

Mini Review

Enhancing the Stability of Partial Nitritation Anammox in Mainstream Municipal Wastewater Treatment: Biological Foundations, Control Strategies, and Future Perspectives

Hong Wang ^{1,*}, Yanzeng Li ¹, Shiyu Liu ² and Xiaohu Dai ¹¹ State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China² Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China

* Correspondence: hongwang0616@163.com

How To Cite: Wang, H.; Li, Y.; Liu, S.; et al. Enhancing the Stability of Mainstream Anammox Processes in Municipal Wastewater Treatment: Biological Foundations, Control Strategies, and Future Perspectives. *Innovations in Water Treatment* **2026**, *1*(1), 3.

Received: 15 December 2025

Revised: 7 January 2026

Accepted: 8 January 2026

Published: 14 January 2026

Abstract: Mainstream anammox has attracted much attention as an energy-efficient nitrogen removal technology. However, its stable operation remains challenged by complex mainstream conditions, limiting engineering implementation. This review synthesized the biological foundations, operational control strategies, and engineering practices underlying stable mainstream anammox operation. Process stability depends on effective coupling between ammonia-oxidizing bacteria and anammox bacteria (AnAOB), sustained suppression of nitrite-oxidizing bacteria (NOB), and efficient enrichment and retention of AnAOB. Accordingly, key intensification strategies were highlighted, including fine-tuned dissolved oxygen control, decoupling of hydraulic and solids retention times, reinforcement of biofilm and granular sludge structures, and the use of physical selectors and membrane separation. Application cases demonstrate that, despite proven feasibility, autotrophic nitrogen removal in mainstream anammox remains limited and may decline during long-term operation. Finally, future research directions were proposed, including multi-omics-based elucidation of AnAOB metabolic regulation under low-temperature and low-substrate conditions, quantitative modeling of organic matter and anammox interactions, cross-scale linkages between microscale structure and macroscopic performance, and data-driven intelligent operation and control. This review provides a theoretical basis and practical guidance for the optimization and engineering application of mainstream anammox processes.

Keywords: mainstream anammox; partial nitritation anammox; NOB suppression; AnAOB retention; control strategy

1. Introduction

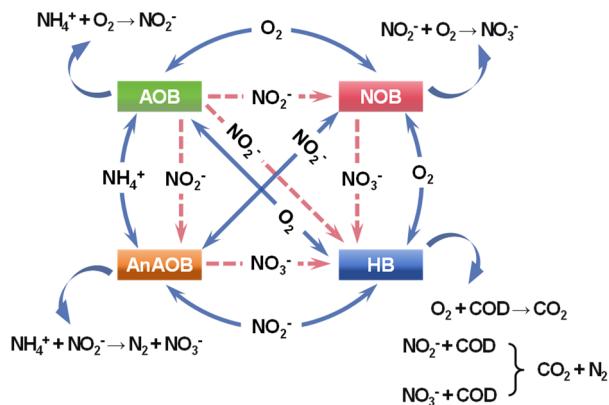
Against the backdrop of increasingly stringent water quality standards and the implementation of carbon neutrality strategies, municipal wastewater treatment systems are facing growing challenges in simultaneously achieving effective pollution control and carbon reduction [1,2]. Although conventional nitrification and denitrification processes are technologically mature and operationally reliable, their strong dependence on intensive aeration and external organic carbon addition results in high energy consumption and substantial carbon emissions [3,4]. These intrinsic limitations have increasingly emerged as a critical bottleneck constraining the transition of wastewater treatment plants (WWTPs) toward low-carbon operation. Consequently, the development and application of low-carbon wastewater treatment technologies have emerged as a major focus in the field of environmental engineering [5–7].

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Publisher's Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anammox process, characterized by its independence from organic carbon addition, low aeration demand, and minimal sludge production, is widely regarded as a transformative pathway toward low-carbon wastewater treatment [8]. Over the past decades, the anammox process has been successfully implemented at full scale for the treatment of high-ammonium sidestream wastewaters, such as anaerobic digester effluents and landfill leachates [9,10], delivering substantial energy savings and carbon emission reductions. However, extending anammox from these high-strength, relatively controllable sidestream conditions to the hydraulically and chemically complex mainstream of municipal wastewater treatment remains highly challenging [11]. In contrast to sidestream systems, mainstream wastewater is typically characterized by low ammonium concentrations (20–60 mg/L), low operating temperatures (10–20 °C), the coexistence of organic carbon and inorganic nitrogen, and pronounced temporal fluctuations in both flow and composition. These environmental conditions are fundamentally misaligned with the physiological traits of anammox bacteria (AnAOB), which exhibit slow growth rates [12], limited tolerance to low temperatures [13], and high susceptibility to competition from heterotrophic bacteria (HB) [14]. As a result, mainstream anammox systems face significant challenges in start-up, operational stability, and long-term performance sustainability. In particular, under low-temperature and low-ammonium conditions, the effective suppression of nitrite-oxidizing bacteria (NOB) and the maintenance of stable partial nitritation (PN) remain major challenges [15]. Sustained enrichment and long-term retention of AnAOB further represent critical bottlenecks for the engineering application of mainstream anammox processes [16,17].

In recent years, research on mainstream anammox has intensified, leading to the development of diverse process configurations and enhancement strategies [18–20]. These include one-stage and two-stage partial nitritation anammox (PNA) systems [21], biofilm or granular sludge technologies [22,23], low dissolved oxygen (DO), and intermittent aeration control [24], as well as microbial regulation approaches driven by selective pressures [25,26]. Despite these advances at laboratory and pilot scales, the micro-ecological characteristics of mainstream anammox systems remain poorly understood. Current insights into the mechanisms underlying stable operation, as well as effective regulation and control strategies, are still limited. Moreover, several reported successful cases rely strongly on site-specific wastewater characteristics or highly complex control schemes [27,28], raising concerns regarding their reproducibility and broader applicability.


Therefore, this review systematically synthesized the microbiological foundations, operational parameter regulation, and engineering practices of mainstream anammox processes. The mechanisms underpinning stable operation and process control were examined in depth. The development potential and future directions of mainstream anammox within low-carbon wastewater treatment frameworks were further discussed. This work can provide a scientific basis and practical insights to support the optimization and engineering application of mainstream anammox processes.

2. Biological Mechanisms Underpinning the Stable Operation of Mainstream Anammox

The long-term stability of mainstream anammox processes fundamentally depends on the selective enrichment, spatial organization, and metabolic coordination of functional microbial communities. In contrast to sidestream systems, the selective pressures imposed on functional bacteria in mainstream systems are substantially weakened, leading to more complex microbial competition. Consequently, a systematic elucidation of the biological foundations underpinning stable operation is required, encompassing community structure, metabolic coupling, and the construction of micro-ecological niches.

2.1. Synergistic and Competitive Interactions among Functional Bacteria

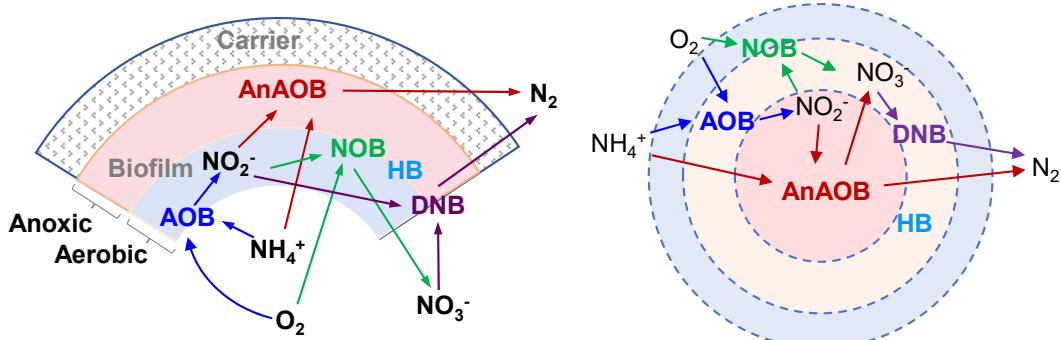

The core functional microbial bacteria in mainstream anammox systems primarily comprise ammonia-oxidizing bacteria (AOB), NOB, AnAOB, and HB (Figure 1). Stable operation relies critically on efficient coupling between AOB and AnAOB, alongside the sustained suppression of NOB. The maximum specific growth rates (μ_{max}) of AOB and NOB are approximately 0.09 h^{-1} and 0.06 h^{-1} , respectively, whereas those of AnAOB are substantially lower ($0.002\text{--}0.007\text{ h}^{-1}$) [29]. In mainstream wastewater treatment systems, low ammonium concentrations and low temperatures further suppressed AOB metabolic activity, resulting in insufficient nitrite production for AnAOB. Moreover, under low-substrate conditions, NOB could exhibit higher substrate affinity and competitive growth potential [30,31], facilitating their resurgence in mainstream systems. Accordingly, stable operation fundamentally depends on whether the functional coupling between AOB and AnAOB is sufficiently robust to withstand the competitive advantage of NOB. This competition-driven balance defines the biological objectives underlying both operational parameter regulation and reactor configuration design.

Figure 1. Key microbial bacteria and interactions in mainstream anammox systems.

2.2. Enrichment and Retention Mechanisms of AnAOB

AnAOB exhibit extremely low growth rates and are therefore highly susceptible to washout and competitive exclusion in mainstream systems. Achieving long-term stable operation, therefore, critically depends on the establishment of effective biomass retention mechanisms. These mechanisms extend the actual solids retention time of AnAOB and provide relatively stable ecological niches. Accumulating evidence indicates that biofilm and granular sludge structures represent the most important retention forms for AnAOB [32–34]. Furthermore, the aggregated structures revealed spatial stratification (Figure 2). AnAOB were preferentially observed in the inner layers of granules or biofilms, while AOB and HB dominated the outer layers [35]. This layered organization facilitates the formation of anaerobic microenvironments at the microscale and simultaneously buffers AnAOB against direct exposure to DO, organics, and inhibitory compounds [23,36]. Beyond biomass retention, granular and biofilm formation also substantially enhance the tolerance of AnAOB to low-temperature conditions [37]. The relatively stable mass-transfer environment within granules helps sustain basal AnAOB metabolic activity, allowing mainstream anammox systems to retain measurable nitrogen removal capacity during winter or under prolonged low-temperature operation.

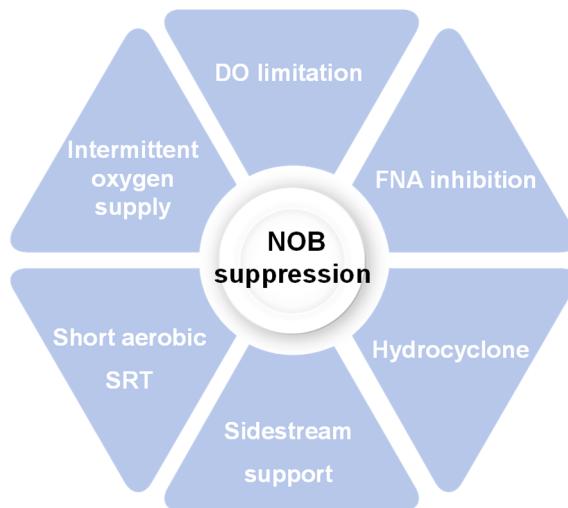


Figure 2. Stratified organization of functional microorganisms in biofilm and granular sludge anammox systems.

2.3. Biological Basis for the NOB Suppression

In mainstream anammox systems, the NOB suppression represents a fundamental biological prerequisite for sustaining PN and ensuring sufficient substrate supply for AnAOB (Figure 3). Many studies suggest that NOB suppression is not governed by a single factor, but rather emerges from the interplay of multiple biological mechanisms [38–40]. DO limitation is the most widely applied strategy for NOB suppression [41,42]. Compared with AOB, NOB generally exhibit a higher oxygen demand, and their metabolic rates decline more sharply under low-DO conditions [8]. However, under mainstream operation, particularly at low temperatures, the physiological differences in oxygen affinity between AOB and NOB tend to diminish, rendering DO-based control alone increasingly uncertain. Free ammonia (FA) and free nitrous acid (FNA) inhibition can also contribute to NOB suppression in mainstream systems [43,44], but their effectiveness is inherently constrained by the relatively low ammonium and nitrite concentrations characteristic of municipal wastewater. Consequently, FA/FNA inhibition typically functions as a complementary rather than a dominant control mechanism. Beyond chemical and operational factors, microbial spatial distribution and structure-induced selective pressure play a critical role in shaping NOB competitiveness [38]. In granular sludge and biofilm-based systems, NOB preferentially colonize

outer layers, where they are more susceptible to shear stress, DO fluctuations, and substrate limitation [45,46]. This spatial disadvantage may place NOB at a competitive deficit relative to AOB and AnAOB, providing a mechanistic basis for achieving “ecological niche exclusion” through reactor architecture and biomass structuring.

Figure 3. Microbiological mechanisms and control strategies for NOB suppression in mainstream anammox systems.

2.4. Dual Roles of Organics in Mainstream Anammox Systems

Unlike sidestream systems, mainstream municipal wastewater typically contains appreciable concentrations of biodegradable organics, which exerts a pronounced dual effect on the anammox process. On the one hand, the presence of organic substrates can stimulate HB that compete with AOB and AnAOB for key resources such as DO and nitrite, potentially suppressing AnAOB activity [47]. On the other hand, heterotrophic metabolism can indirectly benefit AnAOB by scavenging DO and thereby facilitating the formation of localized anaerobic microenvironments. In this context, partial denitrification and anammox (PDA) has recently been proposed as a potential synergistic nitrogen removal pathway under mainstream conditions [48,49]. By coupling organic carbon-driven nitrate reduction to nitrite with anammox, PDA can provide an additional nitrite source for AnAOB, partially alleviating nitrite limitation. However, the long-term stability and controllability of this pathway under fluctuating mainstream conditions remain insufficiently understood and warrant further investigation.

2.5. Micro-Niche Construction and Its Role in System Stability

From a biological perspective, stable operation of mainstream anammox does not arise from the dominance of a single microbial group, but rather from the orderly coexistence of multiple functional microorganisms across microscale spatial domains [50,51]. Functional stability emerges from a well-defined partitioning of micro-ecological niches. AOB dominate aerobic zones, AnAOB are confined to anoxic interiors, and heterotrophs regulate organic matter turnover and oxygen availability [22,52], collectively stabilizing system performance under dynamic mainstream conditions. Accordingly, both reactor configuration and operational parameter regulation should be designed to support the long-term maintenance of this micro-niche architecture. Stable mainstream anammox relies on efficient AOB-AnAOB coupling, sustained NOB suppression, effective AnAOB retention, and balanced regulation of HB activity [23]. Collectively, these processes reflect a competition and cooperation equilibrium among multiple functional bacteria under low-substrate and low-temperature conditions, accompanied by continuous micro-ecological niche restructuring. A deeper understanding of these mechanisms is essential for translating mainstream anammox from laboratory-scale studies to robust and stable full-scale implementation.

3. Control Strategies for Achieving Stable Mainstream Anammox Operation

Under mainstream conditions in municipal wastewater treatment, anammox systems are challenged by multiple adverse factors, including low ammonium concentrations, reduced temperatures, the coexistence of organic matter, and pronounced hydraulic fluctuations. Reliance on microbial self-adaptation alone is insufficient to ensure long-term stable operation. Instead, sustained stability requires systematic operational regulation and process intensification to impose effective and persistent selective pressures that maintain AOB and AnAOB cooperation while preventing the resurgence of NOB. This section, therefore provides a systematic overview of the key control strategies enabling stable operation of mainstream anammox systems (Table 1).

Table 1. Operational parameters and control strategies for achieving stable operation of mainstream anammox processes.

System	Operational Conditions	Results	Strategy	Reference
SBR with biofilm	DO = 0.7 mg/L, NH ₄ ⁺ -N = 70–80 mg/L, COD = 200–300 mg/L, T = 30 °C	TNRE = 92.7%, AnAOB = 0.33%, DNB = 8.78%	Low DO & intermittent aeration	[53]
One-stage PNA with biocarriers	DO = 0.15 mg/L, NH ₄ ⁺ -N = 50 mg/L, HRT = 2 h, T = 35 °C	TNRE = 70%, AnAOB = 29.5%, AOB = 6.8%	Low DO & Carrier	[23]
One-stage PNA with granules	DO = 0.2 mg/L, NH ₄ ⁺ -N = 50 mg/L, HRT = 2 h, T = 35 °C	TNRE = 72.7%, AnAOB = 35.0%, SAA = 1.02 g-N/g-VSS/d, SAOA = 0.93 g-N/g-VSS/d	Low DO & Granules	[46]
One-stage PNA MBBR	DO = 0.24 mg/L, NH ₄ ⁺ -N = 50 mg/L, HRT = 2 h, T = 25 °C	TNRE = 71.7 ± 9.1%, AnAOB = 29.7%, AOB = 6.3%	Carriers & HRT	[54]
Two-stage PNA	pH = 7.8–8.3, NH ₄ ⁺ -N = 45–55 mg/L, SRT = 15 d, HRT-PN = 1.16 h, T = 18.6 °C	TNRE = 92.8%, AOB = 1.1%, NOB = 0.12%	Low DO & SRT	[55]
PNA-CSTR with granules	DO = 0.4–0.6 mg/L, NH ₄ ⁺ -N = 59.6 mg/L, HRT = 40 min, T = 23 °C	TNRE > 80%, SRT increased by 10 times, AnAOB increased by 2.6 times	HRT & SRT & Granules	[56]
One-stage PNA with granules	DO < 0.2 mg/L, NH ₄ ⁺ -N = 500 mg/L, HRT = 10 min, T = 15 °C	TN removal rate = 0.97 kg/m ³ /d, TNRE = 78%, AnAOB = 29.2%, AOB = 16%, NOB < 0.01%	Hydroxyapatite-based granular sludge	[37]
One-stage PNA-MBR	DO < 0.5 mg/L, NH ₄ ⁺ -N = 50 mg/L, HRT = 1.7 h, T = 28 °C	TNRE = 89%, AnAOB = 11.4%, AOB = 1.7%	Membrane separation	[57]

3.1. Fine-Tuned DO Control Strategies

DO is the key regulatory parameter governing microbial competition in mainstream anammox processes. Owing to their higher oxygen affinity, AOB are selectively favored over NOB under oxygen-limited conditions. AnAOB can avoid direct oxygen exposure through spatial stratification within biofilms or granules. Consequently, maintaining a low DO level is critical for achieving effective partial nitritation. Many studies reported that stable PN typically required DO concentrations in the range of 0.2–0.5 mg/L [24,53], and in some cases even lower (<0.2 mg L⁻¹) [23]. A single-stage airlift PNA system achieved a total nitrogen removal efficiency (TNRE) of 71.8 ± 9.9% with influent NH₄⁺-N of 50 mg/L and a DO level of 0.1 mg/L [46]. The formation of micro-granular sludge further mitigated the inhibitory effects of aeration on AnAOB. Although excessive aeration could suppress AnAOB activity and promote excessive NOB proliferation, both biofilm and floc systems have been shown to recover in situ performance under oxygen-limited conditions (DO = 0.05–0.20 mg/L) [23,58]. However, under low-temperature conditions, the differences in oxygen affinity between AOB and NOB become less pronounced, challenging the robustness of strategies based solely on constant low-DO control. In response, dynamic DO regulation and intermittent aeration have attracted increasing attention [59,60]. Dynamic modulation of aeration regimes introduces non-steady-state selective pressures that selectively suppress NOB, whereas AOB and AnAOB are maintained through spatial protection and metabolic coupling.

3.2. Decoupling HRT and SRT

Under mainstream conditions, the effective solids retention time (SRT) of AnAOB must substantially exceed their apparent growth rate to prevent washout with the effluent. Accordingly, decoupling hydraulic retention time (HRT) from SRT could ensure long-term AnAOB retention. Carrier-based biofilm technologies enable high SRT operation of AnAOB while maintaining relatively short HRTs to accommodate the hydraulic demands of municipal wastewater treatment [54]. In addition, staged configurations separating PN and anammox have been proposed as an effective means of coordinating HRT and SRT [21]. In such two-stage PNA systems, a short SRT in the PN reactor (15 days) facilitated the NOB washout, whereas a long SRT in the anammox reactor ensured sustained AnAOB retention [42]. Using coupled DO and SRT control, a two-stage PNA process achieved a high TNRE of 92.8% when treating mainstream municipal wastewater at 20 °C [55]. Additional studies employed hydrodynamic selection pressure by progressively reducing the HRT to enhance the activity of granular PNA sludge. A continuous-flow granular PNA system achieved a TNRE of approximately 80% at an extremely short HRT of 40 min [56]. Granule formation increased the effective SRT AnAOB by nearly an order of magnitude. These findings further confirm that coordinated manipulation of HRT and SRT during operation can substantially

improve both the efficiency and stability of PNA systems [61]. It should be noted, however, that SRT optimization cannot be implemented in isolation and typically requires integrated consideration of DO, temperature, and HRT.

3.3. Enrichment Strategies of AnAOB

Current studies have demonstrated several effective strategies for ensuring the enrichment and long-term retention of AnAOB in mainstream systems. (1) Granular sludge formation. Granulation has been shown to sustain high functional activity and abundance of AnAOB, with *Candidatus Brocadia* reaching a relative abundance of 35.0% and an activity of 1.02 g N/g-VSS/d [58]. Moreover, the formation of hydroxyapatite-based autotrophic nitrogen-removal granules enabled a reactor to achieve a high nitrogen removal rate of 0.97 kg/m/d at 15 °C, markedly reducing the sensitivity of anammox communities to temperature decreases [37]. (2) Biofilm-based retention using carrier media. The addition of carrier materials promoted biofilm development in the PNA system, leading to the dominance of *Candidatus Brocadia* and *Nitrosomonas*, with relative abundances of 29.5% and 6.8%, respectively [23]. (3) Physical selection through hydraulic and density-based separation. Selective retention of dense and strongly aggregated biomass via settling selection or hydrocyclone separation can preferentially eliminate low-efficiency microbial populations and promote AnAOB enrichment [26]. Such “physical selectors” can effectively compensate for the limitations of chemical inhibition strategies under mainstream conditions. At the municipal wastewater treatment plant in Strass, Austria, hydrocyclone-based selection and retention of granular anammox sludge from the sidestream were used to reinforce the mainstream process [62]. This strategy achieved a TNRE of $84.1 \pm 11.1\%$ and resulted in a 46-fold increase in the absolute abundance of AnAOB. (4) Coupling mainstream anammox with membrane separation. Integration of mainstream anammox with membrane bioreactors (MBR) enables extremely high SRT operation through efficient solid-liquid separation. In a single-stage PNA-MBR system treating influent ammonium at 50 mg/L, a TNRE of 89% was achieved, with AnAOB and AOB relative abundances reaching 11.4% and 1.7%, respectively [57].

3.4. Strategies for Strengthening Low-Temperature Operation

Low temperature is widely recognized as a key constraint on the engineering application of mainstream anammox. To address the pronounced performance decline during winter operation, multiple enhancement strategies have been proposed. Long-term low-temperature acclimation could progressively select AnAOB communities with improved cold tolerance [63,64]. On the other hand, the establishment of biofilm- or granular-based architectures could create relatively stable microenvironments that partially buffer external temperature fluctuations [13,65].

Stable operation of mainstream anammox relies on the coordinated implementation of multi-level control strategies, including fine-tuned DO regulation, decoupling of HRT and SRT, reinforcement of biomass structure, and process integration. Collectively, these strategies aim to establish sustained selective pressures and stable micro-ecological niches, thereby preserving the functional advantage of AnAOB under the complex and dynamic conditions characteristic of mainstream wastewater. Future research should focus on the systematic integration of these control approaches, coupled with online monitoring and intelligent control, to enable long-term stable operation and facilitate the engineering-scale deployment of mainstream anammox.

4. Engineering Practices and Implications

Although substantial progress has been achieved for mainstream anammox at laboratory scale, its engineering application in full-scale municipal WWTPs remains at an exploratory stage. Existing application studies have demonstrated the considerable energy-saving potential of mainstream anammox, while also suggesting the challenges associated with maintaining long-term stable operation under complex real-world conditions. By synthesizing representative application cases, key operational characteristics, and practical insights were further summarized (Table 2), providing an engineering perspective to support the large-scale deployment of mainstream anammox processes.

Table 2. Pilot-scale and full-scale applications of mainstream anammox processes.

Scale	System	Operational Conditions	Performance	Reference
Pilot	Two-stage PNA, $Q = 20 \text{ m}^3/\text{d}$	DO = $1.61\text{--}4.76 \text{ mg/L}$, $\text{NH}_4^+\text{-N} = 34.01 \pm 6.5 \text{ mg/L}$, COD = $102.91 \pm 26.44 \text{ mg/L}$, $T = 10.4\text{--}31.1 \text{ }^\circ\text{C}$, HRT = $4.5\text{--}13.5 \text{ h}$	NAR = $75.04 \pm 10.05\%$, Eff. TN = $10.91 \pm 4.23 \text{ mg/L}$	[66]
Pilot	One-stage PNA-CSTR, $Q = 1.2 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 50 \text{ mg/L}$, HRT = 4 h , pH = $8.0\text{--}8.3$, $T = 15 \text{ }^\circ\text{C}$	TNRE = 37.6% , TN removal rate = $0.09 \text{ kg/m}^3/\text{d}$	[67]
Pilot	One-stage PNA-IFAS, $Q = 10.02 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 35.6 \pm 4.1 \text{ mg/L}$, C/N = 1.44 , HRT = 4 h , pH = $8.0\text{--}8.3$, $T = 15 \text{ }^\circ\text{C}$	NAR = 65.9% , Eff. TN = 12.0 mg/L	[68]
Pilot	Two-stage PNA, $V = 600 \text{ L}$	$\text{NH}_4^+\text{-N} = 43 \pm 10 \text{ mg/L}$, COD = $66 \pm 11 \text{ mg/L}$, $T = 11\text{--}28 \text{ }^\circ\text{C}$	NAR = 99% , TNRE = 80%	[69]
Full	Step-feed AO process, $Q = 80 \times 10^4 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 31 \pm 3.7 \text{ mg/L}$, TN = $41 \pm 4.2 \text{ mg/L}$, COD = $337 \pm 41 \text{ mg/L}$, $T = 28\text{--}32 \text{ }^\circ\text{C}$	TNRE = 86% , Anammox contribution = 37.5%	[70]
Full	PN- fixed-film, $Q = 4 \times 10^4 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 53.4 \text{ mg/L}$, TN = 57.0 mg/L , COD = 350 mg/L , $T = 11.6\text{--}28.9 \text{ }^\circ\text{C}$	TNRE = $91.8 \pm 4.6\%$, Eff. TN = $4.5 \pm 2.3 \text{ mg/L}$	[71]
Full	Adsorption-Biodegradation process, $Q = 2.65 \times 10^4 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 26 \text{ mg/L}$, TN = 44 mg/L , COD = 605 mg/L	TNRE = 70% , Eff. TN < 13.2 mg/L	[62]
Full	AAO-MBBR, $Q = 25 \times 10^4 \text{ m}^3/\text{d}$	$\text{NH}_4^+\text{-N} = 20.3\text{--}40.8 \text{ mg/L}$, HRT = 10 h , SRT = $14\text{--}18 \text{ d}$, $T = 10.7\text{--}25.2 \text{ }^\circ\text{C}$	Eff. TN = $8.0 \pm 1.5 \text{ mg/L}$, Anammox contribution = 15.9%	[72]

4.1. Advances in the Application of Mainstream Anammox Processes

Based on strategies for enhancing the enrichment and retention of AnAOB, numerous studies have investigated the feasibility of mainstream anammox at the pilot scale. Chen et al. utilized zeolite-based carriers to exploit their ammonium adsorption capacity in a two-stage PNA pilot system, achieving stable partial nitritation with a nitrite accumulation rate (NAR) of $75.04 \pm 10.05\%$ and an effluent TN concentration of $10.91 \pm 4.23 \text{ mg/L}$ [66]. In another pilot-scale IFAS system, effective NOB suppression was realized through the coupled control of low DO ($0.4 \pm 0.2 \text{ mg/L}$), FNA, and residual ammonium concentration, resulting in a *Candidatus Brocadia* abundance of $0.74\% \pm 0.21\%$ and effluent TN below 10 mg/L [73]. Chao et al. further demonstrated that a single-stage PNA-IFAS system employing biofilm carriers could sustain stable nitrogen removal performance of 65.9% even under low-temperature conditions ($15 \text{ }^\circ\text{C}$) [68].

Despite these encouraging pilot-scale results, full-scale implementation of mainstream anammox in municipal WWTPs remains limited. At the Changi water reclamation plant in Singapore, a step-feed anoxic-oxic (AO) configuration enabled the establishment of a PNA pathway, with autotrophic nitrogen removal and heterotrophic denitrification contributing 37.5% and 27.1% , respectively [70]. This case, however, benefited from favorable climatic conditions, as wastewater temperatures in Singapore typically range from 28 to $32 \text{ }^\circ\text{C}$. Zhang et al. retrofitted a conventional wastewater treatment plant with a PNA fixed-film system and achieved stable effluent TN concentrations of $4.5 \pm 2.3 \text{ mg L}^{-1}$ through combined chemical inhibition and ecological niche selection [71]. In this system, *Candidatus Brocadia* reached a high relative abundance of 17.87% , and its nitrogen removal activity was approximately eight times higher than that of heterotrophic denitrification. At the Strass WWTP in Austria, periodic transfer of sidestream anammox biomass to the mainstream, coupled with hydrocyclone-based selection, enabled effective NOB suppression during cold winter conditions and periods of high organic loading [62]. At the Fourth WWTP in Xi'an, unexpected enrichment of AnAOB was observed following carrier addition in the anoxic zone originally intended to enhance denitrification, with the anammox pathway contributing up to 15.9% of total nitrogen removal [72]. These engineering cases demonstrate the technical feasibility of activating the anammox pathway in mainstream municipal wastewater. However, the contribution of autotrophic nitrogen removal remains relatively limited in most systems and, in some cases, exhibits a declining trend over prolonged operation [74]. To date, robust, reproducible, and widely transferable full-scale applications of mainstream anammox are still lacking.

4.2. Insights from Engineering Practice

Engineering case studies consistently indicate that the presence of effective AnAOB retention mechanisms is a decisive factor for successful system performance [75]. Biofilms, granular sludge, or high-efficiency solid-liquid separation exhibits markedly greater operational stability than conventional suspended-growth systems [76]. This highlights the importance of incorporating structural reinforcement strategies at the design stage. In addition, dynamic adjustment of aeration intensity, internal recirculation, and operational cycles has proven effective in mitigating the impacts of influent and load fluctuations, thereby reducing the risk of process instability [73,77]. Online monitoring of nitrite, nitrate, and DO plays a critical role in assessing system status and preventing NOB resurgence [78,79]. Several studies have implemented early-warning frameworks based on trends in key operational indicators, enabling proactive intervention prior to system failure [41,42].

Successful operation typically depends on the coordinated matching of influent characteristics, process configuration, and operational management. Compared with sidestream anammox, mainstream systems require more refined operational control and the integration of multiple reinforcement measures. Therefore, mainstream anammox is better positioned as a low-carbon nitrogen removal enhancement unit or a stage-specific process, rather than as a direct and universal replacement for conventional nitrification-denitrification systems.

5. Future Prospects

Mainstream anammox shows substantial potential for reducing energy consumption and carbon emissions in municipal wastewater treatment. Nonetheless, achieving stable and reproducible full-scale implementation remains challenged by unresolved scientific and technical bottlenecks. Future research should advance from a deeper mechanistic understanding toward the systematic integration of process design and control strategies, enabling long-term stable operation and large-scale deployment of the mainstream anammox process.

5.1. Metabolic Mechanisms of AnAOB under Low-Temperature and Low-Substrate Conditions

Low temperature and low ammonium availability are defining features of mainstream conditions that distinguish them from sidestream systems [15]. These factors are also the primary constraints on anammox activity and operational stability. Although some AnAOB communities have been reported to exhibit a degree of cold tolerance [80,81], systematic understanding of their metabolic regulation mechanisms, energy allocation strategies, and temperature-dependent variations in key enzymatic activities remains limited. Future studies should integrate multi-omics approaches, including metagenomics, transcriptomics, proteomics, and metabolomics. These analyses can elucidate the molecular-level physiological regulation of anammox bacteria under low-temperature and low-substrate conditions. Such efforts are essential to identify rate-limiting steps in anammox metabolism and to pinpoint functionally cold-tolerant AnAOB lineages, thereby providing a theoretical basis for targeted acclimation and biological enhancement strategies.

5.2. Quantitative Mechanistic Modeling of Organics-Anammox Interactions

Organic matter is inevitably present in mainstream municipal wastewater and exerts a pronounced dual effect on anammox systems [52,82]. However, quantitative relationships between organic matter concentration, composition, and AnAOB activity remain poorly defined, which limits the rational design of fine-tuned control strategies. The direct and indirect impacts of different organic fractions on AnAOB require further investigation. In addition, the boundaries between competition and cooperation among HB, AOB, and AnAOB under multi-substrate conditions remain unclear. Developing predictive kinetic and ecological models that describe organic matter and anammox interactions will be essential for advancing precise control of mainstream anammox processes.

5.3. Cross-Scale Linkages between Microscale Structure and Macroscopic Process Performance

Stable operation of mainstream anammox strongly depends on microscale structures such as granular sludge and biofilms [83,84]. However, current understanding of the mechanisms by which microscale spatial structures influence macroscopic nitrogen removal performance and system resilience remains largely qualitative. The response of functional microbial spatial distribution within granules or biofilms to microscale gradients of oxygen, substrates, and inhibitory compounds also requires further investigation. Integrating advanced microscopic imaging and microelectrode techniques with reactor-scale modeling will enable the development of cross-scale structure-function-performance frameworks, thereby providing mechanistic guidance for reactor design and operational optimization.

5.4. Intelligent Monitoring and Data-Driven Operational Control

AnAOB are highly sensitive to operational conditions, rendering conventional experience-based control strategies inadequate for coping with the complexity and variability of real-world operation. With advances in online sensing technologies and data science, intelligent control is emerging as a promising tool for enhancing system stability [85,86]. Integrated online monitoring platforms can be established based on multiple parameters, including NH_4^+ , NO_2^- , NO_3^- , and DO. Machine learning approaches can be applied to support operational state identification and load prediction. Such data-driven strategies enable dynamic optimization of operational parameters and are expected to improve system resilience and operational reliability.

Author Contributions

H.W.: writing—original draft preparation, conceptualization, writing—reviewing and editing; Y.L.: conceptualization, visualization; S.L.: validation, visualization; X.D.: writing—reviewing and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (524B2137) and the National Key Research and Development Program of China (2021YFC3201504). The first author is funded by the Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation.

Data Availability Statement

No data was used for the research described in the article.

Conflicts of Interest

Given the role as Young Editorial Board Member, Hong Wang had no involvement in the peer review of this paper and had no access to information regarding its peer-review process. Full responsibility for the editorial process of this paper was delegated to another editor of the journal.

Use of AI and AI-Assisted Technologies

No AI tools were utilized for this paper.

References

1. Qu, J.; Dai, X.; Hu, H.; et al. Emerging Trends and Prospects for Municipal Wastewater Management in China. *ACS ES&T Eng.* **2022**, *2*, 323–336.
2. Qu, J.; Wang, H.; Wang, K.; et al. Municipal wastewater treatment in China: Development history and future perspectives. *Front. Environ. Sci. Eng.* **2019**, *13*, 88.
3. Zhang, D.; Liu, J.; Wang, H.; et al. Advancing carbon-neutral wastewater treatment: Artificial intelligence-driven strategies for emission mitigation and process optimization. *Environ. Res.* **2026**, *290*, 123449.
4. Wu, H.; Li, A.; Gao, S.; et al. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. *Sci. Total Environ.* **2023**, *903*, 166491.
5. Hu, K.; Li, W.; Wang, Y.; et al. Novel biological nitrogen removal process for the treatment of wastewater with low carbon to nitrogen ratio: A review. *J. Water Process Eng.* **2023**, *53*, 103673.
6. Hu, K.; Liu, X.; Jia, X.; et al. Advances in sulphur-iron autotrophic denitrification research and exploration of its future application in wastewater treatment: A critical review. *Bioresour. Technol.* **2026**, *439*, 133391.
7. Zhao, Q.; Peng, Y.; Li, J.; et al. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. *Sci. Total Environ.* **2022**, *813*, 152468.
8. Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. *Appl. Microbiol. Biotechnol.* **2017**, *101*, 1365–1383.
9. Xu, Y.; Xu, Y.; Li, T.; et al. Two-step partial nitrification-anammox process for treating thermal-hydrolysis anaerobic digester effluent: Start-up and microbial characterisation. *J. Clean. Prod.* **2020**, *252*, 119784.
10. Du, R.; Li, G.; Zhao, R.; et al. Adaptation of pilot-scale one-stage partial nitritation and anammox process to kitchen waste digestion liquid and mature landfill leachate. *Bioresour. Technol.* **2025**, *434*, 132820.
11. Ren, Z.; Wang, H.; Zhang, L.; et al. A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. *Bioresour. Technol.* **2022**, *363*, 127896.
12. Strous, M.; Kuenen, J.; Jetten, M. Key Physiology of Anaerobic Ammonium Oxidation. *Appl. Environ. Microbiol.* **1999**, *65*, 3248–3250.
13. Han, N.; Jin, J.; Yang, J.; et al. Polystyrene nanoparticles regulate microbial stress response and cold adaptation in mainstream anammox process at low temperature. *J. Hazard. Mater.* **2024**, *480*, 135860.
14. Liu, Y.; An, T.; Xie, J.; et al. The influencing mechanisms and optimization strategies of organics on anammox process: A critical review. *Chem. Eng. J.* **2024**, *493*, 152743.
15. Wang, L.; Gu, W.; Liu, Y.; et al. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment. *Sci. Total Environ.* **2022**, *820*, 153351.

16. Li, S.; Zeng, W.; Jiang, W.; et al. Dual strategies for enhancing anammox predominance in municipal wastewater treatment: Micro-granule-driven multi-pathway nitrite supply and enrichment synergy. *Chem. Eng. J.* **2025**, *524*, 169413.
17. Sethi, S.; Gupta, R.; Sahu, R.; et al. Temperature variations help in-situ anammox self-enrichment in a single-stage partial nitrification-anammox system from unacclimatized biomass. *J. Water Process Eng.* **2025**, *76*, 108281.
18. Ma, X.; Zhang, X.; Sun, Y.; et al. Reason and control strategy for denitrification and anammox sludge flotation in nitrogen removal process: Mechanisms, strategies and perspectives. *Environ. Res.* **2024**, *258*, 119456.
19. Takeda, P.Y.; Paula, C.T.; Borges, A.D.V.; et al. A critical review of the mainstream anammox-based processes in warm climate regions: Potential, performance, and control strategies. *J. Environ. Chem. Eng.* **2024**, *12*, 113691.
20. Chen, Y.; Guo, G.; Li, Y. A review on upgrading of the anammox-based nitrogen removal processes: Performance, stability, and control strategies. *Bioresour. Technol.* **2022**, *364*, 127992.
21. Cao, S.; Koch, K.; Duan, H.; et al. In a quest for high-efficiency mainstream partial nitritation-anammox (PN/A) implementation: One-stage or two-stage? *Sci. Total Environ.* **2023**, *883*, 163540.
22. Wang, H.; Yang, M.; Liu, K.; et al. Insights into the synergy between functional microbes and dissolved oxygen partition in the single-stage partial nitritation-anammox granules system. *Bioresour. Technol.* **2022**, *347*, 126364.
23. Chen, H.; Wang, H.; Yu, G.; et al. Key factors governing the performance and microbial community of one-stage partial nitritation and anammox system with bio-carriers and airlift circulation. *Bioresour. Technol.* **2021**, *324*, 124668.
24. Wu, S.; Gao, F.; Lin, C.; et al. A critical review of oxygen supply and control strategies in single-stage partial nitritation-anammox system for autotrophic nitrogen removal from wastewater. *J. Environ. Chem. Eng.* **2025**, *13*, 117613.
25. Liang, Z.; Han, H.; Yi, J.; et al. Modified integrated fixed-film activated sludge process: Advanced nitrogen removal for low-C/N domestic wastewater. *Chemosphere* **2022**, *307*, 135827.
26. Gong, H.; Ding, J.; Wang, S.; et al. Optimizing granular anammox retention via hydrocycloning during two-stage deammonification of high-solid sludge anaerobic digester supernatant. *Sci. Total Environ.* **2021**, *791*, 148048.
27. Cao, Y.; Kwok, B.H.; Loosdrecht, M.C.M.V.; et al. Mainstream partial nitritation and anammox in a 200,000 m³/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor. *Water Sci. Technol.* **2016**, *74*, 48–56.
28. Yuan, Q.; Wang, K.; He, P.; et al. Spontaneous mainstream anammox in a full-scale wastewater treatment plant with hybrid sludge retention time in a temperate zone of China. *Water Environ. Res.* **2021**, *93*, 854–864.
29. Ni, B.; Yuan, Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. *J. Membr. Sci.* **2013**, *428*, 163–171.
30. Hellinga, C.; Schellen, A.A.J.C.; Mulder, J.W.; et al. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. *Water Sci. Technol.* **1998**, *37*, 135–142.
31. Yang, Q.; Shen, N.; Lee, Z.M.P.; et al. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate. *Water Sci. Technol.* **2016**, *74*, 448–456.
32. Wang, W.; Zhou, S.; Ye, M.; et al. Characterization of nitrogen transformation and microbial interactions of floc sludge and biofilms in single-stage gas-lift partial nitritation/anammox reactor with hollow cylindrical carriers. *Environ. Res.* **2025**, *279*, 121729.
33. Liu, T.; Yu, L.; Liao, C.; et al. Integrated fixed-film activated sludge partial nitritation-anammox (IFAS-PN/A) for landfill leachate treatment rapidly established through the thermal inactivation of nitrite oxidoreductase. *Environ. Res.* **2025**, *285*, 122548.
34. Xiong, X.; Jiang, J.; Yu, H.; et al. Achieving rapid granulation and long-term stability of partial nitritation /anammox process by uniquely configured airlift inner-circulation partition bioreactor. *Bioresour. Technol.* **2025**, *428*, 132474.
35. Wang, H.; Yang, D.; Chen, Y.; et al. Improving the anammox performance in municipal wastewater treatment based on the powder functional carriers: A critical review. *Chem. Eng. J.* **2023**, *470*, 144167.
36. Huang, D.; Fu, J.; Li, Z.; et al. Inhibition of wastewater pollutants on the anammox process: A review. *Sci. Total Environ.* **2022**, *803*, 150009.
37. Chen, Y.; Feng, G.; Tamaishi, M.; et al. Low temperature impact and HAP-enhanced one-stage partial nitritation/anammox process: Long-term stability, high-rate nitrogen removal, and operational strategies at 15 °C. *Water Res. X* **2025**, *28*, 100340.
38. Li, J.; Wang, H.; Li, Z.; et al. Enhanced nitritation through bubbleless aeration-promoted AOB growth and environmental selective pressures-induced NOB suppression in membrane aerated biofilm reactors. *Chem. Eng. J.* **2025**, *507*, 160519.
39. Li, J.; Zhang, L.; Peng, Y.; et al. NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs: Performance and microbial community dynamics. *Chemosphere* **2019**, *227*, 26–33.
40. Kent, T.R.; Sun, Y.; An, Z.; et al. Mechanistic understanding of the NOB suppression by free ammonia inhibition in continuous flow aerobic granulation bioreactors. *Environ. Int.* **2019**, *131*, 105005.
41. Jiang, H.; Liu, G.; Ma, Y.; et al. A pilot-scale study on start-up and stable operation of mainstream partial nitrification-anammox biofilter process based on online pH-DO linkage control. *Chem. Eng. J.* **2018**, *350*, 1035–1042.

42. Liu, T.; Li, X.; Wang, Y.; et al. Synergistic control of SRT and DO in independent zoned sludge systems: A model-guided PDA-PN/A process achieving low-carbon nitrogen removal in municipal wastewater environment. *Chem. Eng. J.* **2025**, *521*, 166841.

43. Wang, D.; Wang, Q.; Laloo, A.; et al. Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. *Sci. Rep.* **2016**, *6*, 25547.

44. Liu, Y.; Ngo, H.H.; Guo, W.; et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review. *Environ. Int.* **2019**, *123*, 10–19.

45. Peng, S.; Yang, D.; Liang, Z.; et al. Effect of influent C/N ratios on high-concentration powder carrier bio-fluidized bed (HPB) process: Performance, sludge characteristics, and microbial community. *J. Water Process Eng.* **2024**, *62*, 105375.

46. Chen, R.; Ji, J.; Chen, Y.; et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater. *Water Res.* **2019**, *155*, 288–299.

47. Pijuan, M.; Ribera-Guardia, A.; Balcázar, J.L.; et al. Effect of COD on mainstream anammox: Evaluation of process performance, granule morphology and nitrous oxide production. *Sci. Total Environ.* **2020**, *712*, 136372.

48. Li, C.; Liu, Q.; Fan, J.; et al. Metagenomics-based interpretation of selective bioaugmentation promoting partial-denitrification coupling with anammox process reactivation in suspended sludge system. *Chem. Eng. J.* **2023**, *454*, 139977.

49. Zhao, Q.; Li, X.; Zhang, L.; et al. Partial denitrifying phosphorus removal coupling with anammox (PDPRA) enables synergistic removal of C, N, and P nutrients from municipal wastewater: A year-round pilot-scale evaluation. *Water. Res.* **2024**, *253*, 121321.

50. Chen, H.; Liu, K.; Yang, E.; et al. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. *Sci. Total Environ.* **2023**, *857*, 159462.

51. Xiao, R.; Ni, B.; Liu, S.; et al. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. *Water Res.* **2021**, *191*, 116817.

52. Wang, H.; Chen, H.; Chen, Y.; et al. Revealing the response of community structure and metabolic pathway to varying organic matter stress in a dissolved oxygen-differentiated airlift internal circulation partial nitritation-anammox system. *Sci. Total Environ.* **2023**, *886*, 164002.

53. Zheng, Z.; Huang, S.; Bian, W.; et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration. *Bioresour. Technol.* **2019**, *283*, 213–220.

54. Chen, R.; Takemura, Y.; Liu, Y.; et al. Using Partial Nitrification and Anammox to Remove Nitrogen from Low-Strength Wastewater by Co-immobilizing Biofilm inside a Moving Bed Bioreactor. *ACS Sustain. Chem. Eng.* **2019**, *7*, 1353–1361.

55. Gu, X.; Wang, F.; Ding, Y.; et al. Two-stage partial nitritation/Anammox (PN/A) for mainstream wastewater treatment: Achieving high nitrogen removal at elevated loading rates under low-temperature conditions. *J. Environ. Manag.* **2026**, *397*, 128265.

56. Qian, F.; Cui, S.; Liu, F.; et al. Effect of hydraulic selection pressure on the characteristics of partial nitritation/anammox granular sludge in a continuous-flow reactor. *Environ. Technol. Innov.* **2021**, *24*, 102042.

57. Awata, T.; Goto, Y.; Kuratsuka, H.; et al. Reactor performance and microbial community structure of single-stage partial nitritation anammox membrane bioreactors inoculated with Brocadia and Scalindua enrichment cultures. *Biochem. Eng. J.* **2021**, *170*, 107991.

58. Chen, H.; Wang, H.; Chen, R.; et al. Unveiling performance stability and its recovery mechanisms of one-stage partial nitritation-anammox process with airlift enhanced micro-granules. *Bioresour. Technol.* **2021**, *330*, 124961.

59. Gholami-Shiri, J.; Azari, M.; Dehghani, S.; et al. A technical review on the adaptability of mainstream partial nitrification and anammox: Substrate management and aeration control in cold weather. *J. Environ. Chem. Eng.* **2021**, *9*, 106468.

60. Liu, L.; Wu, J.; Sun, H.; et al. Combination of sludge free nitrous acid treatment in the presence of ammonium with intermittent aeration for rapid control of nitrate production in mainstream partial nitritation/anammox processes. *J. Environ. Chem. Eng.* **2025**, *13*, 119400.

61. Wei, Y.; Xia, W.; Ye, M.; et al. Optimizing hydraulic retention time of high-rate activated sludge designed for potential integration with partial nitritation/anammox in municipal wastewater treatment. *Bioresour. Technol.* **2024**, *401*, 130710.

62. Podmirseg, S.M.; Gómez-Brandón, M.; Muik, M.; et al. Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification. *Water. Res.* **2022**, *218*, 118517.

63. Wang, J.; Zhou, J.; Feng, Y.; et al. Construction of acyl-homoserine lactone-producing engineered bacteria for activating low-temperature anammox process. *Environ. Res.* **2026**, *290*, 123478.

64. Huang, K.; He, Y.; Wang, W.; et al. Temporal differentiation in the adaptation of functional bacteria to low-temperature stress in partial denitrification and anammox system. *Environ. Res.* **2024**, *244*, 117933.

65. Gong, Q.; Zeng, W.; Meng, Q.; et al. Integration of mixotrophic denitrification and anammox in Thiothrix-hydroxyapatite coupled particles treating municipal wastewater against low temperature and organic load shocks. *Chem. Eng. J.* **2024**, *497*, 154577.

66. Chen, Y.; Zhang, C.; Chen, Z.; et al. Achieving nitrite shunt using in-situ free ammonia enriched by natural zeolite: Pilot-scale mainstream anammox with flexible nitritation strategy. *Water Res.* **2024**, *265*, 122314.

67. Guo, Y.; Sanjaya, E.H.; Rong, C.; et al. Treating the filtrate of mainstream anaerobic membrane bioreactor with the pilot-scale sludge-type one-stage partial nitritation/anammox process operated from 25 to 15 °C. *Bioresour. Technol.* **2022**, *351*, 127062.

68. Rong, C.; Luo, Z.; Wang, T.; et al. Biomass retention and microbial segregation to offset the impacts of seasonal temperatures for a pilot-scale integrated fixed-film activated sludge partial nitritation-anammox (IFAS-PN/A) treating anaerobically pretreated municipal wastewater. *Water Res.* **2022**, *225*, 119194.

69. Pedrouso, A.; Morales, N.; Rodelas, B.; et al. Rapid start-up and stable maintenance of the mainstream nitritation process based on the accumulation of free nitrous acid in a pilot-scale two-stage nitritation-anammox system. *Sep. Purif. Technol.* **2023**, *317*, 123851.

70. Cao, Y.; Kwok, B.H.; van Loosdrecht, M.C.M.; et al. The occurrence of enhanced biological phosphorus removal in a 200,000 m³/day partial nitritation and Anammox activated sludge process at the Changi water reclamation plant, Singapore. *Water Sci. Technol.* **2017**, *75*, 741–751.

71. Zhang, S.; Li, Q.; Gu, P.; et al. Full-scale mainstream partial nitritation/anammox process: A three-year demonstration for municipal wastewater treatment. *Water Res. X* **2025**, *29*, 100419.

72. Li, J.; Peng, Y.; Zhang, L.; et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. *Water Res.* **2019**, *160*, 178–187.

73. Zheng, M.; Li, H.; Duan, H.; et al. One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application. *Water Res. X* **2023**, *19*, 100166.

74. Cao, Y.; Kwok, B.H.; van Loosdrecht, M.C.M.; et al. The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m³/d activated sludge process at the Changi water reclamation plant (2011 to 2016). *Water Sci. Technol.* **2018**, *78*, 634–643.

75. Izadi, P.; Sinha, P.; Andalib, M.; et al. Coupling fundamental mechanisms and operational controls in mainstream partial denitrification for partial denitrification anammox applications: A review. *J. Clean. Prod.* **2023**, *400*, 136741.

76. Gilbert, E.M.; Agrawal, S.; Schwartz, T.; et al. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. *Water Res.* **2015**, *81*, 92–100.

77. Im, H.; Jeong, S.; Kim, H.; et al. Mainstream application of the partial denitrification-anammox process for carbon-neutral wastewater treatment: A review. *J. Water Process Eng.* **2025**, *72*, 107558.

78. Wu, Z.; Mu, J.; Li, X.; et al. A strategy for starting and controlling nitritation-denitrification in an SBR with DO and ORP online monitoring signals. *Desalin Water Treat.* **2019**, *151*, 365–371.

79. Wen, X.; Gong, B.; Zhou, J.; et al. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. *Water Res.* **2017**, *119*, 201–211.

80. Ai, W.; Shang, J.; Wang, Y.; et al. Constructing a robust mainstream Anammox process via cold shock adaptation: Nitrogen removal performance and microbial community. *J. Environ. Chem. Eng.* **2025**, *13*, 119443.

81. Wan, J.; Wang, X.; Ren, Y.; et al. Physiological adaptations of anammox bacteria to cold stress in wastewater treatment: Bioaugmentation and process intensification strategies. *J. Environ. Chem. Eng.* **2025**, *13*, 118550.

82. Chen, H.; Tu, Z.; Wu, S.; et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. *Chemosphere* **2021**, *278*, 130436.

83. Yan, H.; Du, G.; Sun, F.; et al. Rapid enrichment strategies for anaerobic ammonium oxidation (anammox) bacteria: A critical review. *Process Saf. Environ.* **2025**, *204*, 108120.

84. Ma, J.; Sun, H.; Ji, Y.; et al. Niche differentiation drives microbial community assembly in an anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) system: Insights into Anammox self-enrichment. *Water Res.* **2026**, *288*, 124615.

85. Du, Y.; Lei, T.; Jin, J.; et al. Harnessing machine learning for energy optimization and intelligent process control in wastewater treatment. *J. Water Process Eng.* **2025**, *80*, 109210.

86. Fisher, O.J.; Wang, Y.; Ahmed, A. Making waves: Transforming biofilm-based wastewater treatment using machine learning-driven real-time monitoring. *Water Res.* **2025**, *287*, 124491.