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Abstract: This study proposes a novel, unified framework integrating 
scientometric analysis, machine learning (ML), explainable artificial intelligence 
(XAI), and cradle-to-gate life cycle assessment (LCA) to evaluate and predict the 
performance of slag-fly ash-based geopolymer concrete (SFGPC). A scientometric 
review of 441 publications (2009–2025) guided the systematic assembly of a 
dataset comprising 363 SFGPC mixes. Five ML models were trained to predict 
compressive strength (fc), with Gradient Boosting (GB) achieving the highest 
accuracy, yielding R2 = 0.954, RMSE = 3.15 MPa, MAE = 1.81 MPa during training, 
and R2 = 0.95, RMSE = 3.128 MPa, MAE = 2.41 MPa during testing. Multi-layered 
XAI analysis identified age, slag content, and alkaline-to-binder ratio as the most 
influential parameters and revealed governing nonlinear interactions. Sustainability 
assessment showed that the fly ash-dominant mix exhibited the lowest global 
warming potential (156 kg CO2-eq/m3), the most favourable sustainability index, 
and the smallest residual emissions after a 25% carbon offset. A user-oriented 
graphical user interface (GUI) was developed for real-time strength prediction. The 
novelty of this work lies in introducing an explainable, data-driven, and 
sustainability-integrated decision-support system for designing transparent and 
low-carbon geopolymer concretes.  

 Keywords: geopolymer concrete; scientometric; machine learning; explainable 
artificial intelligence; life cycle assessment; sustainability 

1. Introduction 

Concrete stands as the most widely utilized material globally, second only to water, with an approximate 
consumption of 1 cubic meter of concrete per person per year [1]. The demand for ordinary Portland cement (OPC) 
closely aligns with the growing requirements for concrete. However, as the global commitment to sustainability 
intensifies, the conventional use of OPC has come under scrutiny due to its significant environmental impacts [2–5]. 
The prodigious carbon footprint, resource depletion, and energy-intensive production processes associated with 
OPC have raised compelling concerns about the industry’s role in climate change and ecological degradation. In 
response, there have been notable advancements in cement manufacturing, resulting in a nearly 30% reduction in 
emissions over the past few decades [6]. While commendable progress has been made, a critical environmental 
challenge persists in the form of the de-calcination of limestone during cement production. Even under the 
hypothetical scenario where cement kilns exclusively utilize 100% renewable energy, the process would still 
generate 0.78 units of CO2 per unit of cement [7,8]. This underscores the complexity of achieving a carbon-neutral 
or low-carbon footprint in cement manufacturing despite strides toward cleaner energy sources [9,10]. Addressing 
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this challenge necessitates a deeper exploration of alternative building materials that not only meet the stringent 
criteria of sustainability but also surpass the environmental performance of traditional cement. 

Geopolymer concrete (GPC) has been emerging as an alternative to Ordinary Portland Cement Concrete 
(OPCC) [11,12] that not only exhibits mechanical properties comparable to OPCC but also presents a significantly 
reduced carbon footprint, offering a promising avenue for enhancing the environmental sustainability of the 
construction industry [13]. Compared to OPCC, GPC exhibits a significant reduction in CO2 emissions by 40% to 
90% [14]. Most GPC compositions provide a noteworthy 80–90% decrease in CO2 emissions, which includes the 
carbon emissions produced during the synthesis of alkali activators [15]. This reduction has positioned GPC as a 
viable pathway for decarbonizing the construction sector, particularly when combined with industrial by-products 
such as fly ash (FlA) and ground granulated blast furnace slag (GGBFS). 

The properties of GPC are intricately affected by various parameters such as the molarity of NaOH, sodium 
silicate to sodium hydroxide ratio (SS/SH), alkaline liquid-to-binder ratio (Alk./B), curing temperature, and the 
concentration of Al and Si in precursors, etc. Achieving the desired properties of the GPC mixture requires a 
considerably larger number of experimental mixes compared to OPCC due to highly non-linear interactions among 
these parameters. In this context, data-driven and soft computing approaches, particularly machine learning (ML) 
have become increasingly vital for the accurate and efficient prediction of the properties of the various types of 
composites [16–23]. Recent experimental and modelling studies have further clarified the role of FlA and slag 
chemistry on the fresh and hardened behavior of GPC. Study [24] evaluated the compressive strength (fc) of FlA–
slag-based GPC as a function of hydraulic, silica, alumina and lime moduli, as well as SS content, and showed 
that appropriate modulation of these indices can significantly enhance strength development in hybrid FlA–slag 
systems. Paruthi et al. [25] reported that incorporating silica fume and alccofine into GGBS-based GPC improves 
mechanical performance under different curing temperatures, underscoring the sensitivity of slag-rich binders to 
both reactive silica content and thermal regime. On the modelling side, Ahmed et al. [26] used support vector 
regression (SVR) combined with grey wolf optimization to predict the fc of GGBFS-based GPC, confirming that 
parameters such as water-to-binder ratio, GGBFS fraction, and superplasticizer (Sp) dosage are critical drivers of 
strength. Collectively, these studies highlight the strong coupling between FlA content, activator chemistry, and 
mechanical behavior. 

However, most ML models used for predicting the properties of GPC function as ‘black-box’ systems, 
offering limited interpretability despite high accuracy, which restricts their adoption in practical scenarios. To 
solve this black box issue, Explainable Artificial Intelligence (XAI) techniques, through model agnostic Shapley 
Additive Explanations (SHAP), help interpret these models by identifying key influencing features and their 
interactions [27,28]. Although highly relevant, such methods to predict and interpret the predictions in GPC 
research are scant. 

Furthermore, to comprehensively assess the sustainability of GPC, it is essential to perform a Life Cycle 
Assessment (LCA) alongside mechanical and ML-assisted investigations [29,30]. LCA provides a systematic 
framework for quantifying the environmental impacts, including carbon emissions, energy consumption, and air 
pollutants from raw material extraction to production [31]. Integrating LCA with ML and XAI methods can enable 
a more holistic understanding of GPC’s performance, guiding the development of low-impact, durable, and 
efficient materials for future applications. 

Despite significant progress in predicting GPC properties, existing studies are largely constrained by three 
major shortcomings: (i) heavy reliance on black-box ML models without transparent interpretability, limiting 
engineering adoption; (ii) absence of integrated frameworks that combine data-driven prediction with 
sustainability assessment; and (iii) lack of structured, literature-guided datasets and deployable tools that enable 
practical implementation. To address these gaps, this study proposes a unified and explainable framework that 
integrates scientometric analysis for informed dataset development, advanced ML modelling for strength 
prediction, multi-layer XAI for model transparency, cradle-to-gate LCA for environmental evaluation, and a 
graphical user interface (GUI) for real-time engineering use. The novelty of this work lies in merging predictive 
analytics with interpretability and sustainability assessment, thereby advancing state-of-the-art research toward 
transparent, reliable, and low-carbon GPC design. 

1.1. Recent Advances and Limitations in ML-Based Predictions of GPC Strength 

Several ML models have been employed to predict the properties of GPC. Random forest (RF), decision tree 
(DT), and extreme gradient boosting (XGBoost) models were developed from the 110 experimental datasets for 
predicting the fc of GPC made from FlA. Among the various models, XGBoost demonstrated superior prediction 
performance [32]. Ahmed et al. [33] employed ANN, M5-tree, linear regression (LR), and multiple LR (MLR) 
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models to predict the fc of GGBFS-FlA-based GPC. Utilizing 220 dataset from the literature, input parameters 
included the contents of GGBFS, FlA, SH, SS, Si/Al of FlA, Si/Ca of GGBFS, binder ratio, and molarity. 
Sensitivity analysis identified the binder ratio as the most influential parameter. Notably, the ANN model 
demonstrated superior prediction performance. In another study, the fc of GGBFS-GPC was predicted using 
multiple methodologies, including LR, SVR, differential evolution, grey wolf optimization, mantra rays foraging 
optimization (MRFO), genetic algorithm, and particle swarm optimization. Out of various input parameters, Sp 
dosage was identified as the most influential in fc prediction. The SVR-MRFO hybrid model performed better than 
other models in terms of correlation and errors values [26]. Kina et al. [34] include specimen age, NaOH molarity, 
natural zeolite and silica fume content, and GGBFS content to predict the fc of GGBFS-GPC by developing three 
ensemble ML (EML) models including DT, Bootstrap aggregating, and Least Squares Boosting (LSBoost). 
Specimen age was identified as the most influential factor. LSBoost exhibited the highest accuracy (98.25%). 
Similar recent studies were performed by various researchers [35–46] to predict the various properties of GPC. 

While the above studies demonstrate the growing use of ML techniques for predicting the properties of GPC, 
they predominantly rely on black-box models with limited to no interpretability [22,26,32–36,47,48]. Although 
several ensemble and hybrid approaches have achieved high predictive accuracy, they offer little understanding of 
how input features influence model outputs. Most evaluations have been restricted to statistical metrics such as 
coefficient of correlation (R2), root mean squared error (RMSE) and mean absolute error (MAE), without 
incorporating explainable frameworks capable of revealing global or instance-specific feature contributions. While 
previous studies have successfully employed various ML models for predicting the fc of GPC, their adoption in 
practice remains limited due to the absence of deployable tools that facilitate ease of use for engineers and 
practitioners. This limitation highlights the need for user-friendly interfaces that translate ML outputs into 
accessible decision-support tools. Without interpretability and accessible deployment, the practical adoption of 
these ML models remains constrained. This highlights a critical research gap, namely, the need for transparent, 
explainable, and deployable ML solutions that can support informed decision-making in sustainable concrete design. 

1.2. Research Methodology 

This study adopts a data-driven approach to predict the fc of SFGPC and to evaluate its environmental profile 
through LCA using the following steps. 

Scientometric analysis: A scientometric analysis was conducted to review the literature data, identify the 
research trends related to SFGPC. 

Development of dataset: A dataset of 363 samples of SFGPC with different combinations of input features 
and their corresponding fc values for developing ML models was prepared. After randomization, the dataset is split 
into two subsets: one for training (80% of the total data) and one for testing (20% of the total data). 

Comparative analysis of ML models (black box models): Five ML models, namely ANN, DT, RF, adaptive 
boosting (AdB), and gradient boosting (GB), were developed to predict the fc of SFGPC. The performance of each 
model is statistically measured using metrics (RMSE, MAE and R2), scatter plots for training and testing values, 
and a Taylor diagram. 

Explainable artificial intelligence (XAI): The statistically best ML model was chosen among the five, then 
uses multi-layered XAI techniques to provide interpretable and understandable explanations of the black box ML 
model. XAI analysis adopts two layers of explainability: the primary layer, which uses summary plot and force 
plot to show the feature importance and contribution, and the second layer, which uses individual conditional 
expectation (ICE) with partial dependence plot (PDP) to show the feature effects and interactions. 

Optimization: 3D Surface plots were generated to investigate the effect of two of the most significant factors, 
as suggested by the multi-layered XAI analysis, namely the Alk./B ratio and the age, on the fc of SFGPC, for two 
types of binders: FlA and GGBFS. Patterns and insights revealed were discussed by the plots and their implications 
for the design and performance of SFGPC. 

GUI development: To enable practical deployment and facilitate user interaction with the trained ML model, 
a prototype GUI was developed (Section S1 of Supplementary Materials). This user-friendly interface allows 
engineers and researchers to input mix design parameters such as binder content, Alk./B ratio, NaOH molarity, 
SS/SH ratio, curing age, and admixture dosage, etc. The GUI processes these inputs and outputs the predicted fc. 

1.3. Life Cycle and Carbon Neutrality Assessment 

A cradle-to-gate LCA was performed to quantify the environmental impacts of the SFGPC mixes. The LCA 
evaluated embodied energy (EE), global warming potential (GWP), air emissions (NOx, SOx, and particulate 
matter (PM)), carbon neutrality assessment and normalized indices to reflect their sustainability performance 
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alongside mechanical properties. The LCA results were then used to identify the mixture that successfully balances 
structural performance with lower environmental impacts. Finally, Carbon neutrality, defined as achieving  
net-zero GWP, was evaluated by estimating the GWP offset achievable through carbon capture, utilization, and 
storage (CCUS) and material substitution strategies. 

The overall methodology adopted in the study is illustrated in Figure 1. 

 
Figure 1. Methodology of the present study. 

2. Scientometric Analysis 

Scientometric analysis has been conducted to assess literature data, aiming to explore the research trend 
related to GPC and to collect the data systematically for developing ML models. Employing scientometric analysis 
ensures a more objective and impartial outcome [49]. Given the prolific output of research articles within the 
scientific community, it is crucial to identify credible sources for database inclusion. Scopus and Web of Science 
are acknowledged as the most comprehensive, effective, and unbiased databases for literature searches. Notably, 
Scopus, with its broader coverage and inclusion of more recent publications, is favoured. 

During the extraction of bibliometric data, an initial Scopus search for “Geopolymer Concrete” retrieved 
5281 items. To enhance precision, the search was subsequently refined to encompass only original articles, review 
studies, conference papers, and book chapters published in English, specifically within the domains of 
Engineering, material science, and environmental science. This refined search produced 3984 results. Further 
refinement was achieved by introducing the term “Fly Ash” and “Ground Granulated Blast Furnace Slag” to focus 
explicitly on studies that used these binders for the preparation of GPC. Following the application of these filters 
in the Scopus database, 441 results were retained. The obtained database was saved in CSV format to facilitate 
subsequent analysis using suitable software. The analysis was conducted utilizing VOSviewer version 1.6.20 
software and the Biblioshiny package in the RStudio [50]. 

The dataset spanning the years 2009 to 2025, comprising 441 documents from 135 distinct sources. The annual 
growth rate of 16.59% underscores the significant expansion of scholarly contributions over the specified timespan. 
The document contents reveal a rich landscape, with 1816 unique keywords plus identifiers and 932 author’s 
keywords, elucidating the diverse thematic focus of the research. Authors engaged in this scholarly endeavor total 
1059, with only 13 documents being single-authored. Collaboration emerges as a hallmark, evidenced by an average 
of 3.36 co-authors per document, with approximately 14.97% of collaborations transcending international boundaries. 
Notably, the average citations per document stand at 23.15, reflecting a moderate level of scholarly impact. 
Furthermore, the dataset comprises 328 articles, 17 book chapters, and 96 conference papers, underscoring the 
multidimensionality of the research output, revealing a dynamic and collaborative research landscape 
characterized by growth, impact, and internationalisation. 
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The sematic diagram for most occurring keywords is shown in Figure 2, offering insights into thematic 
concentrations and their network metrics. The most occurring keywords from the dataset extracted are “fly ash”, 
“slags”, “geopolymer concrete”, “inorganic polymer” and “compressive strength”. This analysis aids in 
understanding the interconnected nature of research themes and highlights pivotal concepts shaping the scholarly 
discourse within the examined dataset. 

 

Figure 2. Semantic diagram for the most occurring keywords. 

Figure 3 presents the thematic evolution of keywords within the research landscape of GPC over distinct 
periods. The selection of time brackets for the thematic evolution analysis was guided by publication density 
patterns observed in the scientometric dataset rather than by uniform temporal segmentation. Analysis of annual 
publication trends revealed three distinct phases: (i) an initial formative period (2009–2015) characterized by 
relatively low and sporadic publication output, (ii) a consolidation and rapid growth phase (2016–2022) marked 
by a sharp increase in annual publications, and (iii) a recent expansion phase (2023–2025) exhibiting sustained 
high publication density with diversification toward data-driven modelling, and sustainability-oriented research. 
These breakpoints were identified by examining inflection points in cumulative publication counts and year-wise 
output, ensuring that each time window contained a statistically meaningful number of studies and represented a 
distinct stage in the evolution of the research field. 

Noteworthy transitions include the shift from ‘concrete’ (2009–2015) to “geopolymer” (2016–2022), 
suggesting an evolving research focus. The progression from “fly ash” (2009–2015) to “slag” and “circular 
economy” (2016–2022) signifies a thematic shift towards sustainable construction practices aligned with circular 
economy principles. Furthermore, the persistence of “fly ash” as a keyword from 2009–2015 to 2016–2022, 
accompanied by associated terms like “compressive strength”, “alkaline solution”, and “workability”, underscores 
its enduring significance in the discourse. The evolution from “fly ash” (2016–2022) to diverse theme like 
“ambient curing” (2023–2025) highlights the expanding scope of geopolymer research within this period. The 
scientometric keyword co-occurrence analysis revealed that terms such as “ambient curing,” “steam curing,” and 
“thermal curing” frequently appear in the literature. These terms do not represent thematic research domains; 
instead, they reflect commonly adopted experimental curing conditions reported across geopolymer studies. Their 
frequent appearance in the mapping output indicates the diversity of curing regimes investigated in the field rather 
than distinct conceptual themes. Additionally, the emergence of new keywords such as “Taguchi method” and 
“metakaolin” in 2023–2025 suggests evolving methodologies and broader conceptual frameworks. This analysis 
contributes to a nuanced understanding of the dynamic thematic evolution within the studied research domain. 
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Figure 3. Thematic evolution over time, illustrating the dynamic shifts. 

The thematic map, shown in Figure 4, discerns the research landscape into four distinct categories, reflecting 
the dynamics of emerging, basic, motor, and niche themes. In the emerging theme quadrant, “Ground Granulated 
Blast Furnace Slag” stands out as a central and evolving focus, indicating a burgeoning research trend. The basic 
theme quadrant is characterized by the prominence of “Sorptivity, Water Absorption and Bond Strength”, 
suggesting foundational aspects of study within this domain. The motor theme quadrant is dominated by the 
extensive cluster around “Mechanical Properties”, indicating a core and driving force within the research 
discourse. Finally, the fourth quadrant, featuring the cluster around “Fly Ash”, signifies a niche theme that, while 
well-established, remains a specific and distinctive area of focus within the broader research landscape. This 
categorization offers a detailed perspective on the evolving and stable thematic concentrations, providing valuable 
insights into the overarching trends and specialized niches shaping the research discourse. 

 

Figure 4. Thematic map illustrating research concentrations. 

3. Methods and Materials 

3.1. Modelling Techniques 

The models, developed for predicting the fc of SFGPC, encompass both conventional and ensemble 
approaches. The conventional ML (CML) models consist of the ANN and DT, while the EML models comprise 
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RF, AdB, and GB. The selection of the CML and EML models used in this study was guided by both the nature 
of GPC data and evidence from prior research. Notably, CML models operate as standalone algorithms, whereas 
EML models harness the collective power of multiple algorithms to enhance predictive accuracy. Although the 
CML and EML models were not applied concurrently, assessing both categories offers complementary insights, 
such as CML models provide interpretable baseline behaviour while EML models leverage ensemble diversity to 
enhance accuracy. The theoretical underpinnings of all ML models employed in this study are elaborated below. 

3.1.1. Artificial Neural Network 

ANNs are nonlinear universal function approximators composed of interconnected processing units 
(“neurons”) organized in layers. Each neuron computes a weighted sum of its inputs followed by a nonlinear 
activation function. For a neuron 𝑗, the output is expressed as Equation (1): 

𝑦௝ ൌ 𝜎൫∑  ௡
௜ୀଵ 𝑤௜௝𝑥௜ ൅ 𝑏௝൯  (1)

where 𝑤௜௝ and 𝑏௝ are the learnable weights and biases, respectively, and 𝜎ሺ൉ሻ denotes the activation function 
(ReLU in this study). Model training is performed using backpropagation, which minimizes the loss function 𝐿 
by updating weights via gradient descent Equation (2): 

𝑤௜௝
ሺ௧ାଵሻ ൌ 𝑤௜௝

ሺ௧ሻ െ 𝜂
𝜕𝐿
𝜕𝑤௜௝

 (2)

where 𝜂  is the learning rate. The ANN is capable of capturing complex nonlinear relationships among mix 
parameters such as binder composition, activator chemistry, and curing age, making it suitable for modelling the 
intricate behaviour of GPC. 

3.1.2. Decision Tree 

DT partitions the feature space into homogeneous regions using recursive binary splits. At each internal node, 
the algorithm selects the feature 𝑥௞ and 𝑠 threshold that maximize impurity reduction. For regression, impurity 
is commonly measured using variance Equation (3): 

Varሺ𝑆ሻ ൌ
ଵ

|ௌ|
∑  ௜∈ௌ ሺ𝑦௜ െ 𝑦തௌሻଶ  (3)

The optimal split minimizes Equation (4): 

Δ ൌ Varሺ𝑆ሻ െ ቆ
|ௌಽ|

|ௌ|
Varሺ𝑆௅ሻ ൅

|ௌೃ|

|ௌ|
Varሺ𝑆ோሻቇ  (4)

where 𝑆௅ and 𝑆ோ are the left and right child nodes. DTs are easy to interpret but prone to overfitting and high 
variance, which motivates the use of ensemble approaches. 

3.1.3. Random Forest 

RF is an ensemble of DT constructed using bootstrap aggregation (“bagging”). Each tree is trained on a 
randomly sampled subset of the data and a random subset of features at each split. For a forest of 𝑇 trees, the 
prediction is Equation (5): 

𝑦ො ൌ
ଵ

்
∑  ்
௧ୀଵ 𝑓௧ሺ𝑥ሻ  (5)

Bagging reduces variance, while feature randomness decorrelates trees, thereby improving generalization. 
RF is particularly effective for handling nonlinearities and interactions among variables such as alkali ratios, 
aggregate contents, and binder proportions. 

3.1.4. Adaptive Boosting 

AdB constructs an ensemble by sequentially training weak learners (typically shallow DTs). Each learner 
focuses on instances mis-predicted by its predecessor by assigning higher weights to them. For iteration 𝑚, the 
weighted error is Equation (6): 

𝜖௠ ൌ ∑  ே
௜ୀଵ 𝑤௜

ሺ௠ሻ𝕀൫𝑦௜ ് ℎ௠ሺ𝑥௜ሻ൯  (6)

The model weight is computed as Equation (7): 
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𝛼௠ ൌ ln ቀ
ଵିఢ೘
ఢ೘

ቁ  (7)

and sample weights are updated as Equation (8): 

𝑤௜
ሺ௠ାଵሻ ൌ 𝑤௜

ሺ௠ሻexp ቀ𝛼௠𝕀൫𝑦௜ ് ℎ௠ሺ𝑥௜ሻ൯ቁ (8)

The final prediction aggregates all weak learners Equation (9): 

𝑦ො ൌ ∑  ெ
௠ୀଵ 𝛼௠ℎ௠ሺ𝑥ሻ  (9)

AdB effectively reduces bias and improves accuracy when underlying patterns are subtle or nonlinear. 

3.1.5. Gradient Boosting 

GB model in this study, constructs an additive ensemble by fitting new learners to the negative gradients of 
the loss function. For a model consisting of 𝑚 learners, the iterative update is Equation (10): 

𝐹௠ሺ𝑥ሻ ൌ 𝐹௠ିଵሺ𝑥ሻ ൅ 𝜈ℎ௠ሺ𝑥ሻ  (10)

where 𝜈  is the learning rate and ℎ௠ሺ𝑥ሻ approximates the gradient Equation (11): 

ℎ௠ሺ𝑥ሻ ൎ െ
𝜕𝐿ሺ𝑦,𝐹ሺ𝑥ሻሻ
𝜕𝐹ሺ𝑥ሻ

 (11)

For regression with MSE Equation (12): 

𝑔௜
ሺ௠ሻ ൌ 𝑦௜ െ 𝐹௠ିଵሺ𝑥௜ሻ  (12)

representing the residuals that each new tree attempts to model. GB’s ability to sequentially minimize residual 
patterns enables it to capture highly nonlinear interactions, such as the synergistic influence of slag content, 
activator chemistry, and curing age on compressive strength. 

Prior to model training, the dataset was subjected to a structured preprocessing pipeline to enhance numerical 
stability and improve model performance. All input features were normalized using Min-Max scaling, defined as 
𝑥ᇱ ൌ

௫ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
, where 𝑥௠௜௡  and 𝑥௠௔௫  represent the minimum and maximum values of each feature in the 

dataset. This approach preserves distributional characteristics while ensuring that no variable dominates due to 
differences in scale. Normalization was especially important because the input parameters (e.g., aggregates, binder 
contents, molarity, and Alk./B ratio) vary significantly in magnitude. After normalization, the dataset was 
randomly divided into 80% training and 20% testing subsets. All ML models were trained on the normalized 
dataset to ensure fair comparison and robust convergence. 

3.2. Materials 

Database Development and Statistical Analysis 

The data set used in this study consists of 363 samples of SFGPC with different combinations of these features 
and their corresponding fc values [51–65]. The dataset contains eleven features, out of which ten are the inputs and 
a single output. It is important to note that the dataset includes only the mass-based quantities of fine (Fagg.) and 
coarse (Cagg.) aggregates in kg/m3, as reported in the literature. Aggregate size gradations were not included 
because most publications did not consistently provide detailed size ranges. Therefore, Fagg. and Cagg. in this 
study refer solely to the reported mass of aggregates and not to specific particle size distributions. Also, in alkali-
activated GPC systems, the primary liquid phase is supplied through sodium silicate and NaOH solutions, whose 
inherent water content is governed by activator concentration and silica modulus. In addition to this inherent water, 
several studies explicitly reported the use of supplementary water to improve workability or casting feasibility. 
Such externally added water is represented in the dataset by the parameter “Additional Water (W)” and was 
included only when clearly documented in the source publications. Therefore, the dataset distinguishes between 
water intrinsically present in the activator solutions and supplementary water added during mixing, both of which 
influence fresh and hardened properties. Furthermore, the dataset used in this study was assembled, the 
preparation, curing, and testing procedures reflect the standards followed in the respective studies. Only those 
publications that explicitly adhered to recognized standards, such as ASTM C39 for fc testing, ASTM C192 or 
equivalent national standards for specimen preparation, and clearly reported curing regimes (ambient, oven, 
steam), were included in the dataset. The descriptive statistics of the data set are shown in Table 1. 
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Table 1. Statistical analysis of the data collected. 

Features Abbreviations Unit Min. Max. Mean Std. Deviation Skewness Kurtosis 
Fly Ash FlA kg/m3 0 500 258.3 123.86 −0.495 −0.686 

Ground Granulated Blast Furnace Slag GGBFS kg/m3 0 488 151.6 109.96 0.822 0.218 
Fine Aggregate Fagg. kg/m3 57.01 707 565.2 138.19 −2.7 7.388 

Coarse Aggregate Cagg. kg/m3 132.26 1662 1137.2 287.87 −2.185 5.669 
Alkaline soln./Binder ratio Alk./B - 0.035 0.719 0.43 0.11 −0.193 1.491 

Sodium Silicate/Sodium Hydroxide SS/SH - 0 5.006 2.26 0.59 0.496 5.092 
Molarity M Molar 6 16 10.8 2.35 0.184 −0.832 

Superplasticizer Sp kg/m3 0 16 4.50 5.23 0.914 −0.248 
Additional Water W kg/m3 0 100.32 9.33 22.58 2.599 5.446 

Age A Days 3 180 25.39 29.84 3.03 11.465 
Compressive Strength fc MPa 0.407 68.602 35.32 14.61 0.259 −0.678 

A complete dataset consisting of 363 mix designs and their corresponding compressive strength values, 
extracted from 15 peer-reviewed publications, has been included as Supplementary Material (Dataset S3). The 
statistical analysis of the dataset reveals notable trends in the distribution of its constituent materials and 
influencing parameters. The two primary binders as FlA and GGBFS exhibit contrasting distribution 
characteristics. FlA ranges from 0 to 500 kg/m3 with a mean of 258.32 and displays a slightly left-skewed and 
platykurtic distribution, indicating a relatively balanced spread of values with few extreme highs. In contrast, 
GGBFS, ranging from 0 to 488 kg/m3 with a mean of 151.57, is right-skewed and slightly leptokurtic, suggesting 
a tendency towards lower values with occasional high values. 

Among the aggregates, both Fagg. and Cagg. show left-skewed and highly leptokurtic distributions, reflecting 
a concentration of values toward the higher end of their respective ranges (57.01–707 kg/m3 for Fagg. and  
132.26–1662 kg/m3 for Cagg.) with extreme peaks, indicative of consistency in mix proportions. The Alk./B 
exhibits a slightly left-skewed, moderately leptokurtic distribution with values between 0.035 and 0.719, showing 
that most mixes favoured moderate alkaline dosages. The SS/SH ratio is right-skewed and highly leptokurtic  
(0–5.006, mean = 2.26), highlighting frequent use of moderate SS/SH ratios with some extreme values. The 
molarity of NaOH (M) varies from 6 to 16 (mean = 10.84), with a near-symmetric but platykurtic distribution, 
indicating controlled variability in the concentration of the alkaline activator. The Sp and W features exhibit  
right-skewed distributions, particularly W with a high skewness of 2.599, suggesting that water was added 
sparingly in most mixes, with few cases requiring significantly higher amounts. The curing age (A) of specimens, 
ranging from 3 to 180 days with a high positive skewness (3.03) and kurtosis (11.47), indicates that most samples 
were tested at early ages, with a small number extending to long-term curing. 

Finally, the target variable, fc, spans from 0.407 to 68.60 MPa, with a mean of 35.32 MPa. Its slightly right-
skewed and platykurtic distribution suggests a fair spread around the mean with fewer outliers. These insights 
confirm that the dataset captures a wide variety of SFGPC mix designs, covering a realistic range of material 
proportions and curing conditions, making it suitable for developing robust and generalizable predictive models. 

3.3. Data Visualization 

3.3.1. Scatter Plots and Histogram 

Scatter plots, along with the violin density plots on the sides, are shown in Figure 5. The scatter plots show 
that some features have a clear positive or negative correlation with the fc, such as FlA, GGBFS, and A, while 
others have a complex or weak correlation, such as Fagg., Cagg., and W. Figure 6 represents the histograms of fc 
showing how often different values of the fc occur in the data set. The histograms also show that the highest fc is 
reached at 180 days, with a value of 68.602 MPa. 
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Figure 5. Scatter plots with violin density between input features and fc of SFGPC. 

 
Figure 6. Frequency of fc values of SFGPC within the dataset. 

3.3.2. Mixed Correlation Plot 

Figure 7 shows the mixed correlation plot between the fc of SFGPC and the input features. The plot indicates 
that the fc has a positive correlation with the “A”, and “aggregates”. This means that increasing these features will 
likely to increase the fc of GPC. On the other hand, the fc has a negative correlation with the “M”. This means that 
increasing these features will decrease the fc of SFGPC. The plot also shows that the fc has low correlation with 
the other remaining inputs. This means that changing these features will have a little effect on the fc of SFGPC. 
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Figure 7. Mixed correlation plot. 

3.4. Machine Learning Methodology 

Two CML models, namely ANN and DT and three EML, which are RF, AdB and GB have been used for 
predicting the fc of sustainable SFGPC. The data set of 363 instances was split into two subsets: one for training 
(290 instances, 80% of the data) and one for testing (73 instances, 20% of the data). The performance of each 
model was measured using three metrics: RMSE, MAE and R2. The results of the comparison between various ML 
models developed were also visualised using scatter plots and a Taylor diagram, which show the correlation and 
dispersion of the predicted and actual values of the fc for both the training and testing phases. The model that 
achieved the highest performance in terms of all the metrics and visualizations was chosen as the basis for XAI, 
which aims to provide interpretable and understandable explanations of the black box ML models. In addition, a 
prototype GUI was developed with the best-performing model to instantly predict the fc of the sustainable SFGPC 
based on user-defined inputs. 

4. Results and Discussions 

4.1. Hyperparameter Tuning 

The hyperparameter tuning process was designed to be objective and non-arbitrary. For each model, the 
search space was defined based on commonly reported ranges in prior geopolymer ML studies and constrained to 
avoid excessive model complexity. Preliminary sensitivity checks were conducted to identify parameters with the 
greatest influence on prediction error, and only these parameters were included in the grid-search to reduce 
redundancy. Model configurations and weights were evaluated using k-fold cross-validation, and the optimal 
hyperparameter set was selected based on the minimum average validation error, subject to the additional 
constraint that training and testing errors remain closely aligned (Section S2 of Supplementary Materials). This 
ensured that the final model configurations were selected through performance-based criteria rather than subjective 
preference. As far as the model specific explanation is being concerned, for the GB model, the learning rate, tree 
depth, and number of estimators were jointly optimized to balance bias and variance. Lower learning rates 
combined with a moderate number of estimators were preferred to prevent overfitting, while shallow tree depths 
were selected to limit model complexity. The final configuration was chosen because it provided the lowest cross-
validated error and exhibited stable convergence without divergence between training and testing performance. 
The tuned hyperparameters ensured stable model convergence and minimized the risk of overfitting. Table 2 below 
shows the tuned hyperparameters and the performance metrics for each model. 
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Table 2. Tuned parameters for all ML models. 

Model Optimized Hyper-Parameters 

ANN 

 Number of hidden layers—2 
 Number of neurons in hidden layers—12,12 
 Activation function—ReLu 
 Solver—Adam 
 Regularization—0.0005 
 Maximal number of iterations—1,000,000 

DT 
 Minimum number of instances in leaves—2 
 Do not split subsets smaller than—3 
 Limit the maximal tree depth to—125  

RF 
 Number of Trees—50 
 Do not split subset smaller than—2 
 Limit depth of individual trees—8 

AdB 

 Base estimator—Tree 
 Number of estimators—5 
 Learning rate—0.6 
 Fixed seed for random generator—40 
 Regression loss function—exponential 

GB 

 Number of trees—100 
 Learning rate—0.100 
 Limit depth of individual trees—5 
 Do not split subset smaller than—3 

4.2. Model Performance Parameters 

The performance of the five ML models, was compared and evaluated using three metrics: RMSE, MAE, and 
R2. Table 3 shows the values of the performance metrics for each model after the training and testing phases, 
respectively. Figure 8 shows the radar diagrams that illustrate the comparison of the performance metrics visually. 
The results indicate that the GB model, which is an EML model, achieved the highest performance in terms of all 
the metrics and visualizations. 

Table 3. Performance metrics for various ML models used to predict the fc of GPC. 

S. No. Model Phase RMSE MAE R2 

1. ANN Training 4.582 3.424 0.903 
Testing 5.452 4.335 0.848 

2. DT Training 3.913 2.618 0.929 
Testing 6.747 4.637 0.767 

3. RF Training 3.718 2.749 0.936 
Testing 4.248 3.461 0.908 

4. AdB Training 3.249 1.759 0.951 
Testing 4.641 3.401 0.89 

5. GB Training 3.15 1.809 0.954 
Testing 3.128 2.411 0.95 

4.3. Scatter Plots 

Scatter plots, as shown in Figure 9, show the comparison of the predicted and actual values of the fc of SFGPC 
for the five ML models after the training and testing phases. The plots also include the error lines that represent 
the deviation of the predicted values from the actual values within a range of ±20%. The results from Figure 9 
reveal that the GB model, which is an EML model, has the highest prediction accuracy and the lowest deviation 
among all the models, followed by the AdB model. The CML models, namely ANN and DT, have lower prediction 
accuracy and higher deviation than the EML models. 
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Figure 8. Radar diagrams showing the comparison of performance between various ML models after (a) training and (b) testing phases. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 9. Scatter plots of predicted and actual values of fc by (a) ANN, (b) DT, (c) RF, (d) AdB and (e) GB models 
after training and testing phases, respectively. 
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4.4. Taylor Diagram 

The Taylor diagram in Figure 10 compares the performance of the five black box ML models. The diagram 
shows that the GB model has the highest correlation coefficient, the lowest error, and the closest standard deviation 
to the reference standard deviation of the actual fc. This indicates that the GB model has the best agreement with 
the actual fc among all the models. The other EML models, namely RF and AdB, also have high correlation 
coefficients, low errors, and close standard deviations to the reference standard deviation. The EML models have 
better performance than the CML models, which have lower R2, comparatively higher errors, and farther standard 
deviations from the reference standard deviation. 

  
(a) (b) 

Figure 10. Taylor diagram for various ML models after (a) training, and (b) testing phase, respectively. 

The results from Table 3, Figures 8–10 demonstrate that the GB model outperforms the other four ML models 
in predicting the fc of SFGPC for this dataset. The other EML models, namely RF and AdB, also have good 
performance, but not as good as the GB model. The CML models have comparatively lower performance and 
higher deviation than the EML models. Hence, the GB model is selected as the best predictive model for the fc of 
SFGPC for this dataset, and thus, the GB model is chosen as the basis for multi-layered XAI analysis for providing 
insights into the feature importance and the decision rules that govern the prediction process. 

4.5. Model Explanation Using XAI 

4.5.1. Primary Layer of Explainability 

The primary layer of explainability provides a summary of the feature importance and effects as suggested 
by the GB model. The primary layer of explainability consists of two types of plots: a summary plot and a force 
plot. The summary plot ranks the features from the most important to the least important, based on their 
performance metric values. The force plot shows the contribution of each input feature to the prediction of the fc 
of SFGPC for a specific instance in the dataset. The primary layer of explainability helps to understand the overall 
and individual predictions of the GB model. 

Summary Plot 

The summary plot by GB model shown in Figure 11 represents the relative importance of the input features 
in predicting the fc of SFGPC. The plot reveals that the most important feature is the age “A” of the concrete 
specimens, followed by the amount of “GGBFS”, “Alk./B”, “Cagg.”, “FlA”, “Fagg.”, “Sp”, “SS/SH”, “W” and 
“M”. The plot also shows that some features have a positive impact on the fc, such as “A”, “GGBFS”, and “Cagg.”, 
some have a negative impact, such as “Alk./B”, “FlA”, and “M”, while others have a little impact on the fc within 
this dataset. The plot provides a useful overview of the feature importance and the direction of their effects on  
the prediction: 
 Age: The age of the concrete specimens is the most important feature, as it has a positive effect on the 

prediction. This means that the older the specimens, the higher their fc. This is because the geopolymerization 
process continues over time, resulting in a denser and stronger matrix [13]. 
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 Ground Granulated Blast Furnace Slag: The amount of GGBFS in the binder material is the second most 
important feature, as it has a positive effect on the prediction. This means that the more GGBFS, the higher 
the fc. This is because GGBFS can enhance the geopolymerization process by providing additional silicon 
and aluminum, as well as reducing the heat of hydration and improving the durability of the concrete [66]. 

 Alkaline soln./Binder ratio: The ratio of the alkaline solution to the binder material is the third most important 
feature, as it has a negative effect on the prediction. This means that the higher the ratio, the lower the fc. This 
is because a high ratio can cause an excess of alkaline solution, which affects the geopolymerization process 
and the durability of the concrete [13]. 

 Coarse Aggregate: The amount of coarse aggregate in the mixture is the fourth most important feature, as it 
has a positive effect on the prediction. This means that the more the aggregate, the higher the fc. This is 
because coarse aggregate can provide resistance to the applied load and reduce the shrinkage of the concrete. 
However, the effect of coarse aggregate is also complex and nonlinear, as it also depends on the size and 
shape of the particles [67]. 

 Fly Ash: The amount of FlA in the binder material is the fifth most important feature, as it has a negative 
effect on the prediction. This means that the more FlA, the lower the fc [68]. 

 Fine Aggregate: The amount of fine aggregate in the mixture is the sixth most important feature, as it has a 
positive effect on the prediction. This means that the more the fine aggregate content, the higher the fc. This 
is because fine aggregate can fill the voids and improve the density of the concrete. However, the effect of 
fine aggregate is complex and nonlinear, as it also depends on the grading and shape of the particles [69]. 

 Superplasticizer: The amount of superplasticizer in the mixture is the seventh most important feature, as it 
has a positive or negative effect on the prediction, depending on the value. This means that the optimal 
amount of superplasticizer can increase the fc, while too much or too little can decrease it. This is because 
superplasticizer can improve the workability and fluidity of the mixture, but it can also affect the water 
content and the geopolymerization process [69]. 

 Sodium Silicate/Sodium Hydroxide: The SS/SH ratio in the alkaline activator solution is the eight most 
important feature, as it has less effect on the fc prediction [70]. 

 Water: The amount of additional water in the mixture is the ninth most important feature, as it has a little or 
positive effect on the fc prediction. 

 Molarity: The molarity of the alkaline activator solution is the least important feature, as it has a negligible 
effect on the fc prediction. 

 

Figure 11. Summary plot showing the global and local feature importance as suggested by the GB model. 

Force Plot 

The force plot in Figure 12 shows the contribution of each input feature to the prediction of the fc of SFGPC 
for a specific instance in the dataset. The base value is the average fc of the training data, which is 34.88 MPa. The 
final predicted value is the sum of the base value and the SHAP values of each feature, which is 51.94 MPa. The 
plot indicates that the force features for this instance are A, Cagg., Alk./B, and Fagg., Sp, SS/SH, W and M. 
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GGBFS and FlA were the resistant variables for this specific instance. The plot also shows that the features have 
different effects on the fc depending on their values. For example, increasing “A” tends to increase the fc, while 
increasing FlA tends to decrease the fc. The plot also reveals that some features have negligible impact on the fc 
for this instance, such as Sp, SS/SH, W and M. Therefore, the force plot provides a detailed explanation of how 
the GB model predicts the fc of SFGPC for a specific instance, based on the values and importance of each feature. 

 

Figure 12. Force plot for a specific instance by GB model. 

4.5.2. Second Layer of Explainability 

Herein, the second layer of explainability refers to the use of ICE with PDP curves to show how the fc changes 
as a function of each feature, while holding the other features constant. This layer provides more granular and 
individualized information than the first layer, which uses summary plot and force plot to show the overall feature 
importance and contribution. This helps in gaining more insights into the relationship between the features and the 
target variable, as well as the variability and interactions among the features. 

ICE with PDP Curves 

The ICE with PDP curves in Figure 13 shows the effect of varying each of the most significant features on 
the fc of SFGPC, while keeping the other features fixed at their average values. The curves reveal that some features 
have a linear or nonlinear relationship with the fc, such as A, GGBFS, and Alk./B, while others have a comparative 
weak relationship, such as FlA. The curves also show that some features have a positive or negative impact on the 
fc, depending on their values. For example, increasing A tends to increase the fc, while increasing Alk./B tends to 
decrease the fc. By this the ICE with PDP curves provides a deeper understanding of how the GB model predicts 
the fc of SFGPC, based on the values and effects of each feature. 

4.5.3. 3D Surface Plots 

To investigate the effect of two of the significant factors, namely the Alk./B ratio and the age, on the fc, 3D 
Surface plots were generated using the GB model as shown in Figure 14. The plots show the fc values for different 
combinations of Alk./B and age, for two types of binders: FlA and GGBFS independently and the synergistic 
behaviour too. The plots reveal some interesting patterns and insights, as discussed. One of the patterns that can 
be observed from the plots is that the fc decreases with the increase of Alk./B ratio, regardless of the type of binder. 
This implies that higher alkalinity is unfavourable for the geopolymerization process and the formation of a denser 
and stronger matrix. Another pattern is that the fc increases with the increase of age, especially for the GPC made 
with GGBFS. This indicates that the GPC made with GGBFS has a higher potential for strength development over 
time. A third pattern is that the fc of GPC made with GGBFS is consistently higher than the fc of GPC made with 
FlA, for all values of Alk./B and age. This suggests that the GGBFS is a more suitable binder for GPC than the 
FlA, as it provides better mechanical properties. These patterns and insights can help optimize the design and 
performance of SFGPC for various applications. 
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Figure 13. ICE with PDP curves for the most significant features, showing how the fc of SFGPC varies with each 
feature value. 

  

GGBFS as binder FlA as binder 

 
GGBFS and FlA both as binder 

Figure 14. Effect of Alk./B ratio with Age on the fc using 3D surface plots when GGBFS or/and FlA was/were 
used as binder. 
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5. Sustainability Analysis of GPC Mixes 

A cradle-to-gate LCA was conducted to evaluate the environmental performance of three GPC mixes with 
comparable fc (~27.3–28.4 MPa): Mix 1 (GGBFS-Dominant), Mix 2 (Hybrid or synergistic), and Mix 3 (FlA-
Dominant). The mixes composition used for LCA are shown in Table 4. The analysis focused on EE, GWP, carbon 
neutrality and air emissions, including Nitrogen Oxides (NOx), Sulfur Oxides (SOx), and PM. To account for 
mechanical performance alongside environmental effects, two normalized sustainability indices were defined: 
Sustainability Index (Si) and Energy Efficiency Index (EEi). Carbon neutrality potential was assessed through an 
assumed 25% GWP offset, based on carbonation (10%), CO2 injection in aggregates (5%), and material 
substitution (10%). Although intentionally limited in scope, this assessment provides a comparative understanding 
of how the key parameters identified through XAI, particularly binder composition and activator dosage, influence 
both mechanical performance and environmental outcomes, which is important for sustainable mix design in 
structural applications. 

Table 4. Three mix designs for LCA. 

Parameter Mix 1 Mix 2 Mix 3 
FlA (kg/m3) 0 94 405 

GGBFS (kg/m3) 488 379 0 
Fagg. (kg/m3) 601 601 683 
Cagg. (kg/m3) 1073 1073 1269 

Alk./B  0.4734 0.5497 0.4 
SS/SH  2 2.5135 1 

Molarity (M) 10 10 13 
Sp (kg/m3) 9.79 9.49 0 

Additional Water (kg/m3) 0 0 81 
Curing Age (days) 28 28 28 

fc (MPa) 27.313 27.96 28.357 

5.1. LCA Assumptions 

To streamline and standardize the LCA, a set of key assumptions were made. The system boundary was 
defined as cradle to gate, excluding curing, use, and end-of-life phases. Environmental coefficients were sourced 
from ICE v3.0, Ecoinvent 3.8, and [71,72]. The life cycle inventory coefficients (LCI) used in this study are 
summarized in Table 5. 

Table 5. LCI coefficients used for LCA. 

Material/Component EE (MJ/kg) GWP (kg CO2-eq/kg) NOx (kg/kg) SOx (kg/kg) PM (kg/kg) 
FlA 0.12 0.009 0.00001 0.00002 0.000005 

GGBFS 1.00 0.07 0.00010 0.00015 0.00003 
Fagg. 0.10 0.005 0.000005 0.00001 0.000002 
Cagg. 0.10 0.005 0.000005 0.00001 0.000002 

SH 20.0 1.50 0.0010 0.0020 0.0005 
SS 11.0 1.20 0.0008 0.0015 0.0004 
Sp 25.0 2.00 0.0012 0.0025 0.0006 

Additional Water 0.01 0.00 0.0000 0.0000 0.0000 

All raw materials were assumed to be transported 100 km by diesel truck, while sodium silicate and sodium 
hydroxide were produced without recycling. The energy for mixing was kept constant at 5 MJ/m3, with associated 
emissions of 0.4 kg CO2-eq/m3. The functional unit for all calculations was 1 m3 of concrete, and the Si and EEi 
were normalized by fc to enable a fair comparison across mixes. These assumptions reflect industry conditions and 
allow for a reasonable and consistent comparison of environmental impacts. 

5.2. Mix Compositions and Environmental Performance 

The three GPC mixes differ in binder composition, activator content, and water usage, influencing their 
mechanical and environmental performance. Table 6 represents the calculation details for the sustainability 
indicators. Table 7 summarizes the sustainability metrics as GWP, EE, Air Emissions, Si, and EEi. 
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 Sustainability Indices: 
Si = GWP/fc. 
EEi = EE/fc. 

Table 6. Calculation details. 

Parameter Mix M1 (GGBFS Dominant) Mix M2  
(Hybrid or Synergistic) 

Mix M3  
(FlA Dominant) 

Activator 
Mass 

Alk./B = 0.4734, SS/SH = 2 → 231.03 kg/m3  
(154.02 kg/m3 SS, 77.01 kg/m3 SH) 

Alk./B = 0.5497,  
SS/SH = 2.5135 → 

258.80 kg/m3  
(186.34 kg/m3 SS,  
72.46 kg/m3 SH) 

Alk./B = 0.4,  
SS/SH = 1 → 162 kg/m3 

(81 kg/m3 SS,  
81 kg/m3 SH) 

GWP (kg 
CO2-eq/m3) 

(488 × 0.07) + (601 × 0.005) + (1073 × 0.005) +  
(154.02 × 1.2) + (77.01 × 1.5) + (9.79 × 2.0) + (0 × 0.0) + 

[(488 + 601 + 1073 + 231.03 + 9.79 + 0) × 0.01]  
+ 0.4 = 302.64 

287.05 156.00 

EE (MJ/m3) 
(488 × 1.0) + (601 × 0.1) + (1073 × 0.1) + (154.02 × 11) + 

(77.01 × 20) + (9.79 × 25) + (0 × 0.01) + [(488 + 601 + 1073 
+ 231.03 + 9.79 + 0) × 0.1] + 5 = 2693.35 

2347.44 1966.56 

NOx 
(kg/m3) 

(488 × 0.0001) + (601 × 0.000005) + (1073 × 0.000005) + 
(154.02 × 0.0008) + (77.01 × 0.001) + (9.79 × 0.0012) +  
(0 × 0.0) + [(488 + 601 + 1073 + 231.03 + 9.79 + 0) × 

0.00002] + 0.00001 = 0.190 

0.182 0.103 

SOx 
(kg/m3) 

(488 × 0.00015) + (601 × 0.00001) + (1073 × 0.00001) + 
(154.02 × 0.0015) + (77.01 × 0.002) + (9.79 × 0.0025) +  
(0 × 0.0) + [(488 + 601 + 1073 + 231.03 + 9.79 + 0) × 

0.00003] + 0.00002 = 0.340 

0.324 0.184 

PM (kg/m3) 

(488×0.00003) + (601×0.000002) + (1073×0.000002) + 
(154.02×0.0004) + (77.01×0.0005) + (9.79×0.0006) +  

(0×0.0) + [(488+601+1073+231.03+9.79+0) × 0.00001] +  
0.000005 = 0.083 

0.079 0.047 

Table 7. Sustainability metrics for the three GPC mixes. 

Parameter Mix 1 Mix 2 Mix 3 
GWP (kg CO2-eq/m3) 302.64 287.05 156.00 

EE (MJ/m3) 2693.35 2347.44 1966.56 
Si (kg CO2/MPa) 11.08 10.27 5.50 

EEi (MJ/MPa) 98.62 83.96 69.36 
NOx Emissions (kg/m3) 0.19 0.182 0.103 
SOx Emissions (kg/m3) 0.34 0.324 0.184 
PM Emissions (kg/m3) 0.083 0.079 0.047 

5.3. Comparative Sustainability Analysis 

Among the three GPC mixes with comparable fc, Tables 6 and 7 demonstrates that the Mix 1 demonstrated 
the highest environmental footprint across all evaluated indicators. This elevated impact is primarily attributed to 
its high GGBFS content (488 kg/m3) and substantial alkali activator demand (231.03 kg/m3), particularly with a 
SS/SH ratio of 2.0. These components are known to be energy-intensive and carbon-intensive, significantly 
increasing both EE and GWP. 

Mix 2, incorporating a moderate quantity of both GGBFS (379 kg/m3) and FlA (94 kg/m3), also required a 
high activator dosage (258.80 kg/m3, SS/SH = 2.5135). Although its environmental indicators were marginally 
lower than Mix 1, the overall impacts remained considerably higher than those of Mix 3. The elevated SS/SH ratio 
and high cumulative alkali content contributed notably to its environmental burden, particularly in terms of EE 
and air emissions. 

In contrast, Mix 3, which exclusively used FlA (405 kg/m3) as the binder and operated at a significantly lower 
activator dosage (162 kg/m3) with an SS/SH ratio of 1.0, exhibited the most favourable environmental 
performance. It achieved the lowest GWP (156.00 kg CO2-eq/m3), EE (1966.56 MJ/m3), and emissions (NOx, SOx, 
and PM) among all mixes, while maintaining a comparable fc of 28.36 MPa. The high reactivity of FlA, combined 
with optimized alkali usage, reduced the environmental burden significantly. 

The effectiveness of Mix 3 is further reinforced by the normalized sustainability indices. Its Si = 5.50 kg CO2-
eq/MPa is approximately 50% lower than that of Mix 1 (Si = 11.08), and its EEi = 69.36 MJ/MPa) is around 30% 
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better than Mix 1 (EEi = 98.62). These normalized values underscore that, despite identical strength requirements, 
Mix 3 delivers a more resource-efficient and climate-conscious solution. 

The comparative results are presented in Figures 15–17. Figure 15 illustrates the normalized sustainability 
metrics (Si and EEi) relative to Mix 3. It is evident that Mix 3 consistently performs best across all criteria, 
reflecting superior carbon and energy efficiency. Figure 16 depicts the contributions of individual material 
components to GWP. It clearly shows that Mix 1 exhibits the highest greenhouse gas emissions, largely due to its 
high GGBFS and activator content, while Mix 3 records the lowest emissions, primarily owing to its FlA-based 
binder and reduced alkali dosage. Figure 17 presents a bubble chart plotting fc against the Si. It reveals that Mix 3 
achieves the most favourable balance, maintaining strength while substantially lowering carbon intensity. 
Collectively, these graphical representations reaffirm the environmental and mechanical superiority of the FlA-
dominant Mix 3, highlighting its potential as a highly sustainable and technically sound solution for low-carbon 
GPC applications. 

 

Figure 15. Radar diagram showing the normalized sustainability metrics of GPC mixes (relative to Mix 3). 

. 

Figure 16. GHG contributions by material components. 
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Figure 17. Bubble chart showing the comparison between fc vs. Si with curing time. 

5.4. Air Emissions (NOx, SOx, and PM) Assessment 

To further clarify these trends, Table 7, Figure 18 present the air emissions due to the three GPC mixes. Mix 1 
emits the highest NOx (0.190 kg/m3), SOx (0.340 kg/m3) and PM (0.083 kg/m3), predominantly due to its GGBFS 
content and large amount of SS and SH. Mix 2 showed moderately reduced emissions. Mix 3 again outperformed 
both, owing to its minimal activator dosage and reliance on low-impact FlA. 

This underscores the opportunity to minimize air emissions by optimizing material selections and mixture 
proportions, without compromising mechanical properties. Furthermore, this highlights the role of Ecoinvent 3.8 
coefficients in identifying key contributors to emissions. 

 

Figure 18. Air emissions (NOx, SOx and PM) for the three GPC mixes. 
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From the sustainability analysis, it is evident that alkali activator content plays a key role in determining the 
environmental impact of GPC. Mix 1, characterized by a high activator dosage (231.03 kg/m3) and SS/SH ratio of 
2.0, exhibits the highest GWP and air emissions, primarily due to the intensive energy and carbon footprint of SS 
and SH production. In contrast, Mix 3, with a significantly lower activator mass (162 kg/m3) and balanced SS/SH 
ratio of 1.0, demonstrates a 30–45% reduction in environmental indicators such as GWP, EE, NOx, SOx, and PM, 
showcasing the importance of activator optimization. Unlike the hybrid or synergistic approach used in the earlier 
mixes, the binder in Mix 3 consists solely of FlA, which, despite its slower reactivity compared to GGBFS, 
performs well due to the optimized activator formulation and curing regime. This mix reflects the principles of 
resource circularity and emissions minimization, achieving good mechanical strength with minimal environmental 
burden. Water content also influences both mechanical and sustainability outcomes. Mix 3 includes 81 kg/m3 of 
water, which slightly dilutes strength but aids in workability and reaction kinetics, without the need for Sp. This 
highlights the potential benefit of incorporating water-reducing admixtures in FlA-rich mixes to further enhance 
performance. Mix 2, despite its balanced binder composition, uses the highest activator mass (258.80 kg/m3) and 
also suffers from elevated SS/SH ratios (2.5135), resulting in a relatively high environmental footprint, albeit 
marginally better than Mix 1. 

Overall, Mix 3 emerges as the most environmentally and technically viable option, delivering low GWP 
(156.00 kg/m3), moderate energy demand (1966.56 MJ/m3), and the best normalized indices (Si = 5.50 kg/MPa, 
EEi = 69.36 MJ/MPa). Mix 2 may be improved by lowering SS/SH ratios or employing blended activators,  
while Mix 1 is only recommended in cases where GGBFS is locally available and environmental regulations are 
less stringent. 

5.5. Carbon Neutrality Assessment 

Carbon neutrality, defined as achieving net-zero GWP, was evaluated by estimating the GWP offset 
achievable through carbon capture, utilization, and storage (CCUS) and material substitution strategies. A 10% 
GWP reduction was assumed via carbonation, where alkaline binders absorb atmospheric CO2 during the curing 
process, as supported by findings from [73]. An additional 5% reduction was considered from CO2 injection into 
aggregate systems, based on the benchmark offset reported by [74]. A further 10% reduction was attributed to 
material substitution, such as partial replacement of GGBFS with FlA or the use of low-carbon activators. 
Together, these mechanisms amount to a total assumed GWP offset of 25% for all mixes. 
Mix 1: 

An initial GWP of 302.64 kg CO2-eq/m3 was reduced by 75.66 kg/m3 (25%), yielding a residual GWP of 
226.98 kg/m3. Achieving full carbon neutrality would require offsetting the remaining 226.98 kg/m3, equivalent 
to planting approximately 23 trees per cubic meter (assuming 10 kg CO2/tree/year over 10 years) or employing 
high-cost CCUS technologies, rendering this mix the least favourable in terms of neutrality feasibility. 
Mix 2: 

The initial GWP of 287.05 kg CO2-eq/m3 was reduced by 71.76 kg/m3, leaving a residual GWP of  
215.29 kg/m3, which would require around 22 trees/m3 for complete neutrality. While slightly more efficient than 
Mix 1, its elevated activator content and SS/SH ratio still pose sustainability challenges. 
Mix 3: 

With the lowest GWP of 156.00 kg CO2-eq/m3, a 25% offset removes 39.00 kg/m3, resulting in a residual 
GWP of 117.00 kg/m3—the lowest among all mixes. This would require the equivalent of only 12 trees/m3 to 
reach neutrality. Owing to its reduced reliance on high-impact activators and efficient binder system, Mix 3 
emerges as the most promising solution for carbon-neutral applications. 

As illustrated in Figure 19, the normalized carbon neutrality metrics, including residual GWP, total GWP 
offset, and the Carbon Neutrality Index (CNI), highlight the comparative viability of the three GPC mixes, with 
Mix 3 demonstrating the most feasible pathway toward net-zero emissions. 

The Carbon Neutrality Index (CNI = Offset GWP/Initial GWP) is 0.25 for all mixes, as offset strategies were 
uniformly applied. Higher CNI values (closer to 1) would require advanced CCUS or renewable energy in 
production, which are currently limited for alkali activators. Mix 3’s balance of strength and low residual GWP 
positions it as the most viable for carbon-neutral concrete. 
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Figure 19. Normalized carbon neutrality metrics relative to Mix 3. 

6. Conclusions 

This study presents a comprehensive, explainable, and sustainability-driven framework for modelling the 
compressive strength of SFGPC. A curated dataset of 363 mixes was developed from literature, guided by a 
scientometric mapping of 441 publications. Five ML models were trained, among which GB demonstrated superior 
predictive performance, achieving R2 = 0.954, RMSE = 3.15 MPa, MAE = 1.81 MPa during training and R2 = 0.95, 
RMSE = 3.128 MPa, MAE = 2.41 MPa during testing. Multi-layered XAI revealed that curing age, GGBFS content, 
and alkaline-to-binder ratio are the dominant features governing strength development, with clear nonlinear trends. 
LCA confirmed that the fly ash–dominant mix achieved the lowest global warming potential (156 kg CO2-eq/m3), 
highest resource efficiency, and smallest post-offset residual GWP. The GUI developed in this work enables 
practitioners to instantly predict strength using user-provided mix parameters. The novelty of this study lies in its 
integration of ML, XAI, GUI deployment, and LCA into a single transparent and engineering-ready framework 
for designing next-generation sustainable geopolymer concretes. 

6.1. Key Findings 

The study conducts a scientometric analysis to review the literature data, identify the research trends related 
to GPC, and collect the data systematically for developing ML models. 
 Develops five ML models, two CML models as ANN, DT, and three EML models as RF, AdB, and GB, to 

predict the fc of SFGPC based on different input features. 
 Compares and evaluates the performance of the ML models using metrics, scatter plots, and Taylor diagram. 

The results indicate that the GB model outperforms the other models in terms of prediction accuracy and 
agreement with the actual fc. 

 The explanations from the multi-layered XAI techniques revealed that the “A”, “GGBFS”, and “Alk./B” 
were the most influential features in predicting the fc of SFGPC. The explanations also showed how the 
features varied and interacted with each other, and how they affected the prediction outcome. 
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 3D Surface plots were made for showing the effect on fc of SFGPC with variation in Alk./B and the age (A), 
for two types of binders: FlA and GGBFS independently and the synergistic behaviour too. The main  
findings are: 
o Higher Alk./B ratios tend to reduce the fc of SFGPC. 
o Increased curing age significantly enhances strength, particularly in GGBFS-based mixes. 
o GGBFS was found to be a more effective binder than FlA in achieving higher fc. 

 To bridge the gap between model development and real-world application, a user-friendly GUI was 
developed. A prototype GUI demonstrating the practical deployment of the trained ML model is provided as 
Supplementary Material. The GUI allows practitioners to input mix parameters and obtain real-time fc 
predictions using the trained GB model. 

 LCA results clearly indicate that the FlA-dominant GPC mix offers the most favourable balance between 
mechanical strength and environmental performance. With the lowest GWP, EE, and air emissions, along 
with a feasible path toward carbon neutrality, Mix 3 (FlA-dominant) demonstrates superior sustainability 
without compromising fc. Its optimized use of FlA and reduced alkali activator dosage minimize 
environmental burdens while delivering good mechanical performance. These findings underscore Mix 3’s 
potential as a green, durable, and resource-efficient alternative for sustainable construction applications. 

6.2. Research Limitations 

 The dataset, although larger than many prior GPC ML studies, is still dependent on published literature and 
may not cover the full design space of SFGPC mixtures. 

 Certain experimental variables, such as curing humidity, reaction kinetics, and microstructural indices, were 
unavailable in the literature dataset and therefore were not included as predictive features. 

 The compressive strength modelling does not incorporate long-term durability behaviour (e.g., chloride 
ingress, shrinkage, carbonation). 

 LCA results are based on cradle-to-gate boundaries; transportation and end-of-life aspects were beyond the 
study scope. 

6.3. Recommendations for Future Research 

 Generate larger experimental datasets through laboratory testing to overcome literature bias and expand the 
design domain. 

 Incorporate durability-related outputs (e.g., permeability, chloride resistance) into future ML-XAI modelling 
frameworks. 

 Integrate uncertainty quantification or Bayesian approaches to capture variability in geopolymer chemistry 
and curing conditions. 

 Extend the LCA from cradle-to-gate to cradle-to-grave, including demolition, recycling, and carbon 
sequestration potentials. 

 Explore hybrid ML–mechanistic modelling to link XAI insights with geopolymer reaction chemistry. 

Supplementary Materials 

The additional data and information can be downloaded at: https://media.sciltp.com/articles/others/ 
2601201604223206/BCI-25110071-supplement.pdf. Figure S1: Prototype GUI interface for predicting the fc of 
sustainable SFGPC. Table S1: ANN architecture details. Table S2: ANN training hyperparameters. Table S3: 
Optimized DT hyperparameters. Table S4: Optimized RF hyperparameters. Table S5: Optimized AdB 
hyperparameters. Table S6: Optimized AdB hyperparameters. 
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