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Abstract: Positron emission tomography (PET) is an important medical imaging
technique that reflects the molecular activity of tissues and organs by injecting radioac-
tive tracers. Low-dose (LD) PET is gradually being adopted to reduce radiation dose
and scanning costs, however this usually leads to increased image noise and artifacts,
which can affect clinical diagnosis. Therefore, in order to maintain high-quality PET
image generation while utilizing LD-PET data, this paper proposes a multi-modality
Vision Transformer-based conditional generative adversarial network (ViT-cGAN)
that directly achieves high-quality PET image reconstruction using the corresponding
LD-PET sinogram data and computed tomography (CT) images. Specifically, the
network incorporates the advantages of Vision Transformer and multi-modality inputs.
In addition, an extensive objective function is designed to optimize the network for
improving the details and visual quality of the reconstructed images. Experimental
results show that our proposed method can effectively reconstruct high-quality PET
images, outperforming current state-of-the-art methods.

Keywords: condition generative adversarial network (cGAN); image reconstruction;
positron emission tomography (PET)

1. Introduction

Positron emission tomography (PET) is an important medical diagnosis technique for functional, metabolic,
and molecular imaging of organs or tissues in modern nuclear medicine. It can reflect the activities of different organs
and tissues at the molecular level through the injection of specific radiotracers into the living body [1,2]. However,
PET scanning is expensive and this process also causes potential radiation damage to the human body. Low-dose
(LD) sampling methods are often used, which can effectively reduce the radiation dose and also reduce the cost of
scanning to some extent [3]. However, this can also lead to a reduction in the number of detected photons, creating
noise and artifacts in the reconstructed image, which can negatively affect clinical diagnosis. Until now, a variety of
conventional PET reconstruction methods have been proposed, including analytical reconstruction [4–7], iterative
reconstruction [8–10], and post-reconstruction of the image domain [11–13]. They share common drawbacks:
sensitivity to noise and poor image quality under LD data. Therefore, how to design algorithms to improve the
quality of PET image reconstruction under LD sampling conditions is a problem that must be solved today.

In the past decade, deep learning has widely penetrated into several fields of medical imaging [14–17] and has
been successfully applied to image reconstruction methods. Gong et al. [18] proposed an iterative reconstruction
based on U-Net model to reconstruct PET images. Häggström et al. [19] proposed a deep encoder-decoder network
that directly solves the PET image reconstruction problem. Spuhler et al. [20] proposed the reconstruction of
full-count PET from low-count images using a dilated convolutional neural network.

In recent years, methods based on generative adversarial network (GAN) have further contributed to the
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development of medical image reconstruction, which generates high-quality images by simulating adversarial
training with generators and discriminators, and are now also gradually used in PET reconstruction tasks [21–24].
Conditional GAN (cGAN) is an extended version of GAN, in which the core is to introduce conditional variables
to guide the generation process. Since the generated images are more targeted, it can reduce the ambiguity and
randomness between the generated samples, and make up for the shortcomings of ordinary GAN in the quality of
the generated data and the stability of the training. It performs better than the ordinary GAN in many practical
applications. Wang et al. [25] used cGAN for the first time to realize high quality PET image reconstruction. Liu et
al. [26] proposed to use cGAN to reconstruct PET images directly from sinograms.

Despite the good potential of the cGAN based image reconstruction task, it still faces the following limitations
in terms of generation quality and optimization efficiency. First, both generators and discriminators under the
adversarial network framework usually process image data through convolutional operations, which makes it limited
in modeling remote semantic dependencies in the data. Lacking non-local contextual information, reconstructed
PET images may lose or obtain inaccurate global structure. Inspired by recent significant advances in the attentional
mechanism for medical image analysis, visual transformer (ViT) [27] can directly capture feature interactions on
a global scale [28,29]. In LD-PET images, ViT better restores global coherence and reduces the impact of noise
on overall image quality. Moreover, PET image reconstruction is affected by the attenuation effect, i.e., the rays
are absorbed or scattered as they pass through the body’s tissues. Having information on the density of different
types of tissue is crucial for correcting for attenuation [30,31], for example, CT image information can provide
assistance with anatomical structures. However, most of the existing methods are unimodal, and relying only on a
single source of data often fails to help in PET attenuation correction.

Consequently, in order to achieve high-quality PET reconstruction under LD sampling conditions, we improved
the classical cGAN framework-based network Pix2Pix [32] and proposed a multi-modality perceptual ViT-cGAN
network (MPeVitcGAN). It is able to reconstruct the high-quality PET image directly from the LD-PET sinogram
data and the corresponding CT images. Specifically, we incorporate the ViT encoder structure in the generator to
capture global semantic information and enhance the focus on the focal region. Next, we improve the generator to a
multimodal input method with additional extraction of CT information, aiming to provide more comprehensive
information and reduce the attenuation effect during PET reconstruction. In addition, we design an extensive
objective function that combines the original adversarial loss, L1 loss, and perceptual loss to optimize the network
for generating more natural and realistic medical images. These methods not only improve the prediction ability of
the cGAN model, but also more accurately guide the generator to produce more realistic PET images in critical
regions and improves the visual quality of the generated images. The experimental results show that our method
obtains the best reconstruction results compared with other state-of-the-art methods, in both quantitative and
qualitative analyses, and the generated images possess better visual quality.

2. Methology

The overall framework of our proposed MPeVitcGAN is shown in Figure 1, which consists of two parts:
generator network and discriminator network. First, the input data undergoes preprocessing via the Domain
Transform (DT) layer. This module employs a back-projection operation to reconstruct simulated LD sinogram
image into an intermediate domain transform image. The objective is to explicitly reduce discrepancies with the
target image domain, thereby providing a more favourable starting point for subsequent generative networks. After
that, the real PET image is used as the learning target of the DT map and the corresponding CT image. The PET
image is generated by learning the mapping relationship between them through a modified generator. Specifically,
the modified generator is a combination of the original U-Net-based generator of Pix2Pix with the architecture of the
ViT encoder and the addition of a downsampling channel to extract the features of the CT image, which is called the
ViT-UNet generator. We then use an adversarial learning strategy for the designed network, with the discriminator
being Pix2Pix’s original PatchGAN. This model is a discriminator based on local image blocks, which enhances
the quality of generated details by evaluating local regions rather than the entire image. The network structure of the
algorithm is described in detail below.
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Figure 1. Proposed network architecture of MPeVitcGAN for LD sinogram PET data reconstruction.

2.1. ViT-UNet Generator Network

The generator architecture is crucial for the quality of synthesized images. Our proposed generator architecture,
shown in Figure 2, consists of two sub-level networks: ViT encoder network (ViTEncoder) and Two-channel U-Net
network (TCU-Net).

Figure 2. Network structure diagram of the ViT-UNet generator proposed by the MPeVitcGAN network directorate.
Part (a) illustrates the ViTEncoder structure, while part (b) depicts the TCU-Net structure. FM—Feature Merging,
CLB—Convolutional Layer Block, TRB—Transposed Convolutional Layer Block, Conv—Convolution, NB—Batch
Normalization, ReLU—Rectified Linear Unit, TConv—Transposed Convolution.

ViTEncoder is used to convert the input images into sequence information and learn the remote dependen-
cies between them for modeling. Figure 2a shows the detailed structure of ViTEndoer. The DT and the CT
images are processed by the same ViTEncoder module, respectively, which first divides the input image into
fixed-size patches, with the input image size of 128 × 128 and patch size of 16 × 16. Each image generates
64 (image size/patch size) patches, and each patch is linearly projected and then positional coding is added to obtain
a set of one-dimensional sequences. These sequences are inputted into the Transformer encoder, which consists of
six Transformer layers, and each layer contains respectively a multi-attention (MA) module and a feed-forward
network (FFN) accompanied by layer normalization (LN) layer.

TCU-Net is used to extract local information from features, fuse different modalities, and restore the fused
features to the final target image. One of its core tasks is to constrain the spatial distribution of PET functional
data using CT anatomical information. During feature fusion, the distinct anatomical structural features extracted
from the CT channel serve as spatial priors. They guide and modulate the feature responses of the PET channel
to ensure that the reconstructed metabolic activity distribution remains confined within anatomically plausible
regions.In addition, jump-joins are used for multi-level feature aggregation. As shown in Figure 2b, it consists of a
two-channel downsampling module, a Feature Merging (FM) module and a single-channel upsampling module. The
DT and CT image feature sequences processed by the ViTEncoder are first passed through a convolutional layer to
adjust the number of channels, making them ready for subsequent downsampling. The convolutional kernel size
used is 4× 4 with a step size of 2. The two downsampling channels share a similar structure but differ in detailed
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parameters. The downsampled portion of each channel consists of four identical blocks, including the convolutional
layer, the LeakyRelu activation function layer, and the batch normalization (BN) layer, called the CLB block. The
output channels are 64, 128, 256, 512, respectively. The downsampled feature maps are subsequently merged and
fed into the FM module. This module employs a multi-scale fusion strategy combining weighted summation with
direct concatenation. Its core component is the learnable linear weighted fusion of same-scale features, expressed
as follows:

Ffuse =

N∑
i=1

wi · Fi (1)

where wi denotes the trainable weight, and Fi represents the i-th input feature at the same scale. For cross-scale
features, aggregation is achieved through channel concatenation. The fused features undergo deep integration and
transformation via a convolutional layer, a transposed convolutional layer, ReLU and LeakyReLU activation layer
and BN layer. The output channels are 1024. Finally, the image resolution is gradually restored by four layers of
up-sampling network in which each layer includes transposed convolutional layer, Relu activation function and BN
layer. The output channel is 512, 256, 128, 64, respectively. Finally, in the output layer, the normalization layer
is removed, and the synthesized image is obtained by the transposed convolutional layer with 7× 7 size and the
tanh function.

2.2. PatchGAN Discriminator Network

The PatchGAN discriminator is a key component of the Pix2Pix network used to determine the authenticity of
a generated image. Unlike traditional discriminators, PatchGAN does not classify the image as a whole, instead,
it splits the image into multiple small patches, each of which is individually determined to be a real image or not.
This approach not only allows the discriminator to focus on the details of localized regions of the image, but also
effectively improves the accuracy of training and helps the generator to reconstruct the details more accurately.

The specific structure is shown in Figure 3, using a typical convolutional neural network (CNN) architecture.
There are four convolutional layers in which each layer includes a convolutional layer, LeakyReLU activation
function and LN layer. The filter size of 4 × 4, padding of 1 and step 2. The number of kernels in the four
convolutional layers are 64, 128, 256, 512, respectively. After these four convolutional layers, the last convolutional
operation uses the 4 × 4 convolutional kernel with a step size of 1. The output of this convolutional layer is a
single-channel feature map that is used to predict whether each patch belongs to the real image. This means that
each position on each output feature map corresponds to a patch of an image and gives a binary classification result
as to whether the patch is a real image or not. In this way, the PatchGAN is able to evaluate the quality of the
generated images at a finer granularity, especially the ability to capture local details. It makes the generated images
more realistic in terms of local structure and texture, and thus promoting better training of the generator.

Figure 3. The discriminator network proposed in this method.

2.3. Loss

The success of image synthesis requires semantic reasoning, and for the task of PET image reconstruction, the
synthesized PET outputs must be semantically similar to the corresponding inputs, albeit with dramatic changes
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in appearance. To further improve the quality of the generated PET images, an extensive objective functions are
used to optimize the network, including three types of terms: adversarial loss, pixel-level reconstruction loss, and
perceptual loss.

The generator of a traditional GAN generates images without additional input conditions, and its main goal
is to produce images that can deceive the discriminator, which is responsible for distinguishing between real and
generated images. Although this approach can produce diverse generated images, it has weak control over the
generated results and it is difficult to ensure the accuracy of the images under specific conditions. Conditional GAN
guides the generation process of the generator and the discriminator by taking additional information (e.g., labels,
modalities, or noise) as input conditions. This conditional information enables the generator to produce images that
better meet specific requirements, while the discriminator takes these conditions into account when evaluating image
veracity. Given a DT image xDT ∈ RDT , CT image xCT ∈ RCT , and the corresponding PET image y ∈ RPET ,
reconstructed PET image G (xDT , xCT ) is generated from xDT and xCT by generator network. The conditional
adversarial loss can be defined as:

Ladv(D) =
1

2
E[(D(xDT , y)− 1)2]

+
1

2
E[(D(xDT , G(xDT , xCT ))))

2]

(2)

Ladv(G) =
1

2
E[(D(xDT , G(xDT , xCT )))− 1)2] (3)

To ensure that the reconstructed PET images are close to their corresponding real images, we employ L1 loss
as a voxel-by-voxel estimation error to narrow the gap between them, which means that the generator not only
needs to deceive the discriminator, but also needs to minimize the absolute pixel intensity difference between the
synthesized PET images and the real PET images. The L1 pixel-level reconstruction loss is formalized as follows:

LL1(G) = E ∥y −G(xDT , xCT )∥1 (4)

Although pixel-level loss captures the overall structure, it does not reflect the perceptual difference between the
synthesized image and the real image. As an example, consider two identical PET images which, if they differ by
only one pixel, would be significantly different in terms of pixel-level loss, despite being perceptually similar [33].
Therefore, the introduction of perceptual loss based on the similarity of high-level feature representations can
generate higher quality PET images, which is formalized as follows:

Lper(G) = E ∥V (y)− V (G(xDT , xCT ))∥1 (5)

where V is the set of feature mappings before the second maxpooling operation of the pretrained VGG-16 [34].
Our overall MPeVitcGAN objective function is expressed as:

Ltotal = Ladv(G) + Ladv(D) + αLper(G) + βL1(G) (6)

The parameters α and β are balances between different losses, and we empirically set α = 1 and β= 1.

3. Experiments

We use a radiogenomic dataset built from a non-small cell lung cancer (NSCLC) cohort consisting of
211 subjects [35], with paired CT and PET images for each patient, and scanned 32,786 2D slices. The LD
sinogram data is generated by projecting these 2D slices using a systematic matrix orthogonal projection, and then
transformed into visualized DT images by an inverse Radon transformation to invert the orthoprojection process and
transform the projected data into visualized DT images. In order to reduce the computational cost, we resized the
PET and CT images to 128× 128. In order to fully utilize the available data, the dataset was divided into ten, of
which seven were used as the training set, one was used as the validation set, and the remaining two were used as
the test set.

To evaluate the performance of the proposed MPeVitcGAN, we use three evaluation metrics to validate the
reconstruction results. The first metric is the Peak Signal-to-Noise Ratio (PSNR) [36], where higher values indicate
better image quality.
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PSNR = 10 log10

(
max2

1
n

∑n
i=1 (xi − yi)

2

)
(7)

We use structural similarity (SSIM) as a second metric, which is used for visual image quality assessment
and considers the overall structure of the image. The value of this metric ranges from 0 to 1, with higher values
indicating that the image structure is closer to the real image:

SSIM =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (8)

where µx and µy are the means of x and y, σ2
x and σ2

y are the variances of x and y respectively, σxy is the covariance
between x and y, C1 and C2 are the small constants avoiding zero denominator errors.

The third evaluation metric is the relative root mean square error (rRMSE), where lower values indicate better
image quality.

rRMSE =

√
1
n

∑n
i=1 (xi − yi)

2

ȳ
(9)

Our proposed MPeVitcGAN is implemented by PyTorch, and the model is trained and tested on an Intel (R)
Core (TM) i7-10700 2.90 GHz GPU with 8 GB of memory. Depending on the computer hardware used, the training
batch size was set to 8 and the learning rate to 0.00002.

3.1. Hyperparameter Selection

Figure 4 shows the convergence of the loss curve on the training set during the training process of the
MPeVitcGAN. When the network training process reaches the 200-th epoch, the loss curve on the validation set no
longer decreases, and we stop the training in order to avoid network overfitting.

Figure 4. The loss curve between the reconstructed image and the real image.

In order to reduce the complexity of the proposed model while maintaining the optimal model performance, we
first investigated the effect of the number of transformer layers on the performance of the final model and estimated
the optimal layer settings. The statistical results expressed in terms of PSNR, SSIM and rRMSE are shown in
Figure 5. It can be seen that the proposed model achieves the best results in PSNR and rRMSE when the number
of transformer layers is 6, although its SSIM is slightly lower than that of the 7-layer configuration. Considering
that PSNR and rRMSE are more critical metrics for evaluating pixel-level fidelity in medical image reconstruction,
the 6-layer design is deemed superior. Furthermore, owing to the approximately linear relationship between the
parameter count and the number of layers in Transformer architectures, the 6-layer model reduces theoretical
computational cost by about 14.3% compared to the 7-layer model, leading to higher deployment efficiency. By
balancing core performance and computational efficiency, the 6-layer architecture represents the optimal trade-off
and is selected as our final design.
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Figure 5. Comparison of (a) PSNR (b) SSIM and (c) rRMSE for different number of transformer layers.

3.2. Ablation Stuies

Our enhancement of the original Pix2Pix network can be divided into two parts: the ViT-UNet generator and the
generalized loss function. To study the contribution of each part, we designed and performed ablation experiments.

3.2.1. Contribution of the ViT-UNet Generator

As described earlier, we designed the ViT-UNet generator to optimize the network, and in order to evaluate
the effectiveness of this generator, we trained each of these improvements individually against the structure. The
network that used only U-Net as the original generator is denoted as baseline. The network that added ViTEncoder to
U-Net for feature extraction of DT images is denoted as VitcGAN. The network that used TCU-Net for multimodal
inputs to both DT and CT images is denoted as McGAN. And a comparison is made with our method. The specific
PSNR, SSIM and rRMSE comparison results are shown in Table 1.

Table 1. Quantitative comparison of our proposed MPeVitcGAN model with respect to its three variants.

Method PSNR SSIM rRMSE

Baseline 33.147 0.954 0.284
VitcGAN 33.463 0.956 0.277
McGAN 34.014 0.962 0.245

Ours 34.229 0.965 0.237

In order to validate the benefits of the ViTEncoder, we compare the baseline with the VitcGAN. The only
difference between these two models is whether the DT image is first processed by the VitEncoder. As can be
seen in the first and second rows of Table 1, the results of the three evaluation metrics are optimized when the
ViTEncoder is included in the baseline. Among them, PSNR (SSIM) improved from 33.147 (0.954) to 33.463
(0.956), and rRMSE decreased from 0.284 to 0.277. From the second and third columns of Visual Comparison in
Figure 6, the distribution of metabolic activities within the high-intensity region is more accurately in the generated
PET images due to the ability of ViT’s global attention mechanism to focus on important regions while preserving
global coherence. The above results indicate that ViTEncoder can further improve the image quality of synthesized
PET images.

To verify the benefits of the TCU-Net module in providing multimodal inputs, we compared baseline with
McGAN. The first and third rows of Table 1 give the quantitative comparison results. It can be seen that the method
improves on all three performance metrics. Specifically, there is an improvement of 0.867 PSNR, 0.008 SSIM,
and a decrease of 0.039 in rRMSE. Observing the second and fourth columns of Figure 6, the reconstructed PET
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images have clearer anatomical boundaries, higher spatial resolution, and are more similar to the real images due to
the high-resolution anatomical structure information provided by the CT images. These results demonstrate the
effectiveness of the multimodal approach.

Figure 6. Ablation experiments in Grund Truth and images generated using different methods, with the second row
showing the method region of interest (ROI) for the red boxed region marked in the first row.

3.2.2. Contribution of the Extensive Loss Function

As described in the Methods section, our proposed an extensive objective function to compute the loss
includes the adversarial loss, the L1 loss, and the perceptual loss. In order to investigate its effectiveness for PET
reconstruction task, we make the above losses separately to train the proposed model. The results of quantitative
comparison of PSNR, SSIM and rRMSE between different loss functions are shown in Table 2.

Table 2. Quantitative comparison of PSNR, SSIM and rRMSE between different loss functions.

Loss Function PSNR SSIM rRMSE

Adversarial 32.859 0.945 0.306
Adversarial + L1 33.975 0.958 0.246

Ours 34.229 0.965 0.237

We note that the quality of the reconstructed images is not as good in the model with only adversarial loss.
The main problem lies in the fact that the adversarial loss usually does not guarantee that the generated image is
exactly the same as the target image at the pixel level, and the use of only the adversarial loss may lead to a loss of
image details. The first extension is to add the L1 loss, from the second row of the table, we can see that all the three
indexes have increased, which proves that this loss can effectively make up for the shortcomings of the adversarial
loss that can not guarantee the consistency at the pixel level. PSNR and rRMSE are pixel-level metrics, which align
with the optimization objective of the L1 loss, making it effective in improving these two metrics. However, L1 loss
has limited ability to recover image structure and texture, so the improvement effect on SSIM may be small. The
second extension is to add the perceptual loss function, which just makes up for the gap of the network to improve
the visual perceptual quality of images, so the improvement of SSIM index is significant.

3.3. Performance Comparison

In order to evaluate the effectiveness and superiority of our network, we compare the proposed MPeVitcGAN
with four state-of-the-art methods including Pix2Pix, LCPR-Net, SAGAN and ResViT. Specifically Pix2Pix is a
preliminary version of this work, LCPR-Net also reconstructs the PET images directly from the corresponding
sinogram data, SAGAN is a convolution-based GAN model who improves by incorporating a self-attention module
in the generator. And ResViT explores the combination of Residual Networks and ViT for medical image synthesis.
For a fair comparison, the number of attention modules in SAGAN and ResViT is the same as in this paper.
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The average quantitative comparison results for the subjects with NSCLC are shown in Table 3, respectively.
It can be seen that our method obtains the best PSNR, SSIM, and rRMSE in general, which can effectively improve
the quality of PET reconstructed images. Specifically, in subjects with NSCLC, MPeVitcGAN outperforms the
second-best method by 1.082 in PSNR (≈3.26%) and 0.007 in SSIM (≈0.7%). More critically, rRMSE is reduced
from 0.284 to 0.237, which corresponds to a 16.5% reduction. These concurrent improvements validate the superior
reconstruction quality of our proposed network.

Table 3. Quantitative comparison of PSNR, SSIM and rRMSE between different reconstruction methods.

Method PSNR SSIM rRMSE

SAGAN 31.644 0.952 0.349
ResViT 32.706 0.957 0.318

LCPR-Net 32.574 0.958 0.317
Pix2Pix 33.147 0.954 0.284

MPeVitcGAN (Ours) 34.229 0.965 0.237

In addition to the quantitative comparison results, we also provide the visual comparison results of the first
slice in Figure 7. The first row is a gray-scale map generated by Ground Truth as well as five different methods,
the second row is a transformed pseudo-color map, and the third row is the corresponding error map. Compared
with the other compared methods, the reconstructed PET images generated by the methods in this paper are richer
in details and have sharper edges, especially in the regions pointed by the boxes. It can also be found from the
corresponding error maps that the error maps of the proposed MPeVitcGAN are darker in color, which means that
the PET images generated by our proposed network have the smallest difference from the ground truth. In addition
to that, Figure 8 shows the intensity distribution (profile) maps of pixel values in vertical and horizontal directions
of the first slice, respectively. It can be seen that the method proposed in this paper is the closest to the true value,
which indicates that the PET images reconstructed by the network are more in line with the metabolic distribution of
the actual lesions and are more accurate in recovering the intensity of metabolic activities and anatomical features.
As shown in Figures 9 and 10, we also present the visual comparison and profile plots of the second slice, where our
method also demonstrates excellent results. Overall, compared with other state-of-the-art methods, our method
possesses better reconstruction results, and the generated images are able to better maintain the edge contours and
provide high-quality visualization.

Figure 7. The visual comparison image of Slice 1 for different methods of PET reconstruction. The first row shows
Ground Truth as well as the grayscale maps generated by the five different methods, the second row shows the
transformed pseudo-color maps, and the third row shows the corresponding error maps.
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Figure 8. The profile plots of Slice 1 for different methods and the ground truth in vertical and horizontal directions.

Figure 9. The visual comparison image of Slice 1 for different methods of PET reconstruction.

Figure 10. The profile plots of Slice 2 for different methods and the ground truth in vertical and horizontal directions.

4. Conclusions

In this paper, we proposed a multimodal perceptual cGAN aimed at reconstructing high-quality PET images
from LD simulated PET sinusoidal images and corresponding CT images. The method can provide physicians with
high-quality PET images and reduce the injection dose of radiotracer and scanning time. The experimental results
show the significant superiority of our proposed method compared to other state-of-the-art methods.

Although the proposed MPeVitcGAN has made significant progress in LD-PET image reconstruction, there are
still some limitations. The training process of the network requires a large multi-modal dataset, and the acquisition
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and annotation of such data can be limited, particularly in clinical settings. Future research can address these issues
in the following directions. On one hand, more efficient data augmentation methods can be explored to reduce the
reliance on large annotated datasets. On the other hand, the method can be extended to other types of medical image
reconstruction tasks, such as the fusion and reconstruction of functional magnetic resonance imaging (fMRI) or
electroencephalography (EEG) signals, to further validate its broad applicability in the multi-modal imaging field.
In summary, while the proposed method demonstrates significant advantages, there remains considerable room for
future research and development.
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