
 

 

	

Hydrology and Water Resources 

https://www.sciltp.com/journals/hwr 

 

 

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Article 

Predicting Streamflow Regimes in Ungauged Catchments 
with Process-Informed Machine Learning 
Hongxing Zheng 1,*, Ruirui Zhu 2, Lu Zhang 3 and Francis Chiew 1 
1 CSIRO Environment, GPO BOX 1666, Canberra, ACT 2601, Australia 
2 Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia 
3 State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China 
* Correspondence: Hongxing.zheng@csiro.au 

How To Cite: Zheng, H.; Zhu, R.; Zhang, L.; et al. Predicting Streamflow Regimes in Ungauged Catchments with Process-Informed Machine 
Learning. Hydrology and Water Resources 2026, 1(1), 5. https://doi.org/10.53941/hwr.2026.100005 

Received: 13 November 2025  
Revised: 1 January 2026 
Accepted: 9 January 2026 
Published: 23 January 2026 

Abstract: Predicting daily flow duration curves (FDCs) in ungauged catchments 
remains a major challenge in hydrology and is critical for effective water resources 
management. The FDCs typical were predicted by relating FDC parameters or 
percentiles to catchment properties using statistical or machine learning-based 
models. Such models often suffer from limited interpretability and transferability 
across hydroclimatic conditions. In this study, we propose a process-informed, 
interpretable machine learning framework for predicting daily FDCs by integrating 
multivariate adaptive regression splines (MARS) with the Budyko theory, which 
provides a physically based representation of long-term water–energy constraints 
on catchment behaviour. Assuming the FDC follows a log-normal distribution 
determined by three parameters, MARS is used to explore relationships between 
FDC parameters and 19 catchment characteristics using data from 347 catchments 
across Australia. Results indicate that the proposed framework can satisfactorily 
predict the mean and deviation of daily streamflow, while prediction skill for ratio 
of non-zero flow days remains comparatively weaker. Incorporating hydrological 
constraints through Budyko theory improves the physical interpretability and 
robustness of model predictions, particularly in revealing the dominant 
hydroclimatic controls on streamflow regimes. Prediction performance is found 
generally higher in wetter catchments than in drier ones, mainly due to limitations 
of the models in predicting non-zero flow ratio and the lognormal assumption. To 
further improve FDC prediction in ungauged catchments, catchment characteristics 
more closely related to groundwater processes may be required, in addition to the 
adoption of more advanced modelling approaches. 

 Keywords: flow duration curve; process-informed machine learning (PIML); 
MARS model; prediction in ungauged basins (PUBs) 

1. Introduction 

Streamflow regime represents the temporal distribution and variability of the flow in the river and plays an 
important role in shaping river channels, structuring aquatic ecosystems and affecting water use. The streamflow 
regime generally can be characterized by its magnitude, frequency, duration and predictability. One convenient 
and effective way to describe streamflow regime is the use of flow duration curve (FDC), which represents the 
relationship between the magnitude and frequency of streamflow for a given catchment and provides a statistical 
method for illustrating streamflow characteristics. FDCs are widely used in hydrology to identify difference or 
changes of the streamflow, to configure instream flow requirement, to inform water allocation decisions, and to 
determine the capacity of a hydropower plant [1–6]. 
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Flow duration curves for catchments with long-term daily streamflow observation can be derived by estimating 
the parameters of a candidate distribution function [7]. It becomes challenging to predict the FDC where observed daily 
streamflow is unavailable (ungauged basins) or in highly regulated catchments [8–12]. Numerous efforts have been 
made to address this challenge and different methods have been developed, some of which are summarized in Table 1. 
The methods developed include parametric regression [2], nearest neighbour [13,14], hydrological similarity [15,16], 
index model [17] and machine learning or deep learning (ML/DL) methods [2,18,19]. A more comprehensive review 
of FDC prediction in ungauged catchments can be found in [20]. 

Most existing methods are fundamentally based on developing statistical relationships between FDC parameters 
and the physical properties of catchments. However, the development of generic relationships between FDC 
parameters and their predictors is challenged by substantial hydrological heterogeneity across catchments. As an 
alternative, some researchers have tried to cluster or group catchments into hydrologically homogeneous regions 
based on land use, soil types and climate conditions first and then developed relationships for each homogeneous 
region [21]. A few studies have shown that such an approach can lead to poor model performance [22,23] unless the 
catchment clustering approach is effective. Moreover, the increasingly used ML/DL methods though have shown 
strong potential in improving hydrological prediction, they often provide limited physically meaningful interpretation 
of the relationships between the predictors and the predictands. Process-informed machine learning (PIML) that 
incorporates established hydrological knowledge with machine learning is expected to provide more robust and 
physically interpretable models for hydrological predictions [24,25]. 

Table 1. Summary of recent studies on predicting flow duration curves for ungauged catchments. 

Predictor Types Predictor 
Numbers Methods Study Region Streamflow 

Gauges References 

Pedological 30 Region of influence UK 653 [26] 
Climatic, geomorphological, pedological, land 

use/cover 42 Regression USA 29 [9] 

Climatic, topographic, pedological, hydraulic, land 
use/cover 12 Statistical Index-model Australia 227 [17] 

Climatic, topographic, hydrological,  
land cover, water chemical 16 Regression and random 

forest New Zealand 379 [2] 

Hydrological, topographic, lithologic, hydraulic, 
pedological 19 Regression Italy 19 [27] 

Climatic, topographic, hydrogeological 12 Process-based modelling 
and regression Nepal 25 [28] 

Climatic, topographic, hydrological,  
land use/cover 8 ML-based regression 

(ANN) 
Canada and 

USA 260 [18] 

Climatic, topographic, hydrological,  
land use/cover 11 Functional multiple 

regression Canada 109 [29] 

Climatic, topographic, hydrological 10 Evolutionary polynomial 
regression Brazil 11 [30] 

Climatic, topographic, hydrological, pedological, 
hydrogeological, land use/cover 23 ML-based regression USA 918 [19] 

Climatic, hydrological, topographic,  24 Geostatistical model Brazil 81 [31] 
Climatic, topographic, hydrological,  

land use/cover 8/11 3-D kriging interpolation Italy 41 [15] 

Climatic, topographic, pedological,  
land use/cover, 11 Process-based modelling  USA 201 [32] 

Climatic, topographic, pedological,  
land use/cover 19 Process-informed machine 

learning Australia 347 This study 

In this paper, a process-informed machine learning (PIML) approach is proposed to provide more robust and 
interpretable prediction of FDCs in ungauged or highly regulated catchments. The idea is to establish relationships 
between FDC parameters and catchment characteristics by combining the multivariate adaptive regression splines 
(MARS) [33] with the Budyko framework [34]. The MARS approach is an interpretable machine learning 
algorithm integrating clustering and multivariate regression, and has been proven to be an effective tool in handling 
forecasting and classification problems [35–37]. The Budyko framework, on the other hand, is a well-established 
hydroclimate relationship which can be used to predict mean annual runoff from mean annual precipitation and 
potential evapotranspiration. The combination of MARS and Budyko framework is expected to provide more 
robust and hydrologically interpretable relationships between the FDC parameters and catchment characteristics 
by capturing intrinsic complicated data structure and hydroclimatic characteristics. 
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2. Method 

2.1. Probability Distribution of Flow Duration Curve 

The daily flow duration curve can be parameterized by different probability distribution functions, such as 
lognormal distribution [17,38], log-logistic distribution [39] and the extended three-parameter Burr XII system [40]. 
There is no general agreement on the selection of the distribution functions in the literature, and the most appropriate 
function may depend on the region. In this study, we use the lognormal distribution to represent the FDC. The form 
of lognormal distribution has some variants in hydrology owing to the characteristic of the random variables and the 
purpose of the application. Herein, the three-parameter lognormal distribution is used and expressed as: 

𝑄ሺ𝑝, 𝜇,𝜎. 𝜏ሻ ൌ ቊ
𝑒𝑥𝑝 ቂ𝜎𝛷ିଵ ቀ1 െ

௣

ఛ
ቁ ൅ 𝜇ቃ , 0 ൑ 𝑝 ൑ 𝜏 

0,                                             𝑝 ൐ 𝜏        
  (1)

where 𝛷ሺ∙ሻ is the standard normal cumulative distribution function; 𝜇 and 𝜎 are mean and standard deviation of 
the logarithms of the non-zero daily streamflow respectively, which describe the central tendency and variation of 
non-zero flows. The parameter 𝜏 is a ratio of non-zero flow days to total flow days and it equals 1 for perennial 
catchments and less than 1 for ephemeral ones. When observed daily streamflow data is available, the maximum 
likelihood estimation of the distribution parameters μ and σ, and 𝜏 is: 

𝜇̂ ൌ
ଵ

௠
∑ 𝑞௜
௠
௜ୀଵ   (2)

𝜎ො ൌ ට ଵ

௠ିଵ
∑ ሺ𝑞௜ െ 𝜇̂ሻଶ௠
௜ୀଵ   (3)

𝜏 ൌ 𝑚 𝑛⁄   (4)

where qi (=logQi) is the logarithm of non-zero streamflow Qi, m is the number of non-zero flow days, and n is the 
number of total days of the streamflow time series. The FDC parameters estimated using these equations are 
considered as benchmark and used to develop relationships between the FDC parameters and catchment 
characteristics, which can then be used to predict the FDCs for ungauged catchments. It is noted that the lognormal 
distribution parameters (μ and σ) of an FDC can be expressed by mean (𝑄ത) and standard deviation (s) of daily 
streamflow respectively as [41]: 

𝜇̂ ൌ 𝑙𝑜𝑔 ൤
ொതమ

ඥ௦మାொതమ
൨  (5)

𝜎ොଶ ൌ 𝑙𝑜𝑔 ቂ1 ൅
௦మ

ொതమ
ቃ  (6)

Hence, FDC prediction relies on the estimation of the three parameters including streamflow mean 𝑄ത, streamflow 
deviation s and the ratio of non-zero flow days 𝜏. 

2.2. FDC Prediction Using Process-Informed Machine Learning 

To predict FDCs of ungauged catchments, the multivariate adaptive regression splines (MARS) proposed by [33] 
is adopted in this study. MARS is an interpretable machine learning approach, which combines clustering and regression 
algorithm and automatically models nonlinearities and interactions between predictors [33]. The form of a MARS model 
can be expressed as a weighted sum of basis functions Bi(x) with ci as the weights: 

𝑓ሺ𝑥ሻ ൌ ∑ 𝑐௜𝐵௜ሺ𝑥ሻ
௞
௜ୀଵ   (7)

The basis function Bi(x) can be a constant (interception), a hinge function or the product of hinge functions: 

𝐵ሺ𝑥ሻ ൌ ∏ ℎ௝ሺ𝑥௝ െ 𝑢௝ሻ
௠
௝ୀଵ   (8)

The hinge function is the critical part of the MARS and is defined as: 

ℎሺ𝑥 െ 𝑢ሻ ൌ max ሺ0, 𝑥 െ 𝑢ሻ  (9)

where the constant u is called knot. The knot of a variable can be regarded as an inflection point along the range 
of a predictor. Given a knot value, the data x is partitioned into two parts and each is fitted by an independent linear 
regression function. When more knots are specified for a predictor variable, the MARS model can approximate 
the complex non-linear relationships between a response and its predictor. A MARS model is built using forward 
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and backward procedures. In forward procedures, candidate knots can be placed at any position within the range 
of each predictor to define a pair of basis functions. A knot value will be accepted if it reduces significantly the 
residual sum of squares. The forward procedure usually builds an overfit model and the backward procedure is to 
prune the model by removing the least effective basis functions one by one until the best model is found [33,42]. 

Two different MARS-based models are developed in this study to predict FDCs in ungauged catchments, 
distinguished by their integration with hydrological process understanding. The first model (MA) is a purely data-
driven approach, without explicit process-informed components. It predicts mean (𝑄ത) and standard deviation (s) 
of daily streamflow and non-zero flow day ratio (𝜏) from catchment characteristics (X) using MARS as: 

ሾ𝑄ത , 𝑠, 𝜏ሿ ൌ 𝑀𝐴ሺ𝑋ሻ  (10)

The second model (MB) is a process-informed one that combines the Budyko framework with MARS to 
estimate the FDC parameters. The Budyko framework assumes that mean annual evapotranspiration (𝐸𝑇തതതത) from a 
catchment will approach rainfall (𝑃ത) under very dry conditions (water limiting) and potential evapotranspiration 
(𝐸ത଴) under very wet conditions (energy limiting) [34]. The Budyko framework can be expressed in various forms, 
among which the Fu’s equation is one of the most widely adopted [43,44]. In this study, Fu’s equation is applied 
and formulated as: 

ா்തതതത

௉ത
ൌ 1 ൅ 𝜑 െ ሺ1 ൅ 𝜑ఈሻଵ/ఈ  (11)

where, 𝜑 ൌ 𝐸ത଴/𝑃ത is the aridity index, 𝛼 is a model parameter related to catchment characteristics [43,45]. At 
mean annual time scale, neglecting the changes of water storage, one can assume that 𝐸𝑇തതതത ൌ 𝑃ത െ 𝑄ത, the mean 
annual streamflow can then be estimated as: 

𝑄ത ൌ 𝑃തൣሺ1 ൅ 𝜑ఈሻଵ/ఈ െ 𝜑൧  (12)

This relationship indicates that mean annual streamflow can be determined from mean annual precipitation 
and potential evapotranspiration if parameter α is known. In other words, predicting mean annual (or daily) 
streamflow for ungauged catchments using the Budyko framework is equivalent to predicting the parameter α. 
Thus, the second model (MB) predicts the parameter α rather than streamflow mean (𝑄ത ), daily streamflow 
deviation (s) and non-zero flow day ratio (𝜏) from catchment characteristics using MARS as: 

ሾ𝛼, 𝑠, 𝜏ሿ ൌ 𝑀𝐵ሺ𝑋ሻ  (13)

Once the parameter α of an ungauged catchment is predicted using Equation (13), it is then used to predict 
mean annual streamflow 𝑄ത  from Equation (12) with observed mean annual precipitation and potential 
evapotranspiration. Similar to MA, parameters of the lognormal distribution can then be determined from 
Equations (5) and (6). It needs point out that, in each of the two proposed MARS models (MA and MB), all the 
three parameters are estimated jointly and share the same basis functions. 

2.3. Model Evaluation 

The MARS models for predicting FDCs involve two main steps: estimating the FDC parameters and 
generating the FDC based on these estimates. Model performance is therefore evaluated across gauged catchments 
in terms of (i) accuracy in predicting the FDC parameters and (ii) agreement between the predicted and empirical 
FDCs. For model evaluation regarding prediction of FDC parameters, the mean annual runoff, standard deviation 
of non-zero flow and the non-zero flow ratio derived from the gauged catchments are considered as the benchmark 
values. The performance of the model is then evaluated by comparing the predicted values against the benchmark 
values, where the goodness-of-fit is illustrated by coefficient of determination (R2) and bias. Meanwhile, model 
evaluation regarding agreement between predicted and empirical FDCs is assessed using the Nash-Sutcliffe 
coefficient of efficiency [46], which is expressed as: 

𝑁𝑆𝐸 ൌ 1 െ
∑ ൫ொೞ೔೘,೔ିொ೚್ೞ,೔൯

మ೘
೔సభ

∑ ൫ொ೚್ೞ,೔ିொത೚್ೞ൯
మ೘

೔సభ

  (14)

where Qsim and Qobs are predicted and observed streamflow percentiles, m is the number of non-zero flow days, i 
is the percentile of flow. 

Model performance is validated using k-fold cross-validation, where all the gauged catchments are divided 
randomly into five groups of similar size and the cross-validation is done in five iterations. At each iteration, one 
of the five groups is assumed to be the “ungauged” catchments, while the remaining four groups are assumed to 
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be “gauged” catchments and are used to train the MARS models. The predictions of the “ungauged” groups from 
the five iterations are then pulled together to assess model performance. 

3. Data 

This study uses daily streamflow data from [47] for 347 catchments across Australia with at least ten years 
continuous daily streamflow observations over the period 1975–2012 (Figure 1). The streamflow dataset is the 
most comprehensive Australian streamflow dataset and has been used in many hydrological studies [17,48]. The 
streamflow data are for relatively unimpaired catchments (i.e., not significantly affected by regulation structures 
or streamflow extraction). The catchment size ranges from 50 to 60,184 km2. The catchments cover different 
hydroclimatic conditions with the aridity index varying from 0.4 to 6.3. 

 
(a) (b) 

Figure 1. Locations of the 347 ungauged catchments used in the study (a), and ratio of mean annual 
evapotranspiration to precipitation (ET/P) as a function of the aridity index (E0/P) as represented by the Budyko 
framework (b). The three red dots are catchments selected to demonstrate the performance of FDC prediction. 

For the purpose of predicting FDCs, observed daily streamflow data from all the selected catchments are first 
used to estimate the model parameters based on Equations (2) to (4). Table 2 provides a summary of the parameter 
values for the catchments considered. The observation-based estimates of the FDC parameters are then used to 
develop their relationships with catchment characteristics using MARS. 

Table 2. Summary of catchment characteristics and the observed FDC parameters of the 347 studied catchments. 

Variables Definition Min Median Max 

Climate 

MDP Mean daily rainfall (mm/day) 0.8 2.4 8.3 
SDP Standard deviation of daily rainfall (rain days only) 3.8 6.7 19.5 
MDE Mean daily potential evapotranspiration (PET, mm/day) 2.5 3.5 5.4 
SDE Standard deviation of daily potential evapotranspiration 0.9 1.6 1.9 
TRD Ratio of rain days in a year 0.2 0.6 0.9 
AI Aridity index (=MDE/MDP) 0.4 1.4 6.3 

MDS Mean duration of no rain days (days) 1.6 3.1 8.4 
MXS Maximum duration of no rain days (days) 7.0 28.0 156.0 

Location 
Latitude Centroid latitude of the catchment −43.3 −33.6 −12.3 

Longitude Centroid longitude of the catchment 114.4 147.3 153.2 
Elevation Mean elevation of the catchment 37.6 366.9 1351.0 

Topography 

Area Catchment area (km2) 51 363 60184 
DE Difference between maximum and minimum elevation (m) 8.8 257.8 1180.2 

SDELV Standard deviation of elevation 2.0 62.3 310.3 
Slope Mean slope of the catchment (degree) 0.6 11.6 41.0 

Land cover LAI Leaf area index 0.0 1.6 4.9 
W Fraction of total native woody vegetation 0.0 3.5 43.0 

Soil PAWC Plant available water holding capacity (mm) 27.1 89.2 186.0 
BD Bulk density 0.5 1.4 1.7 

FDC parameters 

𝑄ത  Mean daily streamflow at natural scale (mm/day) 0.0 0.4 5.3 
s Standard deviation of daily streamflow at natural scale 0.1 1.4 10.6 
𝜇 Mean of daily streamflow at logarithmic scale −7.8 −2.8 1.1 
𝝈 Standard deviation of daily streamflow at logarithmic scale 0.7 2.2 5.8 
𝝉 Non-zero flow ratio 0.1 1.0 1.0 
𝜶 Parameter of the Fu’s equation (Equation (8)) 1.3 3.2 5.3 
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Nineteen catchment characteristics of climate, location, topography, land cover and soil are obtained for each 
catchment to develop the FDC prediction model (see Table 2). Daily rainfall and potential evapotranspiration data 
are obtained from the SILO Data Drill 0.05° (~5 km), which is a gridded climate dataset across Australia [49]. 
Climate metrics of catchments are derived from the daily climate data for the period same to the streamflow 
observations. The leaf area index data are obtained from the Advanced Very High Resolution Radiometer 
(AVHRR) generated by Boston University [50]. The topography data come from [47]. The soil data are obtained 
from [51], where the plant available water holding capacity (PAWHC) is an indication of effective soil depth, 
while the bulk density indicates the mineral make up of soil and the degree of compaction. 

4. Results 

4.1. MARS Models in Predicting FDC Parameters 

Table 3 lists the two MARS models (MA and MB) calibrated by using all the 347 catchments, showing the 
overall relationships between catchment characteristics and the parameters of FDC. For MA, the FDC parameters 
predicted here include the mean (𝑄ത) and standard deviation (s) of daily non-zero streamflow, and non-zero flow 
ratio (τ). For MB, the parameters predicted are α, s and τ. Note that the three predictands in Table 3 share the same 
predictors and basis functions because the predictands in both the MA and MB models are predicted jointly instead 
of separately by three individual MARS models. 

Table 3. Calibrated basis functions and their corresponding coefficients of MARS models for FDC parameter 
prediction. 

Items MA MB 
Basis Functions 𝑸ഥ  s 𝝉 Basis Functions 𝜶 s 𝝉 

1 Intercept 0.482 1.156 0.921 Intercept 4.569 −0.316 0.790 
2 h(2.85-MDP) −0.259 1.013 −0.109 h(2.85-MDP) −0.158 0.797 −0.100 
3 h(MDP-2.85) 0.854 −0.097 −0.034 h(3.66-MDE) −0.778 0.385 0.048 
4 h(3.05-MDE) 1.308 2.305 −0.065 h(MDE-3.66) −0.283 −1.110 −0.188 
5 h(MDE-3.61) −0.051 −1.185 −0.226 h(MDE-4.61) −0.791 1.856 −0.082 
6 h(MDE-4.73) 0.313 2.018 −0.024 h(7.58-SDP) 0.160 −0.556 −0.018 
7 h(7.68-SDP) −0.030 −0.634 −0.014 h(SDP-7.58) −0.147 0.891 −0.003 
8 h(SDP-7.68) −0.045 0.879 −0.001 h(1.85-SDE) 0.011 1.747 0.479 
9 h(SDP-10.86) 0.178 0.553 0.001 h(PAWC-48.1) −0.046 0.064 0.004 

10 h(SDP-12.74) −0.114 −0.840 0.024 h(71.1-PAWC) −0.039 0.066 0.003 
11 h(1.8-SDE) −0.149 2.513 0.518 h(PAWC-71.1) 0.054 −0.074 −0.004 
12 h(74.79-PAWC) 0.004 0.020 −0.001 h(1.4-BD) −1.259 1.745 −0.171 
13 h(124.1-Area) 0.001 0.005 −0.001 h(BD-1.4) −1.176 3.069 −0.271 
14 - - - - h(BD-1.6) 5.302 −17.788 0.746 

Table 3 shows that, for the MA model, the most important catchment characteristics determining FDC 
parameters are mean daily precipitation and potential evaporation (MDP and MDE), standard deviation of daily 
precipitation and potential evaporation (SDP and SDE), plant available water capacity (PAWC) and catchment 
area (Area). For the MB model, most of the salient catchment characteristics are the same as those of the MA 
scheme except that the catchment area is replaced by bulk density (BD). 

However, the knot values (which partition the predictor variables into different parts) and the regression 
coefficients are different in the two MARS models. In the MA model, there is only one knot for each the predictor 
MDP, SDE, PAWC and Area, but three knots for MDE and SDP. In the MB model, there is one knot for MDP, 
SDP and SDE, but two knots for MDE, PAWC and BD. The predictor with more knots indicates that it could lead 
to more substantial different hydrological response among the catchments categorized by the knot values. For 
example, in the MA model, according to the knot values of mean daily precipitation (MDP), the catchments are 
partitioned into two categories: MDP ≥ 2.85 mm and MDP < 2.85 mm. For the catchments with MDP ≥ 2.85mm, 
the regression coefficient of 𝑄ത against MDP is 0.854, which is much higher than that for the catchments with 
MDP < 2.85 mm. This indicates that runoff in wetter catchments (higher precipitation) is more sensitive to 
precipitation change than in drier catchments. It is interesting to note that for wetter catchments (MDP > 2.85mm), 
the regression coefficients of s and τ against MDP are relatively small, suggesting that streamflow variability (s) 
in wetter catchments is only weakly related to MDP. In the MB model, it even suggests that the three parameters 
α, s and τ have no statistically significant correlations with MDP for wetter catchments (MDP > 2.85mm) as the 
basis function h(MDP-2.85) is no longer statistically significant and is not included in the MB model. 
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4.2. Model Performance in Predicting FDC Parameters 

The cross-validation performance of the MARS models in predicting the FDC parameters is shown in Figure 2 
and Table 4. As shown in Figure 2, the MARS models predict reasonably well the mean (𝑄ത) and standard deviation 
(s) of the daily streamflow, where the coefficient of determination (R2) between the predicted and observed 𝑄ത are 
about 0.9 for both the MA and MB models, and R2 between the predicted and observed s are about 0.79 and 0.80 for 
the MA and MB model, respectively (Table 4). The non-zero flow ratio (τ) is more difficult to predict with the 
correlation coefficient between predicted and observed values is around 0.5 for both the MA and MB models. 

 

Figure 2. Parameter estimation using the MARS models. The black solid lines are the 1:1 line. 

As mentioned earlier, the distribution parameters (𝜇 and 𝜎) of the FDC can be estimated using Equations (5) 
and (6) when the 𝑄ത  and s are known. The results show R2 between predicted and observed 𝜇 of 0.62 and 0.72 
respectively for the MA and MB models, and R2 between predicted and observed 𝜎 of 0.61 and 0.59 for the MA and 
MB models. It is noted that the performance of the MARS models in predicting the distribution parameters (𝜇 and 𝜎) 
of FDC is not as good as that in predicting 𝑄ത and s. The results suggest that good prediction in 𝑄ത (or s) does not 
necessarily guarantee good prediction in 𝜇 (or 𝜎). This is because 𝜇 or 𝜎 is determined jointly by both 𝑄ത and s as 
indicated by Equations (5) and (6). Bias in estimating both 𝑄ത and s propagates into the predicted errors in 𝜇 and 𝜎. 

Overall, the two MARS models perform similarly in terms of predicting 𝑄ത, s and τ. According to coefficients 
of determination (R2), MB outperforms MA in predicting 𝜇 but underperforms in predicting 𝜎. With respect to 
mean absolute error (MAE) and root mean squared error (RMSE), MA performs slightly better than MB in 
predicting both 𝜇 and 𝜎. However, since the FDC is determined collectively by the three parameters (𝜇, 𝜎 and 
𝜏), the good prediction of an individual parameter is necessary but not a sufficient condition to reasonable FDC 
prediction. Hence, the performance of the MA and MB models ultimately needs to be assessed with respect to the 
predicted FDC shown in the following section. 

Table 4. Performance of MARS models in predicting FDC parameters (MAE: mean absolute error; RMSE: root 
mean squared error). 

Indices MA MB 
𝑸ഥ  (mm/day) s 𝝁 𝝈 𝝉 𝑸ഥ  (mm/day) s 𝝁 𝝈 𝝉 

MAE 0.15 0.61 0.51 0.16 0.1 0.14 0.6 0.6 0.21 0.09 
RMSE 0.21 0.87 0.82 0.22 0.14 0.22 0.84 0.92 0.29 0.14 

R2 0.90 0.79 0.62 0.61 0.48 0.90 0.80 0.72 0.59 0.47 

4.3. Model Performance in Predicting FDC 

The overall performance of the model in reproducing FDCs for the 347 catchments is shown in Figure 3 for 
both calibration (i.e., using all catchments in developing MARS models) and 5-fold cross-validation. As a 
benchmark, the performance of the FDC reproduced by using the observed mean daily streamflow (𝑄ത), standard 
deviation (s) and none-zero flow ratio (𝜏) is also shown as OBS in Figure 3. The plot shows that the NSE is above 
0.85 for the FDC estimated from OBS for more than 95% of the catchments, indicating that the lognormal 
distribution assumption is appropriate for most of the gauged catchments investigated in this study. 
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(a) (b) 

Figure 3. Performance of MARS model in reproducing empirical FDCs from both calibration (CL) and cross-validation 
(CV). OBS represents the FDC generated based on the parameters derived directly from observed daily streamflow. (a) 
cumulative frequency of performance index; (b) boxplot of performance index in relation to aridity index (AI). 

The performances of the MARS models as expected are inferior to the benchmark (i.e., the OBS) due to the 
bias in predicting the 𝑄ത, s and τ. Nevertheless, the two MARS models have shown to accurately predict the FDCs 
of the “ungauged” catchments, with the NSE above 0.8 for 75% of catchments and above 0.65 for 85% of 
catchments. The two MARS models show comparable results in FDC predictions for most catchments, but MB 
outperforms MA for those catchments with lower NSE (<0.6). The performance difference between MA and MB 
is consistent in both the calibration and cross-validation results. The results also show that (Figure 3b) the 
performance measured by NSE of both MARS models decreases with higher aridity index, indicating that it is 
more challenging to predict the FDCs of the drier catchments. Overall, MB outperforms MA particularly for 
catchments with aridity index below 2.0. In addition, MB shows more robust prediction than MA as indicated by 
the relative smaller ranges of NSE for all catchments (Figure 3b). 

Figure 4 shows the predicted FDCs of three selected catchments with different aridity index (see Figure 1). 
The predicted FDCs are compared against the empirical flow duration curve (EFDC). In general, the FDCs 
produced by the two MARS models are in good agreement with the EFDC for the wetter catchments that are with 
lower aridity index (e.g., catchment 210014). For the drier catchments, the predicted FDCs could be different to 
the EFDC (e.g., catchment 407211). Nevertheless, the predicted FDCs could be quite close to the FDC reproduced 
according to the observed FDC parameters (i.e., 𝑄ത, s and 𝜏). This is because that the two MARS can predict well 
FDC parameters, particularly MB performs much better than MA. For drier catchments, the discrepancies between 
the predicted FDCs and the EFDC are primarily due to biases in the estimated non-zero flow ratio (τ) and the 
limitations of assuming a lognormal distribution for FDC (e.g., catchment 003303). 

 

Figure 4. Performance of MARS model in predicting FDCs for both calibration (CL) and cross-validation (CV) 
procedures. OBS represents the FDC created based on FDC parameters derived from observed daily streamflow. 
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5. Discussion 

5.1. Benefits of Embedding Hydrological Knowledge in ML Models 

To predict FDCs in ungauged catchments using machine learning algorithms such as MARS, one approach 
is to directly model the mean and standard deviation of daily streamflow along with the non-zero flow ratio (the 
MA model). While this purely data-driven model can yield satisfactory results, it does not necessarily adhere to 
established hydroclimatic principles. By embedding established hydroclimatic principles (herein, the Budyko 
theory represented by the Fu’s equation) into the machine learning framework (the MB model), the process-
informed ML approach (PIML) introduces physically meaningful constraints, resulting in more robust and 
consistent predictions. As noticed, even though the performances of MA and MB are comparable for most studied 
catchments, MB tends to be more robust with the relationships between the predictors and the predictands are 
more physically interpretable and applicable than MA. 

By integrating the Budyko theory, the MB model also provides reasonably accurate estimation of the 
parameter α in the Fu’s equation, particularly when α is lower than 4.0 (Figure 5). This indicates that MB can be 
applied to predict changes in α in the future research work, capturing hydrological non-stationarity of a catchment 
driven by climate change or land use and land cover change. Importantly, it is noticed that the predicted mean 
streamflow aligns well with observations even though the predicted α seems to have a relative higher bias at its 
higher end (α > 4.0), resulting in more robust FDC prediction. This robustness arises because, under the physical 
constraint informed by the Budyko theory, the mean annual streamflow is relatively insensitive to α when α is 
large, which is especially true for very humid (aridity index smaller than 0.5) and dry (aridity index higher than 
2.5) catchments [45]. 

 

Figure 5. Performance of the process-informed machine learning model (MB) in predicting parameter α in Fu’s 
equation. 

5.2. Limitations and Uncertainties 

Various machine learning (ML) and deep learning (DL) approaches have been widely adopted for 
hydrological prediction, reflecting their strong ability to capture nonlinear relationships between hydrological 
responses and catchment properties. Commonly used ML and DL methods include artificial neural networks 
(ANNs), support vector machines (SVMs), random forests (RF), gradient boosting methods, multivariate adaptive 
regression splines (MARS), long short-term memory (LSTM) networks and convolutional neural networks 
(CNNs). As an interpretable machine learning approach, MARS-based models presented in this study explicitly 
represent the relationships between predictors and predictands, even though their predictive performance is not 
necessarily superior to that of more complex ML or DL models. Nevertheless, MARS offers valuable insights into 
the dominant controls on hydrological responses, which is particularly relevant for applications in ungauged 
catchments. However, more research efforts are needed to further validate and understand the physical implications 
in the MARS’s basis functions and knots. Future research could also further improve FDC prediction by integrating 
richer hydrological knowledge with more advanced ML and DL approaches, thereby balancing predictive skill 
with physical interpretability. 
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It is worth noting that the two MARS models are developed to predict the mean (𝑄ത) and standard deviation (s) 
of daily streamflow, which are subsequently transformed into the lognormal parameters 𝜇 and σ using Equations (5) 
and (6). These equations are derived under the assumption that daily streamflow follows a lognormal distribution. 
Consequently, errors may arise when this assumption is violated. This highlights that prior knowledge of the FDC 
distribution for a catchment is important for reducing uncertainty in predicted FDCs. However, such information is 
generally unavailable for ungauged catchments and may require further investigation even in gauged basins. 

In addition to uncertainties arising from the lognormal assumption, both the MA and MB models exhibit 
limitations in predicting the non-zero flow day ratio (𝜏). Biases in the predicted 𝜏 can substantially affect the 
agreement between predicted and empirical FDCs, particularly in drier catchments. This limitation reflects the fact 
that the 19 candidate predictors considered in this study do not sufficiently capture the contribution of groundwater 
discharge to sustaining baseflow. Incorporating catchment properties more closely related to groundwater 
processes, such as groundwater levels, aquifer characteristics, or soil permeability, could potentially improve the 
estimation of 𝜏 if such data become available for the studied catchments. Moreover, in this study, the three 
distribution parameters are estimated jointly using shared predictors and basis functions, rather than being 
modelled separately for each parameter. While separate estimation of individual distribution parameters may 
improve FDC prediction accuracy, it would likely come at the expense of reduced interpretability within a unified 
modelling framework. 

6. Conclusions 

The daily flow duration curve (FDC) is widely used to characterise streamflow regimes and support water 
resources planning and management. To address the challenge of predicting FDCs in ungauged catchments, this 
study proposes a process-informed machine learning (PIML) framework that integrates Budyko theory with a 
multivariate adaptive regression splines (MARS) model. By embedding hydroclimatic process constraints within 
an interpretable machine learning approach, the framework predicts FDC parameters from 19 climatic and physical 
catchment characteristics. The proposed method was evaluated using data from 347 catchments across Australia. 

Results show that the process-informed model (MB) generally outperforms and is more robust than the purely 
data-driven model (MA), highlighting the value of incorporating physical constraints through Budyko theory. 
While both models perform well for most catchments, predictive skill is consistently higher in wetter catchments 
than in drier ones. This reduced performance in dry catchments is primarily attributable to limitations of the 
lognormal distribution assumption and to uncertainties in estimating the non-zero flow day ratio, which plays a 
critical role in shaping FDCs under arid conditions. 

As an interpretable machine learning method, MARS offers the advantage of jointly capturing clustering and 
prediction, enabling the models to reflect heterogeneous relationships between FDC parameters and catchment 
characteristics. Both MARS-based models identify mean and variability of daily precipitation and potential 
evaporation, plant available water capacity, bulk density, and catchment area as the most influential factors 
controlling FDC shape. The weaker performance in predicting non-zero flow ratios and low-flow characteristics 
suggests that incorporating catchment attributes more directly related to groundwater processes could further 
improve FDC prediction as such data become available. 

Overall, this study demonstrates that integrating interpretable machine learning with process-based 
constraints provides a promising and physically consistent pathway for improving streamflow regime prediction 
in ungauged catchments. The proposed approach is broadly applicable and can be tested across diverse catchments 
worldwide. Future improvements in FDC prediction may be achieved by integrating richer hydrological 
knowledge with more advanced machine learning and deep learning approaches, thereby balancing predictive skill 
with physical interpretability. 
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