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review of 441 publications (2009-2025) guided the systematic assembly of a
dataset comprising 363 SFGPC mixes. Five ML models were trained to predict
compressive strength (f;), with Gradient Boosting (GB) achieving the highest
accuracy, yielding R?>=0.954, RMSE = 3.15 MPa, MAE = 1.81 MPa during training,
and R?> = 0.95, RMSE = 3.128 MPa, MAE = 2.41 MPa during testing. Multi-layered
XALI analysis identified age, slag content, and alkaline-to-binder ratio as the most
influential parameters and revealed governing nonlinear interactions. Sustainability
assessment showed that the fly ash-dominant mix exhibited the lowest global
warming potential (156 kg CO»-eq/m?), the most favourable sustainability index,
and the smallest residual emissions after a 25% carbon offset. A user-oriented
graphical user interface (GUI) was developed for real-time strength prediction. The
novelty of this work lies in introducing an explainable, data-driven, and
sustainability-integrated decision-support system for designing transparent and
low-carbon geopolymer concretes.
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1. Introduction

Concrete stands as the most widely utilized material globally, second only to water, with an approximate
consumption of 1 cubic meter of concrete per person per year [1]. The demand for ordinary Portland cement (OPC)
closely aligns with the growing requirements for concrete. However, as the global commitment to sustainability
intensifies, the conventional use of OPC has come under scrutiny due to its significant environmental impacts [2-5].
The prodigious carbon footprint, resource depletion, and energy-intensive production processes associated with
OPC have raised compelling concerns about the industry’s role in climate change and ecological degradation. In
response, there have been notable advancements in cement manufacturing, resulting in a nearly 30% reduction in
emissions over the past few decades [6]. While commendable progress has been made, a critical environmental
challenge persists in the form of the de-calcination of limestone during cement production. Even under the
hypothetical scenario where cement kilns exclusively utilize 100% renewable energy, the process would still
generate 0.78 units of CO; per unit of cement [7,8]. This underscores the complexity of achieving a carbon-neutral
or low-carbon footprint in cement manufacturing despite strides toward cleaner energy sources [9,10]. Addressing
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this challenge necessitates a deeper exploration of alternative building materials that not only meet the stringent
criteria of sustainability but also surpass the environmental performance of traditional cement.

Geopolymer concrete (GPC) has been emerging as an alternative to Ordinary Portland Cement Concrete
(OPCC) [11,12] that not only exhibits mechanical properties comparable to OPCC but also presents a significantly
reduced carbon footprint, offering a promising avenue for enhancing the environmental sustainability of the
construction industry [13]. Compared to OPCC, GPC exhibits a significant reduction in CO> emissions by 40% to
90% [14]. Most GPC compositions provide a noteworthy 80-90% decrease in CO, emissions, which includes the
carbon emissions produced during the synthesis of alkali activators [15]. This reduction has positioned GPC as a
viable pathway for decarbonizing the construction sector, particularly when combined with industrial by-products
such as fly ash (FIA) and ground granulated blast furnace slag (GGBFS).

The properties of GPC are intricately affected by various parameters such as the molarity of NaOH, sodium
silicate to sodium hydroxide ratio (SS/SH), alkaline liquid-to-binder ratio (Alk./B), curing temperature, and the
concentration of Al and Si in precursors, etc. Achieving the desired properties of the GPC mixture requires a
considerably larger number of experimental mixes compared to OPCC due to highly non-linear interactions among
these parameters. In this context, data-driven and soft computing approaches, particularly machine learning (ML)
have become increasingly vital for the accurate and efficient prediction of the properties of the various types of
composites [16-23]. Recent experimental and modelling studies have further clarified the role of FIA and slag
chemistry on the fresh and hardened behavior of GPC. Study [24] evaluated the compressive strength (f:) of FIA—
slag-based GPC as a function of hydraulic, silica, alumina and lime moduli, as well as SS content, and showed
that appropriate modulation of these indices can significantly enhance strength development in hybrid Fl1A—slag
systems. Paruthi et al. [25] reported that incorporating silica fume and alccofine into GGBS-based GPC improves
mechanical performance under different curing temperatures, underscoring the sensitivity of slag-rich binders to
both reactive silica content and thermal regime. On the modelling side, Ahmed et al. [26] used support vector
regression (SVR) combined with grey wolf optimization to predict the f. of GGBFS-based GPC, confirming that
parameters such as water-to-binder ratio, GGBFS fraction, and superplasticizer (Sp) dosage are critical drivers of
strength. Collectively, these studies highlight the strong coupling between FIA content, activator chemistry, and
mechanical behavior.

However, most ML models used for predicting the properties of GPC function as ‘black-box’ systems,
offering limited interpretability despite high accuracy, which restricts their adoption in practical scenarios. To
solve this black box issue, Explainable Artificial Intelligence (XAI) techniques, through model agnostic Shapley
Additive Explanations (SHAP), help interpret these models by identifying key influencing features and their
interactions [27,28]. Although highly relevant, such methods to predict and interpret the predictions in GPC
research are scant.

Furthermore, to comprehensively assess the sustainability of GPC, it is essential to perform a Life Cycle
Assessment (LCA) alongside mechanical and ML-assisted investigations [29,30]. LCA provides a systematic
framework for quantifying the environmental impacts, including carbon emissions, energy consumption, and air
pollutants from raw material extraction to production [31]. Integrating LCA with ML and XAI methods can enable
a more holistic understanding of GPC’s performance, guiding the development of low-impact, durable, and
efficient materials for future applications.

Despite significant progress in predicting GPC properties, existing studies are largely constrained by three
major shortcomings: (i) heavy reliance on black-box ML models without transparent interpretability, limiting
engineering adoption; (ii) absence of integrated frameworks that combine data-driven prediction with
sustainability assessment; and (iii) lack of structured, literature-guided datasets and deployable tools that enable
practical implementation. To address these gaps, this study proposes a unified and explainable framework that
integrates scientometric analysis for informed dataset development, advanced ML modelling for strength
prediction, multi-layer XAI for model transparency, cradle-to-gate LCA for environmental evaluation, and a
graphical user interface (GUI) for real-time engineering use. The novelty of this work lies in merging predictive
analytics with interpretability and sustainability assessment, thereby advancing state-of-the-art research toward
transparent, reliable, and low-carbon GPC design.

1.1. Recent Advances and Limitations in ML-Based Predictions of GPC Strength

Several ML models have been employed to predict the properties of GPC. Random forest (RF), decision tree
(DT), and extreme gradient boosting (XGBoost) models were developed from the 110 experimental datasets for
predicting the f. of GPC made from FIA. Among the various models, XGBoost demonstrated superior prediction
performance [32]. Ahmed et al. [33] employed ANN, M5-tree, linear regression (LR), and multiple LR (MLR)
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models to predict the f. of GGBFS-FlA-based GPC. Utilizing 220 dataset from the literature, input parameters
included the contents of GGBFS, FIA, SH, SS, Si/Al of FIA, Si/Ca of GGBFS, binder ratio, and molarity.
Sensitivity analysis identified the binder ratio as the most influential parameter. Notably, the ANN model
demonstrated superior prediction performance. In another study, the f. of GGBFS-GPC was predicted using
multiple methodologies, including LR, SVR, differential evolution, grey wolf optimization, mantra rays foraging
optimization (MRFO), genetic algorithm, and particle swarm optimization. Out of various input parameters, Sp
dosage was identified as the most influential in f. prediction. The SVR-MRFO hybrid model performed better than
other models in terms of correlation and errors values [26]. Kina et al. [34] include specimen age, NaOH molarity,
natural zeolite and silica fume content, and GGBFS content to predict the f. of GGBFS-GPC by developing three
ensemble ML (EML) models including DT, Bootstrap aggregating, and Least Squares Boosting (LSBoost).
Specimen age was identified as the most influential factor. LSBoost exhibited the highest accuracy (98.25%).
Similar recent studies were performed by various researchers [35-46] to predict the various properties of GPC.
While the above studies demonstrate the growing use of ML techniques for predicting the properties of GPC,
they predominantly rely on black-box models with limited to no interpretability [22,26,32—-36,47,48]. Although
several ensemble and hybrid approaches have achieved high predictive accuracy, they offer little understanding of
how input features influence model outputs. Most evaluations have been restricted to statistical metrics such as
coefficient of correlation (R?), root mean squared error (RMSE) and mean absolute error (MAE), without
incorporating explainable frameworks capable of revealing global or instance-specific feature contributions. While
previous studies have successfully employed various ML models for predicting the f. of GPC, their adoption in
practice remains limited due to the absence of deployable tools that facilitate ease of use for engineers and
practitioners. This limitation highlights the need for user-friendly interfaces that translate ML outputs into
accessible decision-support tools. Without interpretability and accessible deployment, the practical adoption of
these ML models remains constrained. This highlights a critical research gap, namely, the need for transparent,
explainable, and deployable ML solutions that can support informed decision-making in sustainable concrete design.

1.2. Research Methodology

This study adopts a data-driven approach to predict the f. of SFGPC and to evaluate its environmental profile
through LCA using the following steps.

Scientometric analysis: A scientometric analysis was conducted to review the literature data, identify the
research trends related to SFGPC.

Development of dataset: A dataset of 363 samples of SFGPC with different combinations of input features
and their corresponding f; values for developing ML models was prepared. After randomization, the dataset is split
into two subsets: one for training (80% of the total data) and one for testing (20% of the total data).

Comparative analysis of ML models (black box models): Five ML models, namely ANN, DT, RF, adaptive
boosting (AdB), and gradient boosting (GB), were developed to predict the f. of SFGPC. The performance of each
model is statistically measured using metrics (RMSE, MAE and R?), scatter plots for training and testing values,
and a Taylor diagram.

Explainable artificial intelligence (XAI): The statistically best ML model was chosen among the five, then
uses multi-layered XAl techniques to provide interpretable and understandable explanations of the black box ML
model. XAl analysis adopts two layers of explainability: the primary layer, which uses summary plot and force
plot to show the feature importance and contribution, and the second layer, which uses individual conditional
expectation (ICE) with partial dependence plot (PDP) to show the feature effects and interactions.

Optimization: 3D Surface plots were generated to investigate the effect of two of the most significant factors,
as suggested by the multi-layered XAl analysis, namely the Alk./B ratio and the age, on the f. of SFGPC, for two
types of binders: FIA and GGBEFS. Patterns and insights revealed were discussed by the plots and their implications
for the design and performance of SFGPC.

GUI development: To enable practical deployment and facilitate user interaction with the trained ML model,
a prototype GUI was developed (Section S1 of Supplementary Materials). This user-friendly interface allows
engineers and researchers to input mix design parameters such as binder content, Alk./B ratio, NaOH molarity,
SS/SH ratio, curing age, and admixture dosage, etc. The GUI processes these inputs and outputs the predicted f..

1.3. Life Cycle and Carbon Neutrality Assessment

A cradle-to-gate LCA was performed to quantify the environmental impacts of the SFGPC mixes. The LCA
evaluated embodied energy (EE), global warming potential (GWP), air emissions (NOx, SOy, and particulate
matter (PM)), carbon neutrality assessment and normalized indices to reflect their sustainability performance
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alongside mechanical properties. The LCA results were then used to identify the mixture that successfully balances
structural performance with lower environmental impacts. Finally, Carbon neutrality, defined as achieving
net-zero GWP, was evaluated by estimating the GWP offset achievable through carbon capture, utilization, and
storage (CCUS) and material substitution strategies.

The overall methodology adopted in the study is illustrated in Figure 1.

Methodology of the Present
Study

Scientometric Review

Development of the Dataset

Development and
Assessment of the Black
Box ML models

Best Performing Model:
Basis for XAl Analysis

3D Surface Plots

Graphical User Interface

Conclusions

Figure 1. Methodology of the present study.

2. Scientometric Analysis

Scientometric analysis has been conducted to assess literature data, aiming to explore the research trend
related to GPC and to collect the data systematically for developing ML models. Employing scientometric analysis
ensures a more objective and impartial outcome [49]. Given the prolific output of research articles within the
scientific community, it is crucial to identify credible sources for database inclusion. Scopus and Web of Science
are acknowledged as the most comprehensive, effective, and unbiased databases for literature searches. Notably,
Scopus, with its broader coverage and inclusion of more recent publications, is favoured.

During the extraction of bibliometric data, an initial Scopus search for “Geopolymer Concrete” retrieved
5281 items. To enhance precision, the search was subsequently refined to encompass only original articles, review
studies, conference papers, and book chapters published in English, specifically within the domains of
Engineering, material science, and environmental science. This refined search produced 3984 results. Further
refinement was achieved by introducing the term “Fly Ash” and “Ground Granulated Blast Furnace Slag” to focus
explicitly on studies that used these binders for the preparation of GPC. Following the application of these filters
in the Scopus database, 441 results were retained. The obtained database was saved in CSV format to facilitate
subsequent analysis using suitable software. The analysis was conducted utilizing VOSviewer version 1.6.20
software and the Biblioshiny package in the RStudio [50].

The dataset spanning the years 2009 to 2025, comprising 441 documents from 135 distinct sources. The annual
growth rate of 16.59% underscores the significant expansion of scholarly contributions over the specified timespan.
The document contents reveal a rich landscape, with 1816 unique keywords plus identifiers and 932 author’s
keywords, elucidating the diverse thematic focus of the research. Authors engaged in this scholarly endeavor total
1059, with only 13 documents being single-authored. Collaboration emerges as a hallmark, evidenced by an average
of 3.36 co-authors per document, with approximately 14.97% of collaborations transcending international boundaries.
Notably, the average citations per document stand at 23.15, reflecting a moderate level of scholarly impact.
Furthermore, the dataset comprises 328 articles, 17 book chapters, and 96 conference papers, underscoring the
multidimensionality of the research output, revealing a dynamic and collaborative research landscape
characterized by growth, impact, and internationalisation.
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The sematic diagram for most occurring keywords is shown in Figure 2, offering insights into thematic
concentrations and their network metrics. The most occurring keywords from the dataset extracted are “fly ash”,
“slags”, “geopolymer concrete”, “inorganic polymer” and “compressive strength”. This analysis aids in
understanding the interconnected nature of research themes and highlights pivotal concepts shaping the scholarly
discourse within the examined dataset.
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Figure 2. Semantic diagram for the most occurring keywords.

Figure 3 presents the thematic evolution of keywords within the research landscape of GPC over distinct
periods. The selection of time brackets for the thematic evolution analysis was guided by publication density
patterns observed in the scientometric dataset rather than by uniform temporal segmentation. Analysis of annual
publication trends revealed three distinct phases: (i) an initial formative period (2009—2015) characterized by
relatively low and sporadic publication output, (ii) a consolidation and rapid growth phase (2016-2022) marked
by a sharp increase in annual publications, and (iii) a recent expansion phase (2023-2025) exhibiting sustained
high publication density with diversification toward data-driven modelling, and sustainability-oriented research.
These breakpoints were identified by examining inflection points in cumulative publication counts and year-wise
output, ensuring that each time window contained a statistically meaningful number of studies and represented a
distinct stage in the evolution of the research field.

Noteworthy transitions include the shift from ‘concrete’ (2009-2015) to “geopolymer” (2016-2022),
suggesting an evolving research focus. The progression from “fly ash” (2009-2015) to “slag” and “circular
economy” (2016-2022) signifies a thematic shift towards sustainable construction practices aligned with circular
economy principles. Furthermore, the persistence of “fly ash” as a keyword from 2009-2015 to 20162022,
accompanied by associated terms like “compressive strength”, “alkaline solution”, and “workability”, underscores
its enduring significance in the discourse. The evolution from “fly ash” (2016-2022) to diverse theme like
“ambient curing” (2023-2025) highlights the expanding scope of geopolymer research within this period. The
scientometric keyword co-occurrence analysis revealed that terms such as “ambient curing,” “steam curing,” and
“thermal curing” frequently appear in the literature. These terms do not represent thematic research domains;
instead, they reflect commonly adopted experimental curing conditions reported across geopolymer studies. Their
frequent appearance in the mapping output indicates the diversity of curing regimes investigated in the field rather
than distinct conceptual themes. Additionally, the emergence of new keywords such as “Taguchi method” and
“metakaolin” in 2023-2025 suggests evolving methodologies and broader conceptual frameworks. This analysis
contributes to a nuanced understanding of the dynamic thematic evolution within the studied research domain.
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Figure 3. Thematic evolution over time, illustrating the dynamic shifts.

The thematic map, shown in Figure 4, discerns the research landscape into four distinct categories, reflecting
the dynamics of emerging, basic, motor, and niche themes. In the emerging theme quadrant, “Ground Granulated
Blast Furnace Slag” stands out as a central and evolving focus, indicating a burgeoning research trend. The basic
theme quadrant is characterized by the prominence of “Sorptivity, Water Absorption and Bond Strength”,
suggesting foundational aspects of study within this domain. The motor theme quadrant is dominated by the
extensive cluster around “Mechanical Properties”, indicating a core and driving force within the research
discourse. Finally, the fourth quadrant, featuring the cluster around “Fly Ash”, signifies a niche theme that, while
well-established, remains a specific and distinctive area of focus within the broader research landscape. This
categorization offers a detailed perspective on the evolving and stable thematic concentrations, providing valuable
insights into the overarching trends and specialized niches shaping the research discourse.
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Figure 4. Thematic map illustrating research concentrations.

3. Methods and Materials

3.1. Modelling Techniques

The models, developed for predicting the f. of SFGPC, encompass both conventional and ensemble
approaches. The conventional ML (CML) models consist of the ANN and DT, while the EML models comprise
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RF, AdB, and GB. The selection of the CML and EML models used in this study was guided by both the nature
of GPC data and evidence from prior research. Notably, CML models operate as standalone algorithms, whereas
EML models harness the collective power of multiple algorithms to enhance predictive accuracy. Although the
CML and EML models were not applied concurrently, assessing both categories offers complementary insights,
such as CML models provide interpretable baseline behaviour while EML models leverage ensemble diversity to
enhance accuracy. The theoretical underpinnings of all ML models employed in this study are elaborated below.

3.1.1. Artificial Neural Network

ANNSs are nonlinear universal function approximators composed of interconnected processing units
(“neurons”) organized in layers. Each neuron computes a weighted sum of its inputs followed by a nonlinear
activation function. For a neuron j, the output is expressed as Equation (1):

¥ = o(Xi, wyxi + by) (1)
where w;; and b; are the learnable weights and biases, respectively, and a(-) denotes the activation function
(ReLU in this study). Model training is performed using backpropagation, which minimizes the loss function L

by updating weights via gradient descent Equation (2):

oL
t+1) _ . (©®
Wy =W TT aw; (2)

where 1 is the learning rate. The ANN is capable of capturing complex nonlinear relationships among mix
parameters such as binder composition, activator chemistry, and curing age, making it suitable for modelling the
intricate behaviour of GPC.

3.1.2. Decision Tree

DT partitions the feature space into homogeneous regions using recursive binary splits. At each internal node,
the algorithm selects the feature x;, and s threshold that maximize impurity reduction. For regression, impurity
is commonly measured using variance Equation (3):

1 _
Var($) = 5 Zies (0 = ¥s)° ?3)
The optimal split minimizes Equation (4):
A = Var(s) — <% Var(s,) + %Var(sR)> 4)

where S; and Sy are the left and right child nodes. DTs are easy to interpret but prone to overfitting and high
variance, which motivates the use of ensemble approaches.
3.1.3. Random Forest

RF is an ensemble of DT constructed using bootstrap aggregation (‘“bagging”). Each tree is trained on a
randomly sampled subset of the data and a random subset of features at each split. For a forest of T trees, the
prediction is Equation (5):

y=2%, f(x) 5)

Bagging reduces variance, while feature randomness decorrelates trees, thereby improving generalization.
RF is particularly effective for handling nonlinearities and interactions among variables such as alkali ratios,
aggregate contents, and binder proportions.

3.1.4. Adaptive Boosting

AdB constructs an ensemble by sequentially training weak learners (typically shallow DTs). Each learner
focuses on instances mis-predicted by its predecessor by assigning higher weights to them. For iteration m, the
weighted error is Equation (6):

em =200 wI(y; # hy(x) (6)

The model weight is computed as Equation (7):
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@, = In (—1;:") 7
and sample weights are updated as Equation (8):
Wi(m+1) = wi(m)exp (amll(yi * hm(xl-))) (8)

The final prediction aggregates all weak learners Equation (9):

y= Z%:l A (X) 9

AdB effectively reduces bias and improves accuracy when underlying patterns are subtle or nonlinear.

3.1.5. Gradient Boosting

GB model in this study, constructs an additive ensemble by fitting new learners to the negative gradients of
the loss function. For a model consisting of m learners, the iterative update is Equation (10):

Fn(x) = Fpeq (%) + vy (X) (10)
where v is the learning rate and h,,,(x) approximates the gradient Equation (11):
dL(y, F(x))
hin(x) = TR (11)
For regression with MSE Equation (12):
gi(m) =y — Fpoa(x) (12)

representing the residuals that each new tree attempts to model. GB’s ability to sequentially minimize residual
patterns enables it to capture highly nonlinear interactions, such as the synergistic influence of slag content,
activator chemistry, and curing age on compressive strength.

Prior to model training, the dataset was subjected to a structured preprocessing pipeline to enhance numerical
stability and improve model performance. All input features were normalized using Min-Max scaling, defined as

X—=Xmi o . . .
x' = ﬁ, where X,,;, and X4, represent the minimum and maximum values of each feature in the
max~Xmin

dataset. This approach preserves distributional characteristics while ensuring that no variable dominates due to
differences in scale. Normalization was especially important because the input parameters (e.g., aggregates, binder
contents, molarity, and Alk./B ratio) vary significantly in magnitude. After normalization, the dataset was
randomly divided into 80% training and 20% testing subsets. All ML models were trained on the normalized
dataset to ensure fair comparison and robust convergence.

3.2. Materials
Database Development and Statistical Analysis

The data set used in this study consists of 363 samples of SFGPC with different combinations of these features
and their corresponding f. values [51-65]. The dataset contains eleven features, out of which ten are the inputs and
a single output. It is important to note that the dataset includes only the mass-based quantities of fine (Fagg.) and
coarse (Cagg.) aggregates in kg/m’, as reported in the literature. Aggregate size gradations were not included
because most publications did not consistently provide detailed size ranges. Therefore, Fagg. and Cagg. in this
study refer solely to the reported mass of aggregates and not to specific particle size distributions. Also, in alkali-
activated GPC systems, the primary liquid phase is supplied through sodium silicate and NaOH solutions, whose
inherent water content is governed by activator concentration and silica modulus. In addition to this inherent water,
several studies explicitly reported the use of supplementary water to improve workability or casting feasibility.
Such externally added water is represented in the dataset by the parameter “Additional Water (W)” and was
included only when clearly documented in the source publications. Therefore, the dataset distinguishes between
water intrinsically present in the activator solutions and supplementary water added during mixing, both of which
influence fresh and hardened properties. Furthermore, the dataset used in this study was assembled, the
preparation, curing, and testing procedures reflect the standards followed in the respective studies. Only those
publications that explicitly adhered to recognized standards, such as ASTM C39 for f; testing, ASTM C192 or
equivalent national standards for specimen preparation, and clearly reported curing regimes (ambient, oven,
steam), were included in the dataset. The descriptive statistics of the data set are shown in Table 1.
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Table 1. Statistical analysis of the data collected.

Features Abbreviations  Unit Min. Max. Mean __ Std. Deviation Skewness  Kurtosis
Fly Ash FIA kg/m® 0 500 258.3 123.86 —0.495 —0.686
Ground Granulated Blast Furnace Slag ~ GGBFS kg/m? 0 488 151.6 109.96 0.822 0.218
Fine Aggregate Fagg. kg/m? 57.01 707 565.2 138.19 -2.7 7.388
Coarse Aggregate Cagg. kg/m® 132.26 1662 1137.2 287.87 —2.185 5.669
Alkaline soln./Binder ratio Alk./B - 0.035 0.719 0.43 0.11 —0.193 1.491
Sodium Silicate/Sodium Hydroxide SS/SH - 0 5.006 2.26 0.59 0.496 5.092
Molarity M Molar 6 16 10.8 2.35 0.184 —0.832
Superplasticizer Sp kg/m? 0 16 4.50 5.23 0914 —0.248
Additional Water W kg/m? 0 100.32 9.33 22.58 2.599 5.446
Age A Days 3 180 25.39 29.84 3.03 11.465
Compressive Strength f. MPa 0.407 68.602 35.32 14.61 0.259 —0.678

A complete dataset consisting of 363 mix designs and their corresponding compressive strength values,
extracted from 15 peer-reviewed publications, has been included as Supplementary Material (Dataset S3). The
statistical analysis of the dataset reveals notable trends in the distribution of its constituent materials and
influencing parameters. The two primary binders as FIA and GGBFS exhibit contrasting distribution
characteristics. FIA ranges from 0 to 500 kg/m*® with a mean of 258.32 and displays a slightly left-skewed and
platykurtic distribution, indicating a relatively balanced spread of values with few extreme highs. In contrast,
GGBFS, ranging from 0 to 488 kg/m* with a mean of 151.57, is right-skewed and slightly leptokurtic, suggesting
a tendency towards lower values with occasional high values.

Among the aggregates, both Fagg. and Cagg. show left-skewed and highly leptokurtic distributions, reflecting
a concentration of values toward the higher end of their respective ranges (57.01-707 kg/m> for Fagg. and
132.26-1662 kg/m® for Cagg.) with extreme peaks, indicative of consistency in mix proportions. The Alk./B
exhibits a slightly left-skewed, moderately leptokurtic distribution with values between 0.035 and 0.719, showing
that most mixes favoured moderate alkaline dosages. The SS/SH ratio is right-skewed and highly leptokurtic
(0-5.006, mean = 2.26), highlighting frequent use of moderate SS/SH ratios with some extreme values. The
molarity of NaOH (M) varies from 6 to 16 (mean = 10.84), with a near-symmetric but platykurtic distribution,
indicating controlled variability in the concentration of the alkaline activator. The Sp and W features exhibit
right-skewed distributions, particularly W with a high skewness of 2.599, suggesting that water was added
sparingly in most mixes, with few cases requiring significantly higher amounts. The curing age (A) of specimens,
ranging from 3 to 180 days with a high positive skewness (3.03) and kurtosis (11.47), indicates that most samples
were tested at early ages, with a small number extending to long-term curing.

Finally, the target variable, f;, spans from 0.407 to 68.60 MPa, with a mean of 35.32 MPa. Its slightly right-
skewed and platykurtic distribution suggests a fair spread around the mean with fewer outliers. These insights
confirm that the dataset captures a wide variety of SFGPC mix designs, covering a realistic range of material
proportions and curing conditions, making it suitable for developing robust and generalizable predictive models.

3.3. Data Visualization
3.3.1. Scatter Plots and Histogram

Scatter plots, along with the violin density plots on the sides, are shown in Figure 5. The scatter plots show
that some features have a clear positive or negative correlation with the f, such as FIA, GGBFS, and A, while
others have a complex or weak correlation, such as Fagg., Cagg., and W. Figure 6 represents the histograms of f.
showing how often different values of the f. occur in the data set. The histograms also show that the highest f: is
reached at 180 days, with a value of 68.602 MPa.

fc

0 100 200 300 400 500 0 100 200 300 400 500 0 200 400 600 800
FIA GGBFS Fagg.
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Figure 5. Scatter plots with violin density between input features and f- of SFGPC.
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Figure 6. Frequency of f: values of SFGPC within the dataset.

3.3.2. Mixed Correlation Plot

Figure 7 shows the mixed correlation plot between the f. of SFGPC and the input features. The plot indicates
that the f; has a positive correlation with the “A”, and “aggregates”. This means that increasing these features will
likely to increase the f. of GPC. On the other hand, the f- has a negative correlation with the “M”. This means that
increasing these features will decrease the f. of SFGPC. The plot also shows that the /. has low correlation with
the other remaining inputs. This means that changing these features will have a little effect on the f. of SFGPC.
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Figure 7. Mixed correlation plot.

3.4. Machine Learning Methodology

Two CML models, namely ANN and DT and three EML, which are RF, AdB and GB have been used for
predicting the f. of sustainable SFGPC. The data set of 363 instances was split into two subsets: one for training
(290 instances, 80% of the data) and one for testing (73 instances, 20% of the data). The performance of each
model was measured using three metrics: RMSE, MAE and R?. The results of the comparison between various ML
models developed were also visualised using scatter plots and a Taylor diagram, which show the correlation and
dispersion of the predicted and actual values of the f. for both the training and testing phases. The model that
achieved the highest performance in terms of all the metrics and visualizations was chosen as the basis for XAlI,
which aims to provide interpretable and understandable explanations of the black box ML models. In addition, a
prototype GUI was developed with the best-performing model to instantly predict the f. of the sustainable SFGPC
based on user-defined inputs.

4. Results and Discussions
4.1. Hyperparameter Tuning

The hyperparameter tuning process was designed to be objective and non-arbitrary. For each model, the
search space was defined based on commonly reported ranges in prior geopolymer ML studies and constrained to
avoid excessive model complexity. Preliminary sensitivity checks were conducted to identify parameters with the
greatest influence on prediction error, and only these parameters were included in the grid-search to reduce
redundancy. Model configurations and weights were evaluated using k-fold cross-validation, and the optimal
hyperparameter set was selected based on the minimum average validation error, subject to the additional
constraint that training and testing errors remain closely aligned (Section S2 of Supplementary Materials). This
ensured that the final model configurations were selected through performance-based criteria rather than subjective
preference. As far as the model specific explanation is being concerned, for the GB model, the learning rate, tree
depth, and number of estimators were jointly optimized to balance bias and variance. Lower learning rates
combined with a moderate number of estimators were preferred to prevent overfitting, while shallow tree depths
were selected to limit model complexity. The final configuration was chosen because it provided the lowest cross-
validated error and exhibited stable convergence without divergence between training and testing performance.
The tuned hyperparameters ensured stable model convergence and minimized the risk of overfitting. Table 2 below
shows the tuned hyperparameters and the performance metrics for each model.
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Table 2. Tuned parameters for all ML models.

Model Optimized Hyper-Parameters

e  Number of hidden layers—2

e  Number of neurons in hidden layers—12,12
e  Activation function—ReLu

e  Solver—Adam

e  Regularization—0.0005

e  Maximal number of iterations—1,000,000

ANN

e  Minimum number of instances in leaves—2
DT e Do not split subsets smaller than—3
e  Limit the maximal tree depth to—125

e  Number of Trees—50
RF e Do not split subset smaller than—?2
e  Limit depth of individual trees—8

e  Base estimator—Tree
e  Number of estimators—5
AdB e  Learning rate—0.6
e Fixed seed for random generator—40
e  Regression loss function—exponential

e  Number of trees—100

e  Learning rate—0.100

e  Limit depth of individual trees—5
e Do not split subset smaller than—3

GB

4.2. Model Performance Parameters

The performance of the five ML models, was compared and evaluated using three metrics: RMSE, MAE, and
R?. Table 3 shows the values of the performance metrics for each model after the training and testing phases,
respectively. Figure 8 shows the radar diagrams that illustrate the comparison of the performance metrics visually.
The results indicate that the GB model, which is an EML model, achieved the highest performance in terms of all
the metrics and visualizations.

Table 3. Performance metrics for various ML models used to predict the /- of GPC.

S. No. Model Phase RMSE MAE R?

Training 4.582 3.424 0.903

L. ANN Testing 5.452 4335 0.848
’ DT Training 3913 2.618 0.929
’ Testing 6.747 4.637 0.767
3 RF Training 3.718 2.749 0.936
’ Testing 4.248 3.461 0.908
Training 3.249 1.759 0.951

4. AdB Testing 4.641 3.401 0.89
5 GB Training 3.15 1.809 0.954
Testing 3.128 2411 0.95

4.3. Scatter Plots

Scatter plots, as shown in Figure 9, show the comparison of the predicted and actual values of the /. of SFGPC
for the five ML models after the training and testing phases. The plots also include the error lines that represent
the deviation of the predicted values from the actual values within a range of +20%. The results from Figure 9
reveal that the GB model, which is an EML model, has the highest prediction accuracy and the lowest deviation
among all the models, followed by the AdB model. The CML models, namely ANN and DT, have lower prediction
accuracy and higher deviation than the EML models.
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Figure 8. Radar diagrams showing the comparison of performance between various ML models after (a) training and (b) testing phases.

https://doi.org/10.53941/bci.2026.100004 66



Ansari et al.

Training

[=a) o
=} =}

Predicted f, (MPa)

N 'S
=} =}
PR T S R S S S R S S

Actual f, (MPa)

=
=}

(a)

=)
=

N
=]

Predicted £, (MPa)

[
=]

(b)

- (=2} o
=} =} =1

[
=}

Predicted f, (MPa)

Actual f, (MPa)

=
=]

(©)

[=2)
=]

Predicted /. (MPa)

3 'S
=} =}
PR SIS S S S SR

Actual f, (MPa)

(d)

- [=a) ®
=] =] =]

154
=}

Predicted f, (MPa)

Actual f, (MPa)

(e)

Predicted f, (MPa) Predicted f, (MPa) Predicted f, (MPa) Predicted £, (MPa)

Predicted f, (MPa)

- W - (7 = N |
S © o ©o o © o <
T TR TS EE TR

- N w s N [=a) ~
S o © © o © o <
TR TS RS TS FTTE FETE R

N W s NN
S o o o o <o

10

w & N 3
e o o o <

10

=N W e
S ©O o o o <o <@

=]

Bull. Comput. Intell. 2026, 2(1), 54-82

Testing

+

=]

+

=]

+

+

=)

Actual f, (MPa)

Actual f, (MPa)

Figure 9. Scatter plots of predicted and actual values of f: by (a) ANN, (b) DT, (¢) RF, (d) AdB and (e) GB models

after training and testing phases, respectively.
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4.4. Taylor Diagram

The Taylor diagram in Figure 10 compares the performance of the five black box ML models. The diagram
shows that the GB model has the highest correlation coefficient, the lowest error, and the closest standard deviation
to the reference standard deviation of the actual f.. This indicates that the GB model has the best agreement with
the actual f. among all the models. The other EML models, namely RF and AdB, also have high correlation
coefficients, low errors, and close standard deviations to the reference standard deviation. The EML models have
better performance than the CML models, which have lower R%, comparatively higher errors, and farther standard
deviations from the reference standard deviation.
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Figure 10. Taylor diagram for various ML models after (a) training, and (b) testing phase, respectively.

The results from Table 3, Figures 8—10 demonstrate that the GB model outperforms the other four ML models
in predicting the f. of SFGPC for this dataset. The other EML models, namely RF and AdB, also have good
performance, but not as good as the GB model. The CML models have comparatively lower performance and
higher deviation than the EML models. Hence, the GB model is selected as the best predictive model for the f: of
SFGPC for this dataset, and thus, the GB model is chosen as the basis for multi-layered XAl analysis for providing
insights into the feature importance and the decision rules that govern the prediction process.

4.5. Model Explanation Using XAI
4.5.1. Primary Layer of Explainability

The primary layer of explainability provides a summary of the feature importance and effects as suggested
by the GB model. The primary layer of explainability consists of two types of plots: a summary plot and a force
plot. The summary plot ranks the features from the most important to the least important, based on their
performance metric values. The force plot shows the contribution of each input feature to the prediction of the f.
of SFGPC for a specific instance in the dataset. The primary layer of explainability helps to understand the overall
and individual predictions of the GB model.

Summary Plot

The summary plot by GB model shown in Figure 11 represents the relative importance of the input features
in predicting the f. of SFGPC. The plot reveals that the most important feature is the age “A” of the concrete
specimens, followed by the amount of “GGBFS”, “Alk./B”, “Cagg.”, “FIA”, “Fagg.”, “Sp”, “SS/SH”, “W” and
“M”. The plot also shows that some features have a positive impact on the £, such as “A”, “GGBFS”, and “Cagg.”,
some have a negative impact, such as “Alk./B”, “FIA”, and “M”, while others have a little impact on the £, within
this dataset. The plot provides a useful overview of the feature importance and the direction of their effects on
the prediction:

e  Age: The age of the concrete specimens is the most important feature, as it has a positive effect on the
prediction. This means that the older the specimens, the higher their /.. This is because the geopolymerization
process continues over time, resulting in a denser and stronger matrix [13].
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Ground Granulated Blast Furnace Slag: The amount of GGBFS in the binder material is the second most
important feature, as it has a positive effect on the prediction. This means that the more GGBFS, the higher
the f.. This is because GGBFS can enhance the geopolymerization process by providing additional silicon
and aluminum, as well as reducing the heat of hydration and improving the durability of the concrete [66].
Alkaline soln./Binder ratio: The ratio of the alkaline solution to the binder material is the third most important
feature, as it has a negative effect on the prediction. This means that the higher the ratio, the lower the f.. This
is because a high ratio can cause an excess of alkaline solution, which affects the geopolymerization process
and the durability of the concrete [13].

Coarse Aggregate: The amount of coarse aggregate in the mixture is the fourth most important feature, as it
has a positive effect on the prediction. This means that the more the aggregate, the higher the f.. This is
because coarse aggregate can provide resistance to the applied load and reduce the shrinkage of the concrete.
However, the effect of coarse aggregate is also complex and nonlinear, as it also depends on the size and
shape of the particles [67].

Fly Ash: The amount of FIA in the binder material is the fifth most important feature, as it has a negative
effect on the prediction. This means that the more F1A, the lower the £ [68].

Fine Aggregate: The amount of fine aggregate in the mixture is the sixth most important feature, as it has a
positive effect on the prediction. This means that the more the fine aggregate content, the higher the f.. This
is because fine aggregate can fill the voids and improve the density of the concrete. However, the effect of
fine aggregate is complex and nonlinear, as it also depends on the grading and shape of the particles [69].
Superplasticizer: The amount of superplasticizer in the mixture is the seventh most important feature, as it
has a positive or negative effect on the prediction, depending on the value. This means that the optimal
amount of superplasticizer can increase the f., while too much or too little can decrease it. This is because
superplasticizer can improve the workability and fluidity of the mixture, but it can also affect the water
content and the geopolymerization process [69].

Sodium Silicate/Sodium Hydroxide: The SS/SH ratio in the alkaline activator solution is the eight most
important feature, as it has less effect on the £, prediction [70].

Water: The amount of additional water in the mixture is the ninth most important feature, as it has a little or
positive effect on the £ prediction.

Molarity: The molarity of the alkaline activator solution is the least important feature, as it has a negligible
effect on the f. prediction.
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Figure 11. Summary plot showing the global and local feature importance as suggested by the GB model.

Force Plot

The force plot in Figure 12 shows the contribution of each input feature to the prediction of the f. of SFGPC

for a specific instance in the dataset. The base value is the average f; of the training data, which is 34.88 MPa. The
final predicted value is the sum of the base value and the SHAP values of each feature, which is 51.94 MPa. The
plot indicates that the force features for this instance are A, Cagg., Alk./B, and Fagg., Sp, SS/SH, W and M.
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GGBFS and F1A were the resistant variables for this specific instance. The plot also shows that the features have
different effects on the f. depending on their values. For example, increasing “A” tends to increase the f., while
increasing FIA tends to decrease the f.. The plot also reveals that some features have negligible impact on the f-
for this instance, such as Sp, SS/SH, W and M. Therefore, the force plot provides a detailed explanation of how
the GB model predicts the f. of SFGPC for a specific instance, based on the values and importance of each feature.
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Figure 12. Force plot for a specific instance by GB model.

4.5.2. Second Layer of Explainability

Herein, the second layer of explainability refers to the use of ICE with PDP curves to show how the /. changes
as a function of each feature, while holding the other features constant. This layer provides more granular and
individualized information than the first layer, which uses summary plot and force plot to show the overall feature
importance and contribution. This helps in gaining more insights into the relationship between the features and the
target variable, as well as the variability and interactions among the features.

ICE with PDP Curves

The ICE with PDP curves in Figure 13 shows the effect of varying each of the most significant features on
the /. of SFGPC, while keeping the other features fixed at their average values. The curves reveal that some features
have a linear or nonlinear relationship with the £, such as A, GGBFS, and Alk./B, while others have a comparative
weak relationship, such as FIA. The curves also show that some features have a positive or negative impact on the
f., depending on their values. For example, increasing A tends to increase the f., while increasing Alk./B tends to
decrease the f.. By this the ICE with PDP curves provides a deeper understanding of how the GB model predicts
the f- of SFGPC, based on the values and effects of each feature.

4.5.3. 3D Surface Plots

To investigate the effect of two of the significant factors, namely the Alk./B ratio and the age, on the /., 3D
Surface plots were generated using the GB model as shown in Figure 14. The plots show the /. values for different
combinations of Alk./B and age, for two types of binders: FIA and GGBFS independently and the synergistic
behaviour too. The plots reveal some interesting patterns and insights, as discussed. One of the patterns that can
be observed from the plots is that the f. decreases with the increase of Alk./B ratio, regardless of the type of binder.
This implies that higher alkalinity is unfavourable for the geopolymerization process and the formation of a denser
and stronger matrix. Another pattern is that the £ increases with the increase of age, especially for the GPC made
with GGBFS. This indicates that the GPC made with GGBFS has a higher potential for strength development over
time. A third pattern is that the f. of GPC made with GGBEFS is consistently higher than the f. of GPC made with
FIA, for all values of Alk./B and age. This suggests that the GGBEFS is a more suitable binder for GPC than the
FIA, as it provides better mechanical properties. These patterns and insights can help optimize the design and
performance of SFGPC for various applications.
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Figure 13. ICE with PDP curves for the most significant features, showing how the f: of SFGPC varies with each
feature value.

fe (MPa)

fe (MPa)
30

50

25

20

GGBEFS and FIA both as binder

Figure 14. Effect of Alk./B ratio with Age on the f: using 3D surface plots when GGBFS or/and FIA was/were

used as binder.
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5. Sustainability Analysis of GPC Mixes

A cradle-to-gate LCA was conducted to evaluate the environmental performance of three GPC mixes with
comparable f. (~27.3-28.4 MPa): Mix 1 (GGBFS-Dominant), Mix 2 (Hybrid or synergistic), and Mix 3 (FIA-
Dominant). The mixes composition used for LCA are shown in Table 4. The analysis focused on EE, GWP, carbon
neutrality and air emissions, including Nitrogen Oxides (NOy), Sulfur Oxides (SOy), and PM. To account for
mechanical performance alongside environmental effects, two normalized sustainability indices were defined:
Sustainability Index (S;) and Energy Efficiency Index (EE;). Carbon neutrality potential was assessed through an
assumed 25% GWP offset, based on carbonation (10%), CO; injection in aggregates (5%), and material
substitution (10%). Although intentionally limited in scope, this assessment provides a comparative understanding
of how the key parameters identified through XAl, particularly binder composition and activator dosage, influence
both mechanical performance and environmental outcomes, which is important for sustainable mix design in

structural applications.

Table 4. Three mix designs for LCA.

Parameter Mix 1 Mix 2 Mix 3
FIA (kg/m®) 0 94 405
GGBFS (kg/m®) 488 379 0
Fagg. (kg/m?) 601 601 683
Cagg. (kg/m?) 1073 1073 1269
Alk./B 0.4734 0.5497 0.4
SS/SH 2 2.5135 1
Molarity (M) 10 10 13
Sp (kg/m?) 9.79 9.49 0
Additional Water (kg/m?) 0 0 81
Curing Age (days) 28 28 28
f: (MPa) 27.313 27.96 28.357

5.1. LCA Assumptions

To streamline and standardize the LCA, a set of key assumptions were made. The system boundary was
defined as cradle to gate, excluding curing, use, and end-of-life phases. Environmental coefficients were sourced
from ICE v3.0, Ecoinvent 3.8, and [71,72]. The life cycle inventory coefficients (LCI) used in this study are
summarized in Table 5.

Table 5. LCI coefficients used for LCA.
Material/Component EE (MJ/kg) GWP (kg COz-eq/kg) NOx (kg/kg) SO« (kg/kg) PM (kg/kg)

FIA 0.12 0.009 0.00001 0.00002 0.000005
GGBFS 1.00 0.07 0.00010 0.00015 0.00003
Fagg. 0.10 0.005 0.000005 0.00001 0.000002
Cagg. 0.10 0.005 0.000005 0.00001 0.000002

SH 20.0 1.50 0.0010 0.0020 0.0005

SS 11.0 1.20 0.0008 0.0015 0.0004

Sp 25.0 2.00 0.0012 0.0025 0.0006
Additional Water 0.01 0.00 0.0000 0.0000 0.0000

All raw materials were assumed to be transported 100 km by diesel truck, while sodium silicate and sodium
hydroxide were produced without recycling. The energy for mixing was kept constant at 5 MJ/m?, with associated
emissions of 0.4 kg CO»-eq/m>. The functional unit for all calculations was 1 m® of concrete, and the S; and EEi
were normalized by f. to enable a fair comparison across mixes. These assumptions reflect industry conditions and
allow for a reasonable and consistent comparison of environmental impacts.

5.2. Mix Compositions and Environmental Performance

The three GPC mixes differ in binder composition, activator content, and water usage, influencing their
mechanical and environmental performance. Table 6 represents the calculation details for the sustainability
indicators. Table 7 summarizes the sustainability metrics as GWP, EE, Air Emissions, S;, and EE;.
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o Sustainability Indices:

Si = GWP/fC.
EE; = EE/f..
Table 6. Calculation details.
. . Mix M2 Mix M3
Parameter Mix M1 (GGBFS Dominant) (Hybrid or Synergistic) (FIA Dominant)
QP wn-os
Activator Alk./B = 0.4734, SS/SH = 2 — 231.03 kg/m’ 258.80 k /o SS/SH =1 — 162 kg/m?
Mass (154.02 kg/m? SS, 77.01 kg/m? SH) OV KE (81 kg/m? SS,

(186.34 kg/m3 SS,

3
72.46 kg/m’® SH) 81 kg/m” SH)

(488 x 0.07) + (601 x 0.005) + (1073 x 0.005) +
GWP (kg (154.02 x 1.2) +(77.01 x 1.5) + (9.79 x 2.0) + (0 x 0.0) +

COx-eq/m’) [(488 + 601 + 1073 + 231.03 + 9.79 + 0) x 0.01] 287.05 156.00
+0.4 = 302.64
(488 x 1.0) + (601 x 0.1) + (1073 x 0.1) + (154.02 x 11) +
EE (MJ/m®) (77.01 x 20) + (9.79 x 25) + (0 x 0.01) + [(488 + 601 + 1073 2347.44 1966.56
+231.03 +9.79 + 0) x 0.1] + 5 = 2693.35
(488 % 0.0001) + (601 x 0.000005) + (1073 x 0.000005) +
NOx (154.02 x 0.0008) + (77.01 x 0.001) + (9.79 x 0.0012) + 0.182 0.103
(kg/m?) (0 x 0.0) + [(488 + 601 + 1073 + 231.03 +9.79 + 0) x . .
0.00002] + 0.00001 = 0.190
(488 x 0.00015) + (601 x 0.00001) + (1073 x 0.00001) +
SOx (154.02 x 0.0015) + (77.01 x 0.002) + (9.79 x 0.0025) + 0324 0184
(kg/m?) (0 % 0.0) + [(488 + 601 + 1073 + 231.03 + 9.79 + 0) x : :
0.00003] + 0.00002 = 0.340
(488x0.00003) + (601x0.000002) + (1073x0.000002) +
(154.02x0.0004) + (77.01x0.0005) + (9.79%0.0006) +
PM (kg/m’) (0x0.0) + [(488+601+1073+231.03+9.79+0) x 0.00001] + 0.079 0.047

0.000005 = 0.083

Table 7. Sustainability metrics for the three GPC mixes.

Parameter Mix 1 Mix 2 Mix 3
GWP (kg COr-eq/m?) 302.64 287.05 156.00
EE (MJ/m?) 2693.35 2347.44 1966.56

Si (kg CO»/MPa) 11.08 10.27 5.50

EE; (MJ/MPa) 98.62 83.96 69.36

NOy Emissions (kg/m?) 0.19 0.182 0.103

SOy Emissions (kg/m?) 0.34 0.324 0.184

PM Emissions (kg/m?) 0.083 0.079 0.047

5.3. Comparative Sustainability Analysis

Among the three GPC mixes with comparable f., Tables 6 and 7 demonstrates that the Mix 1 demonstrated
the highest environmental footprint across all evaluated indicators. This elevated impact is primarily attributed to
its high GGBFS content (488 kg/m?) and substantial alkali activator demand (231.03 kg/m?), particularly with a
SS/SH ratio of 2.0. These components are known to be energy-intensive and carbon-intensive, significantly
increasing both EE and GWP.

Mix 2, incorporating a moderate quantity of both GGBFS (379 kg/m?) and FIA (94 kg/m?), also required a
high activator dosage (258.80 kg/m?, SS/SH = 2.5135). Although its environmental indicators were marginally
lower than Mix 1, the overall impacts remained considerably higher than those of Mix 3. The elevated SS/SH ratio
and high cumulative alkali content contributed notably to its environmental burden, particularly in terms of EE
and air emissions.

In contrast, Mix 3, which exclusively used FIA (405 kg/m?) as the binder and operated at a significantly lower
activator dosage (162 kg/m?®) with an SS/SH ratio of 1.0, exhibited the most favourable environmental
performance. It achieved the lowest GWP (156.00 kg CO,-eq/m®), EE (1966.56 MJ/m?), and emissions (NOy, SOx,
and PM) among all mixes, while maintaining a comparable f. of 28.36 MPa. The high reactivity of FIA, combined
with optimized alkali usage, reduced the environmental burden significantly.

The effectiveness of Mix 3 is further reinforced by the normalized sustainability indices. Its S; = 5.50 kg CO»-
eq/MPa is approximately 50% lower than that of Mix 1 (S; = 11.08), and its EE; = 69.36 MJ/MPa) is around 30%
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better than Mix 1 (EE; = 98.62). These normalized values underscore that, despite identical strength requirements,
Mix 3 delivers a more resource-efficient and climate-conscious solution.

The comparative results are presented in Figures 15-17. Figure 15 illustrates the normalized sustainability
metrics (S; and EE;) relative to Mix 3. It is evident that Mix 3 consistently performs best across all criteria,
reflecting superior carbon and energy efficiency. Figure 16 depicts the contributions of individual material
components to GWP. It clearly shows that Mix 1 exhibits the highest greenhouse gas emissions, largely due to its
high GGBEFS and activator content, while Mix 3 records the lowest emissions, primarily owing to its FIA-based
binder and reduced alkali dosage. Figure 17 presents a bubble chart plotting f: against the S;. It reveals that Mix 3
achieves the most favourable balance, maintaining strength while substantially lowering carbon intensity.
Collectively, these graphical representations reaffirm the environmental and mechanical superiority of the FIA-
dominant Mix 3, highlighting its potential as a highly sustainable and technically sound solution for low-carbon
GPC applications.

Normalized Sustainability Metrics of GPC Mixes (Relative to Mix 3)
Mix 1 (GGBFS-Dominant) Mix 2 (Hybrid) [ | Mix 3 (FA-Dominant)
Compressive Strength

25

2.0

EEi N GWP

Si EE

Figure 15. Radar diagram showing the normalized sustainability metrics of GPC mixes (relative to Mix 3).
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Figure 16. GHG contributions by material components.
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Compressive Strength vs. Carbon Efficiency (Si) with Curing Time
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Figure 17. Bubble chart showing the comparison between f vs. Si with curing time.

5.4. Air Emissions (NO,, SO, and PM) Assessment

To further clarify these trends, Table 7, Figure 18 present the air emissions due to the three GPC mixes. Mix 1
emits the highest NOx (0.190 kg/m?®), SOy (0.340 kg/m?®) and PM (0.083 kg/m?), predominantly due to its GGBFS
content and large amount of SS and SH. Mix 2 showed moderately reduced emissions. Mix 3 again outperformed
both, owing to its minimal activator dosage and reliance on low-impact FIA.

This underscores the opportunity to minimize air emissions by optimizing material selections and mixture
proportions, without compromising mechanical properties. Furthermore, this highlights the role of Ecoinvent 3.8
coefficients in identifying key contributors to emissions.

Air Emissions (NOx, SOx, and PM) for GPC Mixes (kg/m?)
NOx SOx PM
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Figure 18. Air emissions (NOx, SOx and PM) for the three GPC mixes.
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From the sustainability analysis, it is evident that alkali activator content plays a key role in determining the
environmental impact of GPC. Mix 1, characterized by a high activator dosage (231.03 kg/m?) and SS/SH ratio of
2.0, exhibits the highest GWP and air emissions, primarily due to the intensive energy and carbon footprint of SS
and SH production. In contrast, Mix 3, with a significantly lower activator mass (162 kg/m?) and balanced SS/SH
ratio of 1.0, demonstrates a 30—45% reduction in environmental indicators such as GWP, EE, NOy, SOy, and PM,
showcasing the importance of activator optimization. Unlike the hybrid or synergistic approach used in the earlier
mixes, the binder in Mix 3 consists solely of FIA, which, despite its slower reactivity compared to GGBFS,
performs well due to the optimized activator formulation and curing regime. This mix reflects the principles of
resource circularity and emissions minimization, achieving good mechanical strength with minimal environmental
burden. Water content also influences both mechanical and sustainability outcomes. Mix 3 includes 81 kg/m3 of
water, which slightly dilutes strength but aids in workability and reaction kinetics, without the need for Sp. This
highlights the potential benefit of incorporating water-reducing admixtures in FIA-rich mixes to further enhance
performance. Mix 2, despite its balanced binder composition, uses the highest activator mass (258.80 kg/m?®) and
also suffers from elevated SS/SH ratios (2.5135), resulting in a relatively high environmental footprint, albeit
marginally better than Mix 1.

Overall, Mix 3 emerges as the most environmentally and technically viable option, delivering low GWP
(156.00 kg/m?), moderate energy demand (1966.56 MJ/m?), and the best normalized indices (S; = 5.50 kg/MPa,
EE; = 69.36 MJ/MPa). Mix 2 may be improved by lowering SS/SH ratios or employing blended activators,
while Mix 1 is only recommended in cases where GGBES is locally available and environmental regulations are
less stringent.

5.5. Carbon Neutrality Assessment

Carbon neutrality, defined as achieving net-zero GWP, was evaluated by estimating the GWP offset
achievable through carbon capture, utilization, and storage (CCUS) and material substitution strategies. A 10%
GWP reduction was assumed via carbonation, where alkaline binders absorb atmospheric CO, during the curing
process, as supported by findings from [73]. An additional 5% reduction was considered from CO, injection into
aggregate systems, based on the benchmark offset reported by [74]. A further 10% reduction was attributed to
material substitution, such as partial replacement of GGBFS with FIA or the use of low-carbon activators.
Together, these mechanisms amount to a total assumed GWP offset of 25% for all mixes.

Mix 1:
An initial GWP of 302.64 kg CO-eq/m® was reduced by 75.66 kg/m* (25%), yielding a residual GWP of
226.98 kg/m®. Achieving full carbon neutrality would require offsetting the remaining 226.98 kg/m?, equivalent

to planting approximately 23 trees per cubic meter (assuming 10 kg CO»/tree/year over 10 years) or employing
high-cost CCUS technologies, rendering this mix the least favourable in terms of neutrality feasibility.

Mix 2:
The initial GWP of 287.05 kg COs-eq/m® was reduced by 71.76 kg/m’, leaving a residual GWP of

215.29 kg/m?3, which would require around 22 trees/m? for complete neutrality. While slightly more efficient than
Mix 1, its elevated activator content and SS/SH ratio still pose sustainability challenges.
Mix 3:

With the lowest GWP of 156.00 kg CO,-eq/m?, a 25% offset removes 39.00 kg/m>, resulting in a residual
GWP of 117.00 kg/m*—the lowest among all mixes. This would require the equivalent of only 12 trees/m? to
reach neutrality. Owing to its reduced reliance on high-impact activators and efficient binder system, Mix 3
emerges as the most promising solution for carbon-neutral applications.

As illustrated in Figure 19, the normalized carbon neutrality metrics, including residual GWP, total GWP
offset, and the Carbon Neutrality Index (CNI), highlight the comparative viability of the three GPC mixes, with
Mix 3 demonstrating the most feasible pathway toward net-zero emissions.

The Carbon Neutrality Index (CNI = Offset GWP/Initial GWP) is 0.25 for all mixes, as offset strategies were
uniformly applied. Higher CNI values (closer to 1) would require advanced CCUS or renewable energy in
production, which are currently limited for alkali activators. Mix 3’s balance of strength and low residual GWP
positions it as the most viable for carbon-neutral concrete.
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Normalized Carbon Neutrality Metrics Relative to Mix 3
Mix 1 (GGBFS-Dominant) Mix 2 (Hybrid) ﬂ= Mix 3 (FA-Dominant)
Residual GWP
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Figure 19. Normalized carbon neutrality metrics relative to Mix 3.

6. Conclusions

This study presents a comprehensive, explainable, and sustainability-driven framework for modelling the
compressive strength of SFGPC. A curated dataset of 363 mixes was developed from literature, guided by a
scientometric mapping of 441 publications. Five ML models were trained, among which GB demonstrated superior
predictive performance, achieving R? = 0.954, RMSE = 3.15 MPa, MAE = 1.81 MPa during training and R? = 0.95,
RMSE =3.128 MPa, MAE =2.41 MPa during testing. Multi-layered XAl revealed that curing age, GGBFS content,
and alkaline-to-binder ratio are the dominant features governing strength development, with clear nonlinear trends.
LCA confirmed that the fly ash-dominant mix achieved the lowest global warming potential (156 kg CO,-eq/m?),
highest resource efficiency, and smallest post-offset residual GWP. The GUI developed in this work enables
practitioners to instantly predict strength using user-provided mix parameters. The novelty of this study lies in its
integration of ML, XAI, GUI deployment, and LCA into a single transparent and engineering-ready framework
for designing next-generation sustainable geopolymer concretes.

6.1. Key Findings

The study conducts a scientometric analysis to review the literature data, identify the research trends related
to GPC, and collect the data systematically for developing ML models.

e  Develops five ML models, two CML models as ANN, DT, and three EML models as RF, AdB, and GB, to
predict the f. of SFGPC based on different input features.

e  Compares and evaluates the performance of the ML models using metrics, scatter plots, and Taylor diagram.
The results indicate that the GB model outperforms the other models in terms of prediction accuracy and
agreement with the actual f;.

e  The explanations from the multi-layered XAI techniques revealed that the “A”, “GGBFS”, and “Alk./B”
were the most influential features in predicting the f. of SFGPC. The explanations also showed how the
features varied and interacted with each other, and how they affected the prediction outcome.
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e 3D Surface plots were made for showing the effect on f. of SFGPC with variation in Alk./B and the age (A),
for two types of binders: FIA and GGBFS independently and the synergistic behaviour too. The main
findings are:

o  Higher Alk./B ratios tend to reduce the f. of SFGPC.
o Increased curing age significantly enhances strength, particularly in GGBFS-based mixes.
o  GGBFS was found to be a more effective binder than FIA in achieving higher f..

e To bridge the gap between model development and real-world application, a user-friendly GUI was
developed. A prototype GUI demonstrating the practical deployment of the trained ML model is provided as
Supplementary Material. The GUI allows practitioners to input mix parameters and obtain real-time f.
predictions using the trained GB model.

e  LCA results clearly indicate that the FIA-dominant GPC mix offers the most favourable balance between
mechanical strength and environmental performance. With the lowest GWP, EE, and air emissions, along
with a feasible path toward carbon neutrality, Mix 3 (FIA-dominant) demonstrates superior sustainability
without compromising f.. Its optimized use of FIA and reduced alkali activator dosage minimize
environmental burdens while delivering good mechanical performance. These findings underscore Mix 3’s
potential as a green, durable, and resource-efficient alternative for sustainable construction applications.

6.2. Research Limitations

e  The dataset, although larger than many prior GPC ML studies, is still dependent on published literature and
may not cover the full design space of SFGPC mixtures.

e  Certain experimental variables, such as curing humidity, reaction kinetics, and microstructural indices, were
unavailable in the literature dataset and therefore were not included as predictive features.

e  The compressive strength modelling does not incorporate long-term durability behaviour (e.g., chloride
ingress, shrinkage, carbonation).

e  LCA results are based on cradle-to-gate boundaries; transportation and end-of-life aspects were beyond the
study scope.

6.3. Recommendations for Future Research

e  Generate larger experimental datasets through laboratory testing to overcome literature bias and expand the
design domain.

e  Incorporate durability-related outputs (e.g., permeability, chloride resistance) into future ML-XAI modelling
frameworks.

e Integrate uncertainty quantification or Bayesian approaches to capture variability in geopolymer chemistry
and curing conditions.

e Extend the LCA from cradle-to-gate to cradle-to-grave, including demolition, recycling, and carbon
sequestration potentials.

e  Explore hybrid ML—mechanistic modelling to link XAl insights with geopolymer reaction chemistry.

Supplementary Materials

The additional data and information can be downloaded at: https://media.sciltp.com/articles/others/
2601201604223206/BCI-25110071-supplement.pdf. Figure S1: Prototype GUI interface for predicting the f. of
sustainable SFGPC. Table S1: ANN architecture details. Table S2: ANN training hyperparameters. Table S3:
Optimized DT hyperparameters. Table S4: Optimized RF hyperparameters. Table S5: Optimized AdB
hyperparameters. Table S6: Optimized AdB hyperparameters.
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