation with the LightGBM classifier, resulting in relatively
high F1-scores.

3. Problem Definition

Let D = {(xi, yi)}Ni=1 be a labeled intrusion detection dataset containing N samples, where xi ∈ Rd represents
a feature vector of d network traffic attributes, and yi ∈ {1, 2, . . . ,K} denotes one of K classes (including normal
traffic). Due to class imbalance, some attack classes (minority classes) have significantly fewer samples than
majority classes (normal or frequent attacks), which can bias classifier performance.

The classification task is to learn a function fθ : Rd → {1, 2, . . . ,K}, parameterized by θ, that achieves high
performance across both minority and majority classes.

To address class imbalance, an oversampling method O(·) is applied to generate synthetic minority samples:
D′ = O(D), where |D′| > |D| and the class distributions are more balanced.

In this study, classification is performed on both the original dataset D and the oversampled dataset D′ to
evaluate the effect of oversampling on classifier performance. Performance is evaluated using the metrics described
in Section 4.3 to ensure a fair assessment across all classes. The objective of this study is to evaluate the effectiveness
of traditional and deep learning–based oversampling techniques in enhancing classifier performance across both
minority and majority classes.

4. Methodology

4.1. Framework Overview

4.1.1. Synthetic Data Generation Framework

The framework for the synthetic data generation process is illustrated in Figure 1. An NIDS training set first
undergoes a series of preprocessing steps, including removal of the binary and multiclass target columns and record
identifiers, creation of a 20% validation set for early stopping in the CVAE, label encoding of nominal features
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for traditional and hybrid oversampling methods, encoding of target variables for deep generative models, one-hot
encoding of nominal features, and normalization of numerical features. It should be noted that the preprocessing
pipeline differs depending on the oversampling method applied. Once preprocessing is complete, the dataset is
processed by the selected oversampling technique to generate synthetic samples, which are then combined with the
original dataset and exported as a CSV file to form a new training dataset for evaluation.

Figure 1. Flowchart of the proposed synthetic data generation process.

4.1.2. Classification Framework

Figure 2 presents the flowchart of the classification process. Both the training and testing datasets first undergo
preprocessing, which includes removing unnecessary columns to retain only the features, applying label encoding
to the target variable, performing one-hot encoding for nominal features, and applying min–max normalization
to numerical features. Additionally, a 10% validation set is created from the processed training data using the
StratifiedShuffleSplit function from the scikit-learn library, to support hyperparameter tuning and early
stopping for deep learning–based classifiers. The training and validation sets are then used to train the model and
optimize its hyperparameters, while the testing set is reserved for evaluating the model and obtaining the final
classification results.

Figure 2. Flowchart of the proposed classification process.
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4.2. Classifiers Selection

4.2.1. Ensemble Learning Models

Ensemble learning is a machine learning technique that combines multiple models, often referred to as base
learners or weak learners, to produce a single model that is more accurate and robust. This technique can be
applied to both traditional machine learning methods and deep learning models, the latter commonly known as deep
ensemble learning. Two widely used tree-based algorithms, RF and XGBoost, are employed in this study, each
utilizing a different ensemble strategy to perform multiclass classification. In this context, these two classifiers will
hereafter be collectively referred to as ML-based models for simplicity.

RF is an ensemble method that utilizes the bagging technique, also known as bootstrap aggregating, to construct
a collection of decision trees. Each tree is trained on a random subset of the training data generated through sampling
with replacement, and their predictions are then aggregated. The final result is obtained by majority voting for
classification tasks or averaging for regression tasks. By combining the outputs of multiple diverse trees, RF reduces
variance in the base algorithm, thereby lowering the risk of overfitting and enhancing model accuracy. In addition,
the ensemble nature of Random Forest enables it to be robust to noise and outliers, as averaging across the ensemble
minimizes the influence of any individual tree trained on subsets containing noisy or extreme data points.

XGBoost is an ensemble learning algorithm that constructs decision trees sequentially, where each tree aims
to correct the errors of its predecessors. This sequential error-correction mechanism is known as boosting, an
alternative ensemble learning technique. XGBoost employs gradient descent on a specified loss function to guide
the learning process. At each iteration, a new tree is fitted to the residuals (gradients) of the current model, and
the predictions are updated accordingly, resulting in progressively improved accuracy. The final prediction is
obtained by aggregating the outputs of all trees: for classification tasks, the sum is transformed into probabilities
using functions such as sigmoid or softmax, while for regression tasks, the sum provides the prediction directly.
XGBoost employs several regularization techniques, such as L1 (Lasso), L2 (Ridge) regularization, shrinkage, and
tree pruning, to mitigate the overfitting commonly observed in standard boosting algorithms. XGBoost’s nature
renders it less robust to noise and outliers compared to RF, as it is designed to correct the mistakes of previous
models. When an outlier or noisy data point produces a large error, subsequent trees may place excessive emphasis
on correcting it, thereby increasing the risk of overfitting.

4.2.2. Deep Learning Models

DL is a subset of ML in which models are composed of multiple hidden layers, commonly referred to as
DNNs. These models are more powerful than traditional ML models due to their deep architectures, which enable
them to capture complex, non-linear patterns in the data. This study examines two neural network architectures: the
one-dimensional convolutional neural network (1D-CNN) and the multilayer perceptron (MLP), both of which are
well-suited for structured input data. For simplicity, these classifiers will from now on be collectively referred to as
DL-based classifiers.

CNNs are widely recognized in the field of computer vision, particularly for image recognition and classification
tasks. In the NIDS domain, they are employed for supervised feature extraction and classification. While CNNs are
traditionally designed for two-dimensional inputs such as images, which include height and width, network traffic
data is inherently one-dimensional. To address this, some studies reshape the one-dimensional feature vector into
a two-dimensional matrix for compatibility with CNNs, while others design one-dimensional CNNs specifically
tailored for 1D data. A typical CNN architecture for classification consists of an input layer, multiple convolutional
and pooling layers for feature extraction, and a fully connected layer followed by a softmax classifier for prediction.
For applications involving one-dimensional or three-dimensional data, the input, convolutional, and pooling layers
are modified accordingly to accommodate different input dimensionalities.

MLP is a type of feedforward neural network made up of fully connected layers of neurons, through which
information flows unidirectionally from the input layer to the output layer. An MLP architecture typically consists
of an input layer, one or more hidden layers, and an output layer. The hidden and output layers apply non-linear
activation functions, enabling the network to model complex relationships. An MLP performs classification by
learning to map input features to class probabilities through layers of weighted connections and activation functions.
Training is carried out using backpropagation, which involves two main steps: the forward pass and the backward
pass. During a forward pass, the input data is propagated through the network layer by layer, with each layer
computing activations, until a final output is produced. This output is then evaluated using a loss function, which
quantifies the difference between the predicted and actual target values. During the backward pass, the gradients
of the loss function with respect to the network’s weights are calculated and used to update the weights, thereby
minimizing the loss.

7 of 24



Dinh et al. Pragmatic Cybersecur. 2026, 1(1), 4

4.3. Performance Metrics

To assess the effectiveness of the oversampling methods, three main performance metrics are reported: F1-
score, area under the precision-recall curve (AUPRC), and G-mean, while precision and recall are used in their
calculation. These measures are derived from the confusion matrix in the context of network attack classification.
Table 1 presents the 2 × 2 structure of a confusion matrix in binary classification. A multiclass confusion matrix
follows the same principle but expands into an N × N arrangement, with N corresponding to the total number of
classes. In the table, the notations are as follows: TP (True Positive) denotes the number of instances where positive
samples are correctly classified; TN (True Negative) represents the number of instances where negative samples are
correctly classified; FP (False Positive) refers to the number of negative samples incorrectly classified as positive;
and FN (False Negative) indicates the number of positive samples incorrectly classified as negative. In the case of a
multiclass confusion matrix, these concepts are applied on a per-class basis rather than to the matrix as a whole.

Table 1. Confusion matrix for binary classification.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

In the context of NIDS, precision measures the proportion of records predicted as attacks that are indeed actual
attacks. A higher precision value indicates stronger model performance in correctly identifying attack traffic. It is
defined as follows in Equation (1):

Precision =
TP

TP + FP
(1)

Recall, also known as the detection rate (DR), represents the proportion of actual attack records that are
correctly identified by the classifier. It is often referred to as the true positive rate (TPR) or sensitivity. A higher
recall indicates stronger performance in identifying attacks. The metric is defined as follows in Equation (2):

Recall = DR = Sensitivity = TPR =
TP

TP + FN
(2)

F1-score is the harmonic mean of recall and precision. Unlike accuracy, which can give a misleading assessment
in imbalanced datasets by favoring majority classes, the F1-score provides a more reliable and comprehensive
evaluation of model performance. It balances both precision and recall, penalizing models that achieve high
precision but low recall, or vice versa. By accounting for both false positives and false negatives, the F1-score
emphasizes the correct detection of minority classes, which is crucial for intrusion detection. A higher F1-score
signifies that the model maintains an effective balance between precision and recall, accurately detecting positive
instances while minimizing both false positives and false negatives. It is defined as shown in Equation (3):

F1-score = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(3)

The precision–recall (PR) curve is a two-dimensional plot that illustrates the trade-off between precision and
recall across different classification thresholds, with precision on the y-axis and recall on the x-axis. The area under
this curve, referred to as the area under the precision–recall curve (AUPRC), provides a single-value summary of
a model’s ability to detect positive instances, making it particularly valuable for imbalanced classification tasks.
In comparison, the area under the receiver operating characteristic curve (AUC-ROC) measures the relationship
between the TPR and the FPR at various thresholds. Although widely used, AUC-ROC can be misleading in
imbalanced datasets because it incorporates true negatives, which may artificially inflate performance when the
majority class dominates. Therefore, AUPRC is often the preferred metric in such scenarios, as it focuses on the
positive class and offers a more informative evaluation of model performance on rare or minority instances. A higher
AUPRC represents better model performance in distinguishing positive instances from negative ones, especially
in imbalanced datasets. In the context of multiclass classification, the AUPRC is computed using the one-vs-rest
(OVR) strategy, where each class is considered the positive class in turn, and all remaining classes are treated as
negative. The AUPRC for each class is calculated as shown in Equation (4):

AUPRCi =

∫ 1

0

Precisioni(r) d(Recalli) ≈
n−1∑
k=1

(
Recall(i)k+1 − Recall(i)k

)
·

Precision(i)k+1 + Precision(i)
k

2
(4)
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where i indexes the class being evaluated, r denotes the recall variable, n is the total number of sampled classification
thresholds, and k indexes the sorted operating points along the precision–recall curve.

The G-mean is defined as the geometric mean of the true positive rate (sensitivity) and the true negative rate
(specificity), offering an overall measure of performance in binary classification. In multiclass classification, the
G-mean is defined as the geometric mean of the recall values for all classes, reflecting the classifier’s balanced ability
to correctly identify instances across every class. This metric is particularly well-suited for evaluating oversampling
and undersampling techniques, as it ensures that gains in minority class detection are not achieved at the cost of
majority class performance. Consequently, the G-mean is highly effective in assessing classifiers on imbalanced
datasets, where maintaining predictive accuracy across both minority and majority classes is critical. The formula
for G-mean in multiclass classification is expressed as follows in Equation (5):

G-mean =

(
N∏
i=1

Recalli

) 1
N

=

(
N∏
i=1

TPi

TPi + FNi

) 1
N

(5)

with N representing the total number of classes and i indexing the individual classes.
The metrics are initially computed for each class individually and then averaged using the macro strategy to

yield an overall performance score. Macro averaging is preferred over micro and weighted averaging, as it assigns
equal importance to both majority and minority classes. In contrast, micro averaging aggregates TPs, FPs, and FNs
across all classes, causing the results to be biased toward classes with larger sample sizes. In highly imbalanced
datasets, this often produces misleadingly high and uniform values for precision, recall, and F1-score. Weighted
averaging, on the other hand, accounts for class size when computing averages. As a result, if a model performs
well on the majority class but poorly on minority classes, the weighted metrics may still appear high, masking poor
performance on underrepresented data. Although macro metrics may yield lower values than micro or weighted
metrics due to weaker performance on minority classes, they provide a more accurate reflection of the classifier’s
overall performance and are therefore adopted in this study.

5. Experimental Setup

This section outlines the datasets employed in our experiments, the data preprocessing procedures, the
oversampling ratios applied, and the implementation details of the study.

5.1. Overview of Datasets

Most existing studies rely on older benchmark datasets such as KDD-Cup’99 and NSL-KDD for evaluating
NIDS performance. Although NSL-KDD addresses several limitations of KDD-Cup’99, such as the redundancy
of records in the training set [47], it is outdated and does not adequately represent the characteristics of a modern
attack environment. In this study, the UNSW-NB15 [48] and TON IoT [49] datasets are selected to evaluate
the performance of various oversampling techniques, as they provide more diverse, up-to-date, and realistic
representations of current network traffic and attack scenarios.

5.1.1. UNSW-NB15

A group of cybersecurity researchers developed a new NIDS dataset in the Cyber Range Lab of the Australian
Cyber Security Centre (ACSC), aimed at overcoming the limitations of older datasets [50]. The resulting UNSW-
NB15 dataset was generated using the IXIA PerfectStorm tool to simulate a mix of realistic modern normal traffic
and synthetic contemporary malicious traffic.

The tcpdump tool was used to capture network packets containing nine types of simulated modern cyberattacks
including Analysis, Backdoor, Denial of Service (DoS), Exploits, Fuzzers, Generic, Reconnaissance, Shellcode,
and Worms, as well as normal traffic. These packets were then processed using Argus, Bro-IDS, and twelve C#
algorithms to extract 49 distinct features.

The dataset comprises over two million records, distributed across four CSV files: UNSW-NB15 1.csv, UNSW-
NB15 2.csv, UNSW-NB15 3.csv and UNSW-NB15 4.csv, which can be merged and randomly split for training and
testing purposes. In this study, the publicly available partitioned training and testing sets, containing 175,341 and
82,332 records respectively, are used. Table 2 presents the sample distribution for each class in the datasets.
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Table 2. Distribution of the UNSW-NB15 dataset by category.

Category Training Set Training Set (%) Testing Set Testing Set (%)

Normal 56,000 31.94 37,000 44.94
Generic 40,000 22.81 18,871 22.92
Exploits 33,393 19.05 11,132 13.52
Fuzzers 18,184 10.37 6062 7.36

DoS 12,264 6.99 4089 4.97
Reconnaissance 10,491 5.98 3496 4.25

Analysis 2000 1.14 677 0.82
Backdoor 1746 1.00 583 0.71
Shellcode 1133 0.65 378 0.46

Worms 130 0.07 44 0.05

Total 175,341 100.00 82,332 100.00

5.1.2. TON IoT

A few years later, the creators of UNSW-NB15 introduced the next generation of a dataset for the IoT and
IIoT to facilitate the evaluation of AI-based cybersecurity solutions [51]. The dataset comprises heterogeneous data
collected from multiple sources such as IoT sensor telemetry, network traffic packets, and Linux and Windows logs,
representing the interconnected three-layer architecture of IoT, Cloud, and Edge/Fog systems.

This report focuses on the network subset of the TON IoT dataset, where network traffic is captured and
processed similarly to the UNSW-NB15 dataset. Among the nine attack types included, seven are new, comprising
Password, Cross-Site Scripting (XSS), Ransomware, Distributed Denial of Service (DDoS), Scanning, Injection,
and Man-in-the-Middle (MITM) attacks.

The TON IoT network dataset contains over 20 million records distributed across 23 CSV files. For this study,
the train test network.csv subset is used to evaluate and compare various oversampling methods. Since this subset
is not pre-split into training and testing sets, the train test split function from the scikit-learn library is
employed, with stratification by attack type to preserve class distribution, resulting in an 80% training set and a 20%
testing set. Table 3 shows the distribution of samples for each class across the training and testing sets.

Table 3. Distribution of the TON IoT dataset by category.

Category Training Set Training Set (%) Testing Set Testing Set (%)

Normal 40,000 23.67 10,000 23.66
Password 16,000 9.48 4000 9.48
Backdoor 16,000 9.48 4000 9.48

XSS 16,000 9.48 4000 9.48
Ransomware 16,000 9.48 4000 9.48

DDoS 16,000 9.48 4000 9.48
Scanning 16,000 9.48 4000 9.48

DoS 16,000 9.48 4000 9.48
Injection 16,000 9.48 4000 9.48
MITM 834 0.49 209 0.50

Total 168,834 100.00 42,209 100.00

5.2. Data Preprocessing

The preprocessing steps for synthetic data generation and classification are largely identical, with minor
adjustments made to accommodate different scenarios. The overall procedure is outlined below:

• For both datasets, the target columns corresponding to binary and multiclass classification are removed. In
addition, the UNSW-NB15 dataset has an ID column, representing the record number, which is also dropped.
The remaining columns serve as the features of the datasets and are used for further processing.

• In the CVAE, the train test split function is applied to create a 20% validation set from the training
data, which is used for early stopping to prevent overfitting.
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• During the synthetic data generation step, categorical (nominal) features in the datasets are transformed using
label encoding, since most traditional and hybrid oversampling methods cannot natively handle such feature
types. For deep learning–based synthetic generation and classification models, label encoding is also applied
to the multiclass target values. The LabelEncoder function from the scikit-learn library is employed to
convert string labels into numerical representations.

• In deep learning–based synthetic generation and classification models, categorical (nominal) features are
converted into numerical representations using one-hot encoding prior to model training. This approach
generates new binary columns corresponding to the number of distinct categories in the original feature, with
each column representing a single category. A value of 1 is assigned to the column matching the category of a
given record, while all other category columns are assigned a value of 0. The OneHotEncoder function
from the scikit-learn library is employed for this transformation.

• Min–max normalization is applied to the numerical features to scale them to the [0, 1] range. This scaling is
performed using the MinMaxScaler function from the scikit-learn library, which follows the mathematical
formula shown in (6). In this formula, x is the original value, xmin and xmax are the minimum and maximum
values of the feature respectively, and x′ is the normalized value scaled to the range [0, 1].

x′ =
x− xmin

xmax − xmin
(6)

5.3. Oversampling Application

5.3.1. UNSW-NB15

The oversampling methods outlined in Section 2 are applied exclusively to the training set of the UNSW-NB15
dataset, while the testing set is preserved for the evaluation of classification models. Two oversampling ratios are
considered. In the first approach, the classes that account for less than five percent of the dataset, namely Analysis,
Backdoor, Shellcode, and Worms (Table 2), are increased to 10,000 samples each, combining both original and
synthetic instances. In the second approach, all classes are expanded to match the size of the Normal class, which
contains 56,000 samples. The resulting distributions of the UNSW-NB15 training dataset under both oversampling
strategies are presented in Table 4.

Table 4. Distributions of the UNSW-NB15 training datasets by category (after upsampling).

Category
Training Set

Minority Class
Upsampled

Training Set
Minority Class
Upsampled (%)

Training Set
Class-Balanced

Upsampled

Training Set
Class-Balanced
Upsampled (%)

Normal 56,000 26.63 56,000 10.00
Generic 40,000 19.02 56,000 10.00
Exploits 33,393 15.88 56,000 10.00
Fuzzers 18,184 8.65 56,000 10.00

DoS 12,264 5.83 56,000 10.00
Reconnaissance 10,491 4.99 56,000 10.00

Analysis 10,000 4.75 56,000 10.00
Backdoor 10,000 4.75 56,000 10.00
Shellcode 10,000 4.75 56,000 10.00

Worms 10,000 4.75 56,000 10.00

Total 210,332 100.00 560,000 100.00

5.3.2. TON IoT

In the case of the TON IoT dataset, oversampling methods are again applied solely to the training set, with the
testing set left intact for classification evaluation. Two oversampling ratios are examined. The first increases the
MITM class to 16,000 samples, aligning it with the size of other attack classes. The second balances the dataset by
expanding every class to 40,000 samples, which corresponds to the size of the Normal class. Table 5 shows the
distributions of the TON IoT training sets after applying the two oversampling ratios.
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Table 5. Distributions of the TON IoT training datasets by category (after upsampling).

Category Training Set MITM
Upsampled

Training Set MITM
Upsampled (%)

Training Set
Class-Balanced

Upsampled

Training Set
Class-Balanced
Upsampled (%)

Normal 40,000 21.70 40,000 10.00
Password 16,000 8.70 40,000 10.00
Backdoor 16,000 8.70 40,000 10.00

XSS 16,000 8.70 40,000 10.00
Ransomware 16,000 8.70 40,000 10.00

DDoS 16,000 8.70 40,000 10.00
Scanning 16,000 8.70 40,000 10.00

DoS 16,000 8.70 40,000 10.00
Injection 16,000 8.70 40,000 10.00
MITM 16,000 8.70 40,000 10.00

Total 184,000 100.00 400,000 100.00

5.4. Hyperparameters and Implementation Details

The implementation of oversampling techniques and classification models is carried out using Python 3.11.9
and PyTorch 2.7.1. A fixed random seed of 42 is applied to all functions involving randomness, as well as to
PyTorch’s CPU and GPU operations where not explicitly stated. Additionally, deterministic behavior in cuDNN is
enforced and its auto-tuner is disabled to minimize stochasticity and enhance reproducibility.

5.4.1. Oversampling Implementation

For classical and hybrid oversampling methods, including SMOTE-NC, ADASYN, KMeans-SMOTE, and
B-SMOTE, implementations from the imbalanced-learn library are employed and applied directly to the datasets for
both minority-class and class-balanced upsampling. The hyperparameters used for these methods are summarized
in Table 6. In the case of SMOTE-NC, an array of integers is specified to indicate the indices of categorical features
in the dataset, enabling the algorithm to handle them automatically. The sampling strategy parameter is set
according to the upsampling ratios defined in Section 5.3 for each dataset, while the random state is fixed at 42
to ensure reproducibility.

Table 6. Hyperparameters for traditional and hybrid oversampling methods on UNSW-NB15 and ToN IoT.

Method Parameter Value (UNSW-NB15/ToN IoT)

SMOTE-NC
categorical features categorical indices
sampling strategy sampling strategy

random state 42

ADASYN sampling strategy sampling strategy
random state 42

KMeans-SMOTE

kmeans estimator 20/N/A
cluster balance threshold 0.001/0.005

sampling strategy sampling strategy
n jobs −1

random state 42

B-SMOTE sampling strategy sampling strategy
random state 42

In contrast, CVAE and CWGAN-GP are implemented manually using the PyTorch library, with their architec-
tures and hyperparameters provided in Tables 7 and 8, respectively.
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Table 7. CVAE architecture and training hyperparameters. Din denotes the input feature dimension, y the conditional
label, z the latent variable, µ the latent mean, log σ2 the latent variance, Zdim the latent dimension.

Component Specification/Value

Architecture Details

Encoder Input (Din + y) → Linear(512) → Linear(256) → Linear(128)
Latent Space µ, log σ2 = Linear(128 → Zdim)

Decoder Latent (z + y) → Linear(128) → Linear(256) → Linear(512) → Sigmoid
Activation ReLU

Normalization BatchNorm1d
Regularization Dropout (0.3)

Latent Dimension (Zdim) 64

Training Hyperparameters

Loss Function Binary Cross-Entropy (BCE) + KL Divergence
Optimizer Adam (Weight Decay: 1× 10−5)

Learning Rate 0.001
Batch Size 64

Max Epochs 100
Early Stopping 10

Learning Rate Scheduler (ReduceLROnPlateau)

Mode min (on validation loss)
Factor/Patience 0.5/5 epochs

Table 8. CWGAN-GP architecture and training hyperparameters. z denotes the noise vector, y the conditional label,
yembed the embedded representation of y, x the real data input, Din the dimensionality of real data (critic input),
Dout the dimensionality of generated data (generator output), ncritic the number of critic updates per generator
update, λ the gradient penalty coefficient, and β1, β2 the Adam optimizer parameters.

Component Specification/Value

Architecture Details

Generator z ⊙ yembed → Linear(256) → Linear(512) → Linear(1024) → Linear(Dout) → Sigmoid
Critic x⊙ yembed → Linear(1024) → Linear(512) → Linear(256)

Embeddings y → Vector (size 100 for Gen, size Din for Critic)
Activation LeakyReLU (0.2)

Regularization Dropout (0.3) [Generator only]
Noise Dimension (z) 100

Training Hyperparameters

Loss Function Wasserstein Loss with Gradient Penalty
Optimizer Adam (β1 = 0.5, β2 = 0.9)

Learning Rate 0.0001
Batch Size 256

Max Epochs 100
Critic Updates ncritic = 5 per generator update
GP Coefficient λ = 10

5.4.2. Classification Implementation

Random Forest and XGBoost are utilized directly from their respective libraries for classification, while MLP
and 1D-CNN are implemented from scratch using PyTorch. The hyperparameters and architectures of these models
are presented in Tables 9–11.
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Table 9. Hyperparameters used for Random Forest and XGBoost classifiers.

Classifier Parameter Value

Random Forest
random state 42

n jobs −1

XGBoost

random state 42
n jobs −1

use label encoder False

eval metric ’mlogloss’

Table 10. MLP architecture and training hyperparameters. Dout denotes the number of classes for classification.

Component Specification/Value

Architecture Details

Hidden Layers Linear(512) → Linear(256) → Linear(128)
Output Layer Linear(Dout)

Activation ReLU
Regularization Dropout (0.2)

Training Hyperparameters

Loss Function Cross-Entropy Loss
Optimizer Adam

Learning Rate 0.001
Batch Size 64

Max Epochs 50
Early Stopping 5

Learning Rate Scheduler (ReduceLROnPlateau)

Mode min (on validation loss)
Factor/Patience 0.1/3 epochs

Table 11. 1D-CNN architecture and training hyperparameters. Dout denotes the number of classes for classification.

Component Specification/Value

Architecture Details

Convolutional Layers Conv1D(64) → Conv1D(128) → Conv1D(256)
Filter Settings Kernel Size: 3; Padding: 1; Stride: 1
Pooling Layers MaxPool1D (Size: 2) after each Conv layer

Fully Connected Linear(256) → Linear(128) → Linear(Dout)
Activation ReLU

Regularization Dropout (0.3)

Training Hyperparameters

Loss Function Cross-Entropy Loss
Optimizer Adam

Learning Rate 0.001
Batch Size 128

Max Epochs 100 (UNSW-NB15)/50 (TON IoT)
Early Stopping 10 (UNSW-NB15)/5 (TON IoT)

Learning Rate Scheduler (ReduceLROnPlateau)

Mode min (on validation loss)
Factor/Patience (UNSW-NB15) 0.5/5 epochs

Factor/Patience (TON IoT) 0.1/3 epochs

6. Experimental Results

6.1. UNSW-NB15

Table 12 presents the classification results of the RF model on the UNSW-NB15 dataset, before and after
applying oversampling. The baseline G-mean of 0.2889 is critically low, indicating that the classifier is heavily
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biased toward the majority class and confirming the severity of the class imbalance problem. The baseline F1-score
and AUPRC are also modest, reflecting the model’s overall difficulty in handling minority classes.

Most traditional and hybrid oversampling techniques yield substantial improvements in G-mean, indicating
that minority class recall benefits significantly from resampling. However, this gain comes with a trade-off between
enhancing minority detection and preserving overall classification performance. This trade-off is evident in the
inverse relationship between metrics: methods that substantially improve G-mean lead to only marginal shifts
in F1-score and AUPRC, which may be positive or negative, affecting either one metric or both simultaneously.
This pattern confirms that the improvement in minority class recall comes at the expense of precision, ranking
ability, or both.

Under the minority-class upsampling strategy, KMeans-SMOTE achieves the highest F1-score, while CWGAN-
GP performs best under the balanced upsampling strategy. ADASYN yields the largest gain in G-mean but
experiences a decline in both F1-score and AUPRC, illustrating that improving recall for rare classes often reduces
overall precision and ranking performance.

In contrast, deep learning-based methods perform poorly in balanced detection, with CVAE (minority) yielding
a 0 G-mean, indicating a complete failure to predict any true positives for the minority class. This suggests the
synthetic samples generated by these methods were either noisy or non-representative, thereby confusing the model’s
decision boundary. Despite this classification failure, these methods achieve higher macro AUPRC scores than the
others, suggesting they have a strong ranking ability but their optimal classification threshold is severely misaligned.

Overall, upsampling the minority classes is generally preferred, as it outperforms balanced upsampling in four
out of six cases across the evaluated oversampling methods. This holds true whether the focus is on minority class
detection, measured by G-mean, or overall classification performance, measured by F1-score. These findings are
supported by evaluating the average performance of all oversampling techniques under their respective oversampling
ratios. However, it is important to recognize the inherent trade-off between these two metrics.

Table 12. RF classification results for the UNSW-NB15 dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced

Macro F1-score 0.4643 0.4638 0.4518 0.4652 0.4579 0.4717 0.4627 0.4706 0.4334 0.4611 0.4645 0.4606 0.4676 0.4655 0.4563
Macro AUPRC 0.5417 0.5192 0.4991 0.5200 0.4925 0.5288 0.5031 0.5095 0.4883 0.5377 0.5358 0.5435 0.5370 0.5265 0.5093

G-mean 0.2889 0.4853 0.4831 0.5020 0.5203 0.3986 0.3713 0.4770 0.4360 0.2716 0.0000 0.2696 0.3034 0.4007 0.3524

Table 13 presents the classification results of XGBoost on the UNSW-NB15 dataset, before and after oversam-
pling. The baseline performance of XGBoost is relatively strong for an imbalanced dataset, confirming its robustness
to class imbalance and highlighting the effectiveness of the boosting strategy, in contrast to RF. Nevertheless, the
baseline G-mean remains low, indicating a noticeable bias toward the majority class.

Traditional and hybrid oversampling methods substantially improve the model’s ability to balance predictions
between majority and minority classes, as reflected in consistently higher G-mean scores, thereby confirming their
effectiveness in boosting minority class recall without severely harming majority performance.

Deep learning–based models (CVAE and CWGAN-GP) achieve the highest F1-scores overall when combined
with minority-class upsampling. However, these results require careful interpretation: both methods fail catas-
trophically in terms of G-mean, with most cases recording a score of 0 across both upsampling strategies. In the
balanced upsampling strategy, KMeans-SMOTE achieves the highest macro F1-score, followed by CWGAN-GP
and CVAE. This outcome indicates a complete collapse in detecting one of the minority classes. As a result, the
elevated F1-scores are somewhat misleading, since they are largely sustained by strong majority-class performance
with only minimal gains from some of the other minority classes.

Despite this, CVAE and CWGAN-GP achieve higher average AUPRC scores compared to other oversampling
methods, suggesting that while their synthetic samples are too noisy for effective classification, the models still
retain strong ranking ability. The issue lies not in the models’ potential, but in the misaligned classification threshold
that produces the zero G-mean.

These classification results highlight the inherent trade-off between metrics: maximizing G-mean often leads
to a reduction in F1-score, AUPRC, or both, primarily due to an increase in false positives. For XGBoost, balanced
upsampling is preferred when the goal is to optimize G-mean, with SMOTE-NC (balanced) achieving the highest
score. In contrast, minority upsampling is generally more effective for maximizing F1-score, outperforming
balanced upsampling in four out of six comparisons. This approach also proves safer for generative methods, as it
limits the introduction of noise into the dataset. These findings are supported by the observation that the average
metrics of all oversampling methods under the minority strategy are higher than those under balanced upsampling.
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Table 13. XGBoost classification results for the UNSW-NB15 dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced

Macro F1-score 0.5084 0.4818 0.4792 0.4857 0.4665 0.5098 0.5112 0.4971 0.4965 0.5154 0.4921 0.5154 0.5059 0.5009 0.4919
Macro AUPRC 0.5661 0.5598 0.5463 0.5559 0.5354 0.5594 0.5384 0.5534 0.5404 0.5839 0.5761 0.5820 0.5629 0.5657 0.5499

G-mean 0.3965 0.4199 0.5443 0.4746 0.5273 0.4668 0.4657 0.4501 0.5055 0.3806 0.0000 0.0000 0.0000 0.3653 0.3405

Table 14 reports the classification results of the 1D-CNN on the UNSW-NB15 dataset, both before and after
oversampling. At baseline, the model performs substantially worse than the two tree-based classifiers, exhibiting
the weakest performance overall, as it completely fails to detect one of the minority classes, resulting in an overall
G-mean of 0. Specifically, the baseline model is unable to classify any samples from the Analysis class (see
Section 6.2 for details). Additionally, with CVAE (balanced) and CWGAN-GP (balanced), the Worms class is
entirely misclassified, resulting in a G-mean of 0. This failure highlights the sensitivity of CNN architectures and
emphasize the need for careful architectural design and hyperparameter tuning.

For the 1D-CNN, resampling proves essential for functionality. After oversampling, traditional and hybrid
methods successfully mitigate these issues, with ADASYN and SMOTE-NC emerging as the best performers under
the balanced upsampling strategy. In contrast, deep learning–based oversampling methods remain ineffective, as
shown by persistent 0 G-mean scores. Because 1D-CNNs rely heavily on extracting local patterns, slightly noisy or
mismatched generative samples from CVAE or GANs may obscure rare-class signals, resulting in recall of 0 and,
consequently, a zero G-mean. Moreover, 1D-CNNs are highly sensitive to temporal or sequential artifacts introduced
by generative models due to their dependence on local receptive fields and weight sharing. Generative samples may
also differ in statistical properties (e.g., variance, range, or distribution moments), further disrupting recognition.

Under minority-only sampling, CWGAN-GP achieves the highest macro F1-score, followed by KMeans-
SMOTE and CVAE. Under balanced sampling, KMeans-SMOTE attains the top macro F1-score, with ADASYN
and SMOTE-NC performing next best. However, balanced upsampling can cause generative models to produce
unrealistic samples that distort 1D-CNN decision boundaries, resulting in lower F1-scores and G-mean. In contrast,
traditional and hybrid methods generate synthetic samples by interpolating between existing real instances, which
may still introduce some noise or overlap but better preserve realistic feature correlations. This makes them more
reliable than generative approaches, particularly for 1D-CNNs, which are highly sensitive to such artifacts.

The macro F1-score remains closely clustered between 0.4088 and 0.4512, indicating that resampling provides
limited overall improvement for 1D-CNN models. At the same time, AUPRC generally declines compared to the
baseline for most oversampling methods, suggesting that changes to the decision boundary can impair the model’s
ranking ability. In this case, the trade-off is particularly pronounced, as both F1-score and AUPRC decrease across
all oversampling techniques despite gains in G-mean. For the 1D-CNN, the balanced strategy proves most effective
for enhancing minority class detection, as measured by G-mean, whereas the minority strategy remains the preferred
choice for improving overall classification performance, as reflected in F1-score averages across the two strategies.

Table 14. 1D-CNN classification results for the UNSW-NB15 dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced

Macro F1-score 0.4435 0.4211 0.4271 0.4216 0.4275 0.4464 0.4285 0.4158 0.4194 0.4403 0.4088 0.4512 0.4165 0.4327 0.4213
Macro AUPRC 0.5149 0.5044 0.4865 0.5052 0.4886 0.4887 0.4560 0.4745 0.4644 0.5016 0.4763 0.5107 0.4837 0.4975 0.4759

G-mean 0.0000 0.3857 0.5080 0.4047 0.5178 0.3622 0.3678 0.3383 0.4918 0.1917 0.0000 0.0000 0.0000 0.2804 0.3142

Table 15 summarizes the MLP’s classification results on the UNSW-NB15 dataset under baseline and over-
sampled conditions. With its simpler architecture compared to the 1D-CNN, the MLP achieves comparable baseline
performance, successfully detecting minority classes with a non-zero G-mean.

Consistent with previous findings, traditional and hybrid oversampling techniques substantially enhance
G-mean as they synthesize new data points through linear interpolation between existing minority-class instances.
This process expands the effective feature space of rare classes, reduces sparsity, and compels the classifier to lower
its decision boundary, thereby boosting recall and improving G-mean. Moreover, these methods generate synthetic
samples in a controlled manner, minimizing noise and avoiding significant overlap with the majority-class region.

By contrast, deep learning–based oversampling methods perform poorly in terms of G-mean, with CVAE
(balanced) even failing to detect one class entirely. The MLP’s F1-scores remain tightly clustered around its already
low baseline, suggesting that oversampling contributes minimal overall performance improvement for this model. In
addition, results from deep learning–based oversampling confirm the trade-off: techniques that maximize G-mean
often yield slightly lower AUPRC and F1-scores than the baseline, indicating that the boundary shift required for
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recall improvement adversely impacts overall precision and ranking ability.
For the MLP, the balanced upsampling strategy is most effective for maximizing G-mean, whereas minority-

only upsampling is generally preferable for optimizing F1-score. This is supported by the higher average F1-score
achieved under the minority strategy compared to balanced upsampling. By introducing fewer synthetic samples,
the minority-only approach helps reduce false positives and better preserves the model’s overall precision.

Table 15. MLP classification results for the UNSW-NB15 dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced Minority Balanced

Macro F1-score 0.4464 0.4321 0.4328 0.4374 0.4328 0.4497 0.4525 0.4413 0.4358 0.4414 0.4242 0.4434 0.4413 0.4409 0.4366
Macro AUPRC 0.5050 0.5097 0.4848 0.5054 0.4939 0.4919 0.4730 0.4884 0.4677 0.4932 0.4962 0.4897 0.4827 0.4964 0.4831

G-mean 0.2821 0.3439 0.4924 0.4529 0.5366 0.3966 0.4138 0.4307 0.4976 0.2313 0.0000 0.2217 0.1969 0.3462 0.3562

This analysis highlights the severity of combined class imbalance and overlap, as evident from baseline
performance across multiple classifiers. Resampling helped mitigate the class overlap issue, enabling the 1D-CNN to
function properly. However, without specialized frameworks or additional discriminative features, resampling offered
limited improvement in overall model performance. Traditional and hybrid oversampling methods consistently
proved to be the most reliable and effective approach, substantially increasing G-mean by expanding the minority
feature space and alleviating class bias across all four classifiers. In contrast, deep learning–based generative methods
were highly variable, frequently resulting in catastrophic failures (G-mean = 0), particularly in robust models such
as XGBoost and sensitive architectures like 1D-CNN, despite occasionally achieving high F1-scores. Among the
evaluated methods, KMeans-SMOTE, CVAE, and CWGAN-GP performed well under different classifiers, with
CVAE and CWGAN-GP consistently achieving near-top F1-scores across most scenarios, even when the G-mean
remained at zero. Considering the average performance across classifiers and oversampling strategies, XGBoost
stands out as the most robust and reliable model. Minority-only oversampling is generally preferred because
it introduces less noise into the classification process. With an appropriate framework to address class overlap,
XGBoost’s performance could be further enhanced.

These results reinforce the inherent trade-off in imbalanced learning: maximizing G-mean often comes at
the expense of overall F1-score and AUPRC, primarily due to increased false positives from aggressive decision
boundaries. Consequently, the balanced upsampling strategy is generally optimal for maximizing G-mean and
minority-class detection, whereas the less aggressive minority-only strategy is preferable for optimizing F1-score
and reducing the risk of catastrophic misclassification, as it introduces fewer overlapping synthetic samples.

6.2. Data Overlap in UNSW-NB15

As observed in the results above, certain cases yield a G-mean of 0. For multi-class problems, G-mean is
computed as the n-th root of the product of the recall values for all classes (Equation (5)). Consequently, if any class
has a recall of 0, the entire product collapses to 0, leading to a G-mean of 0, even when the F1-score remains non-zero.
This behavior is observed in certain scenarios, irrespective of whether the G-mean is computed manually or using
the geometric mean score function from the imbalanced-learn library with average=’multiclass’.
Although the function offers an option to assign a value to the recall of unrecognized classes to prevent a zero
G-mean, this was not applied here, as it could misrepresent the actual performance.

This phenomenon is observed only in the UNSW-NB15 dataset, revealing that it is affected not only by
class imbalance but also by significant data overlap [52]. Data overlap arises when multiple samples share highly
similar feature representations or mimic the behavior of Normal or other classes, making it difficult for classifiers
to establish clear decision boundaries. In network traffic, several classes can exhibit similar characteristics, for
example, Analysis and Exploits may both involve probing or exploiting vulnerabilities in web applications or
systems, resulting in overlapping features. Zoghi and Serpen [52] proposed a visualization-based approach to study
this issue, showing that attack samples frequently overlap with Normal traffic and with other attack classes, with
the degree of overlap varying between certain class pairs. Salman et al. [53] further observed that DoS, Exploits,
Analysis, and Backdoor exhibit high similarities and often cluster together, which they refer to as Category 1 (Cat.
1) attacks. In their experiments, a classifier distinguishing Exploits from non-Exploits consistently misclassified
nearly all DoS, Analysis, and Backdoor traffic as Exploits, underscoring the difficulty of separating highly similar
attack behaviors. They further noted that Reconnaissance, Shellcode, and Worms are also frequently misclassified
into Cat. 1. Even after removing certain fixed features, high false alarm rates persisted, likely due to either
feature bias or intrinsic similarities across classes. In the context of evaluating oversampling methods, balanced
oversampling can worsen this issue by amplifying data overlap, which may reduce overall model performance
unless addressed through strategies such as attack categorization. Without introducing additional discriminative
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features or adopting specialized techniques, the combined effects of class imbalance and overlap remain severely
detrimental to classification performance.

The G-mean score of 0 observed in the UNSW-NB15 dataset arises from the zero recall (sensitivity) of the
Analysis and/or Worm classes. The baseline performance for the Analysis class is particularly poor, as all of its
samples are misclassified as Exploits, resulting in a recall score of 0, as shown in both the confusion matrix and
the performance metrics (Tables 16 and 17). In the confusion matrix, the first four rows, which correspond to
Analysis, Backdoor, DoS, and Exploits, reveal substantial misclassifications among these classes, reflecting their
strong feature similarities. The remaining three rows, which correspond to Reconnaissance, Shellcode, and Worms,
also indicate that the majority of their samples are misclassified as Exploits.

When CVAE-based balanced upsampling is applied, the problem worsens. Both the Analysis and Worms
classes achieve a recall of 0, directly resulting in a G-mean of 0 (Table 18). The corresponding confusion
matrix (Table 19) confirms that none of the samples from these classes are correctly classified. This indicates
that introducing a large number of synthetic samples can exacerbate the data overlap issue, severely impairing
classifier performance.

Table 16. Confusion matrix for 1D-CNN classification on the UNSW-NB15 dataset.

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms

Analysis 0 0 0 677 0 0 0 0 0 0
Backdoor 0 11 2 560 5 0 0 1 4 0

DoS 0 6 224 3711 89 0 5 9 44 1
Exploits 16 10 126 10,657 192 0 51 24 55 1
Fuzzers 0 12 4 1831 3152 0 670 119 274 0
Generic 0 2 56 502 123 18,163 2 17 13 3
Normal 270 1 13 1179 6937 1 28,323 114 162 0

Reconnaissance 0 2 7 846 22 3 6 2603 7 0
Shellcode 0 0 0 79 52 0 3 31 213 0

Worms 0 0 0 34 2 0 0 0 2 6

Table 17. Class-level performance metrics for 1D-CNN classification on UNSW-NB15 (affected classes).

Class Precision Recall F1-Score AUPRC

Analysis 0.0000 0.0000 0.0000 0.0421
Worms 0.5455 0.1364 0.2182 0.2369

Table 18. Class-level performance metrics for 1D-CNN with CVAE (balanced) on UNSW-NB15 (affected classes).

Class Precision Recall F1-Score AUPRC

Analysis 0.0000 0.0000 0.0000 0.0419
Worms 0.0000 0.0000 0.0000 0.1019

Table 19. Confusion matrix for 1D-CNN with CVAE (balanced) on the UNSW-NB15 dataset.

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms

Analysis 0 1 5 669 0 0 2 0 0 0
Backdoor 0 14 4 551 5 0 1 5 3 0

DoS 0 44 206 3679 62 0 7 52 39 0
Exploits 22 45 70 10,600 174 3 68 104 46 0
Fuzzers 0 17 7 1954 2881 0 650 496 55 2
Generic 0 3 228 560 52 17,999 4 15 8 2
Normal 611 2 12 1087 6174 0 28,428 614 52 20

Reconnaissance 0 7 9 804 27 0 20 2628 1 0
Shellcode 0 1 0 77 19 0 4 140 135 2

Worms 0 0 0 39 2 0 0 1 2 0

The models evaluated, including RF, XGBoost, MLP, and 1D-CNN, demonstrate significant architectural
differences in their ability to handle class overlap, which is pronounced in this dataset. XGBoost emerged as
the most robust classifier, using its adaptive boosting strategy to build highly complex decision boundaries that
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effectively manage mixed feature regions, resulting in the highest baseline G-mean. In contrast, both RF and
MLP struggled with overlap, producing conservative and biased predictions with low baseline G-mean scores. The
1D-CNN was the most sensitive model because its reliance on local pattern extraction makes it highly vulnerable
to noise and artifacts in overlapping regions. This sensitivity contributed to the catastrophic failure of generative
oversampling methods, resulting in a baseline G-mean of 0 and indicating that the CNN’s local feature learning was
severely disrupted by feature overlap and sample sparsity.

6.3. TON IoT

Table 20 presents the RF classification performance on the TON IoT dataset under both baseline and upsampled
conditions. The baseline results indicate that the RF achieves strong classification performance despite the limited
number of MITM samples, suggesting that the dataset’s features are inherently more distinctive, which facilitates
more accurate class separation. The baseline G-mean, approaching 1, indicates a well-balanced ability to identify
both positive and negative instances.

Overall, upsampling leads to only marginal improvements, accompanied by trade-offs across evaluation
metrics, similar to the patterns observed with the UNSW-NB15 dataset, albeit on a smaller scale. In terms of macro
F1-score, ADASYN, KMeans-SMOTE, and B-SMOTE perform worse than SMOTE-NC, CVAE, and CWGAN-GP,
despite achieving slight gains in G-mean. While CVAE and CWGAN-GP yield modest improvements in both
F1-score and AUPRC compared to the baseline, their G-mean scores decrease slightly. This outcome suggests that
traditional and hybrid oversampling methods primarily enhance recall, thereby improving G-mean, whereas deep
generative models tend to strengthen precision and ranking capability but at the expense of a slight reduction in
recall. Consistent with prior observations on the UNSW-NB15 dataset, this reflects a fundamental trade-off between
optimizing minority-class detection and maintaining overall class balance.

Although balancing all classes yields a slightly higher macro F1-score compared to upsampling only the MITM
class, the improvement is minimal and statistically insignificant. Deep learning–based oversampling methods,
however, exhibit more stable and consistent performance across metrics relative to traditional approaches. Among
them, CWGAN-GP attains the highest F1-score (0.9863) and AUPRC (0.9970) when all classes are balanced.
Overall, RF achieves better performance when all classes are oversampled rather than when only the MITM class is
upsampled, particularly in terms of F1-score.

Table 20. RF classification results for the TON IoT dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced

Macro F1-score 0.9858 0.9856 0.9858 0.9839 0.9842 0.9846 0.9851 0.9841 0.9841 0.9856 0.9860 0.9861 0.9863 0.9850 0.9853
Macro AUPRC 0.9968 0.9954 0.9947 0.9956 0.9953 0.9964 0.9962 0.9958 0.9951 0.9969 0.9964 0.9968 0.9970 0.9962 0.9958

G-mean 0.9902 0.9931 0.9929 0.9927 0.9925 0.9918 0.9916 0.9926 0.9922 0.9898 0.9900 0.9899 0.9894 0.9917 0.9914

Table 21 reports the performance of the XGBoost classifier on the TON IoT dataset across both baseline
and upsampled configurations. Leveraging its error-correcting boosting mechanism, XGBoost achieves slightly
stronger baseline performance than RF, indicating its enhanced ability to capture subtle patterns that RF may have
overlooked. In contrast to the RF results, upsampling only the MITM class yields a higher macro F1-score than
balancing all classes across various oversampling methods. This suggests that oversampling non-MITM classes
may introduce noise or lead to overfitting, slightly diminishing overall F1 performance. Consequently, focusing
on minority-class upsampling appears more effective and also more computationally efficient than balancing the
entire dataset.

Among all methods, the CVAE applied under the MITM-only upsampling strategy delivers the best overall
performance, showing improvements across all three evaluation metrics and achieving the highest F1-score and
AUPRC. SMOTE-NC ranks second, offering a more competitive G-mean compared to CVAE. Deep generative
models such as CVAE and CWGAN-GP also offer a marginal advantage in ranking performance, as reflected in
their higher AUPRC values. Conversely, ADASYN and B-SMOTE consistently underperform relative to other
oversampling approaches under both sampling strategies.

For XGBoost, resampling provides clear benefits, with CVAE and SMOTE-NC achieving the best balance
between performance and computational complexity when applied to minority-focused upsampling. If maximizing
G-mean is the primary objective, the traditional SMOTE-NC method is preferable. However, if the goal is to enhance
overall classification performance and ranking ability, the CVAE-based approach represents the superior choice.
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Table 21. XGBoost classification results for the TON IoT dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced

Macro F1-score 0.9874 0.9880 0.9873 0.9867 0.9842 0.9870 0.9865 0.9854 0.9840 0.9883 0.9882 0.9870 0.9847 0.9871 0.9858
Macro AUPRC 0.9977 0.9977 0.9973 0.9976 0.9966 0.9975 0.9968 0.9975 0.9967 0.9979 0.9976 0.9979 0.9974 0.9977 0.9971

G-mean 0.9916 0.9954 0.9941 0.9934 0.9899 0.9921 0.9903 0.9920 0.9901 0.9917 0.9925 0.9897 0.9886 0.9924 0.9909

Table 22 compares the baseline and upsampled performance of the 1D-CNN classifier on the TON IoT dataset.
The baseline results demonstrate strong overall performance, although not as competitive as RF or XGBoost
without extensive hyperparameter tuning and careful architectural optimization. The 1D-CNN generally benefits
from MITM-only upsampling across most resampling methods in terms of F1-score, except for SMOTE-NC and
KMeans-SMOTE. Specifically, SMOTE-NC generates smoother synthetic samples through interpolation across all
classes, while KMeans-SMOTE produces samples that better preserve local data distributions. This balanced and
less noisy augmentation is particularly advantageous for CNN models.

Under targeted upsampling of only the MITM class, SMOTE-NC consistently achieves strong results, while
CWGAN-GP performs reasonably well but with a slightly lower G-mean. Targeted oversampling tends to outperform
balanced oversampling for deep generative methods, suggesting that focusing augmentation on specific minority
classes is more effective than uniformly balancing all classes. In contrast, balanced ADASYN and B-SMOTE rank
among the weakest performers, as they often introduce noisy or borderline samples that cause CNN filters to capture
spurious local patterns, thereby reducing generalization capability.

Given the distinctive nature of the TON IoT dataset features and the CNN’s ability to capture rare local attack
signatures through convolutional filters, the model is able to detect rare attacks effectively despite the limited number
of samples. While oversampling produces only marginal improvements, these gains remain meaningful. However,
CNNs are also more sensitive to unrealistic or borderline synthetic samples, which can amplify local noise and
degrade performance. Overall, for 1D-CNN, SMOTE-NC delivers the most effective performance under balanced
upsampling and is the preferred method in this scenario.

Table 22. 1D-CNN classification results for the TON IoT dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced

Macro F1-score 0.9533 0.9551 0.9571 0.9522 0.9412 0.9507 0.9537 0.9517 0.9405 0.9523 0.9432 0.9543 0.9435 0.9527 0.9465
Macro AUPRC 0.9862 0.9865 0.9874 0.9846 0.9797 0.9836 0.9844 0.9855 0.9803 0.9846 0.9804 0.9852 0.9794 0.9850 0.9819

G-mean 0.9543 0.9585 0.9624 0.9580 0.9450 0.9554 0.9588 0.9572 0.9433 0.9544 0.9429 0.9583 0.9457 0.9570 0.9497

Table 23 compares the baseline and upsampled performance of the MLP classifier on the TON IoT dataset. The
baseline MLP slightly outperforms 1D-CNN but does not offer a significant advantage over tree-based classifiers.
Similar to 1D-CNN, MLP generally benefits more from MITM-only upsampling than from upsampling all classes,
with the exceptions of SMOTE-NC and KMeans-SMOTE. Overall, deep learning–based oversampling methods
perform better with MITM-only upsampling, whereas traditional and hybrid methods show mixed results.

Among the evaluated oversampling methods, CWGAN-GP targeting the MITM class achieves the highest
F1-score and ranks first across all evaluation metrics, followed by CVAE. Both deep generative methods show a
notable drop in F1-score when moving from MITM-only to balanced upsampling, suggesting that balancing all
classes introduces noise or artifacts that reduce the MLP’s generalization.

Balanced upsampling is detrimental to MLP performance across all metrics and methods compared to the
MITM-only strategy. These results suggest that the default MLP architecture is effective, and that excessive synthetic
data from fully balancing all classes can introduce harmful noise that reduces classifier performance.

Table 23. MLP classification results for the TON IoT dataset.

Baseline
SMOTE-NC ADASYN KMeans-SMOTE B-SMOTE CVAE CWGAN-GP Oversampling Average

MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced MITM Balanced

Macro F1-score 0.9574 0.9565 0.9591 0.9534 0.9496 0.9552 0.9560 0.9556 0.9468 0.9577 0.9439 0.9605 0.9408 0.9565 0.9494
Macro AUPRC 0.9879 0.9862 0.9863 0.9846 0.9821 0.9852 0.9856 0.9853 0.9804 0.9866 0.9798 0.9886 0.9808 0.9861 0.9825

G-mean 0.9600 0.9591 0.9611 0.9599 0.9537 0.9598 0.9620 0.9608 0.9499 0.9598 0.9422 0.9633 0.9398 0.9605 0.9515

In summary, despite the dataset’s inherent class imbalance, all classifiers demonstrate satisfactory performance
even without the application of oversampling techniques. This suggests that the dataset’s features are well-structured
and sufficiently discriminative, resulting in only modest performance improvements from resampling. Among
the evaluated classifiers, XGBoost consistently emerges as the most reliable model, achieving strong baseline
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performance and superior average metrics compared with the others. Regarding oversampling methods, CVAE
produces near-optimal results across most scenarios, while CWGAN-GP demonstrates high potential but remains
sensitive to the choice of classifier architecture. SMOTE-NC offers an effective balance between simplicity and
accuracy, often achieving the highest G-mean. In contrast, ADASYN and B-SMOTE consistently underperform
and are therefore not recommended for this dataset. The minority-only upsampling strategy (MITM-only) is
generally preferred, as it surpasses full balancing in most cases while also being more computationally efficient.
This observation is further supported by the minority-only upsampling approach consistently achieving higher
average performance metrics than the balanced strategy across different classifiers. Although a trade-off between
G-mean and F1-score or AUPRC persists, it is less severe than that observed in the UNSW-NB15 dataset.

7. Conclusions and Future Work

7.1. Conclusions

This research contributes to the field of intrusion detection by providing a comprehensive comparative analysis
of traditional and deep learning–based oversampling methods across two benchmark NIDS datasets: UNSW-NB15
and TON IoT. Multiple classifiers and resampling strategies, including deep generative approaches that have not
been extensively examined in previous studies, were systematically evaluated to determine their effectiveness in
improving minority class detection. The findings highlight practical trade-offs between model interpretability,
stability, and minority detection performance, offering guidance for selecting appropriate resampling strategies in
real-world imbalanced scenarios.

The results from the UNSW-NB15 dataset showed that both class imbalance and class overlap significantly
influence model performance, particularly for overlapping classes that are also affected by imbalance. Although
resampling techniques helped mitigate class overlap and improved the stability of certain models, their overall
benefits were limited without the inclusion of additional discriminative features or specialized learning frameworks.
Among the evaluated methods, KMeans-SMOTE provided the most consistent and interpretable improvements,
enhancing both the G-mean and F1-score by expanding the minority feature space and reducing class bias. In
comparison, deep generative oversampling methods such as CVAE and CWGAN GP demonstrated strong potential
but also high variability. These methods occasionally achieved strong F1-scores but sometimes failed completely
in terms of G-mean, indicating instability and possible overfitting to synthetic samples. Nevertheless, CVAE and
CWGAN GP frequently ranked among the top performers in terms of F1-score, showing promising results when
properly tuned or combined with robust classifiers. The findings also indicate that without appropriate mechanisms
to handle class overlap, the performance of oversampling methods is hindered.

In the TON IoT dataset, the classifiers achieved relatively strong performance even without oversampling,
suggesting that the dataset’s inherent feature representations are sufficiently discriminative. Among the oversampling
methods, CVAE achieved near-optimal F1-scores in most settings, while SMOTE-NC provided a good balance
between simplicity, stability, and effectiveness. The minority-only resampling strategy was also found to be
advantageous, often outperforming full balancing approaches while remaining computationally efficient. Across
both datasets, XGBoost consistently emerged as the most reliable and stable model, demonstrating strong baseline
performance and maintaining robustness under different resampling configurations.

These findings highlight the importance of conducting a thorough baseline analysis before applying over-
sampling to imbalanced datasets. Understanding the dataset’s intrinsic properties, such as class overlap or feature
redundancy, is essential for selecting appropriate mitigation strategies. Based on this understanding, it is recom-
mended to apply targeted oversampling only to the most underrepresented classes rather than applying full balancing,
which may introduce noise and overlapping samples that negatively affect overall performance.

Overall, this analysis emphasizes that the choice of oversampling technique and classifier architecture should
be carefully aligned with the characteristics of the dataset. Traditional and hybrid oversampling methods deliver
stable and dependable improvements, while deep generative approaches show considerable promise for future
research, particularly as their stability and generalization capabilities continue to advance.

7.2. Future Work

Future research can further build upon these findings in several directions:

• Addressing class overlap: Developing a classification framework or incorporating additional discriminative
features to mitigate the class overlap issue observed in the UNSW-NB15 dataset.

• Improving feature consistency in deep generative models: Current VAE- and GAN-based oversampling
methods often suffer from feature misalignment, where generated samples fail to retain key statistical properties
of real network traffic. Investigating the integration of specialized loss functions, such as feature perceptual
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loss, could help preserve feature integrity and enhance synthetic data quality.
• Combining VAE and GAN architectures: Since both approaches have distinct strengths and limitations,

integrating them into a unified model could leverage the advantages of each, producing higher-quality and
more diverse synthetic samples.

By exploring these directions, future studies can further improve the detection of rare and evolving net-
work attacks, leading to more robust and reliable intrusion detection systems capable of adapting to real-world
cybersecurity challenges.
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