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However, there is a lack of survey paper that focuses on how different DL-related
methodologies are adopted in corresponding localization scenarios. In this paper, we
aim at presenting a comprehensive and up-to-date review of DL-based localization
methods from the respects of those common wireless standards such as Wi-Fi, cellular,
ultra-wideband (UWB) and Bluetooth low energy (BLE). We further highlight those
factors that build up end-to-end DL-based methods including the datasets, preprocessing
methods, and DL algorithms. We also discuss how DL can potentially address the
challenges in terms of localization precision, latency, and data generation.
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1. Introduction

Wireless localization is becoming a very important technology providing various services in an indoor or
outdoor environment. With the increasing deployment Internet of Things (IoT) services and devices, tracking or
monitoring the activities of individuals or electronic devices is the foundation of applications such as navigation,
health care, and trajectory planing [1-3]. A typical wireless localization system consists of two parts: an anchor
and a target. Usually, the anchor device will keep broadcasting radio waves to the nearby targets. The target
nodes or devices will monitor these localization inquiries over the wireless communications channel and then send
signals back to the anchor to report their location data. Finally, the anchor will use the received data to estimate the
location of the target. Such localization process is depicted in Figure 1, where a deep learning (DL) algorithm is
applied to map the signal data to spatial coordinate of the target. Also, in some cases where the target nodes do
not equipped with any active wireless transmitter, the anchor can also analyze the target location by capturing the
signals, e.g., Wi-Fi signals, reflected from the target [4,5].

In fact, many of the common wireless technologies, including Wi-Fi, cellular, Bluetooth low energy (BLE) and
ultrawide band (UWB) have been studied and developed to provide localization services. Since all these technologies
have their dedicated coverage or unique signal properties, each of them is adopted in different deployment scenarios
for the corresponding localization applications. For instance, Wi-Fi is mostly used in indoor environments, which
makes it the most natural option to support indoor localization service. Also the widely deployed Wi-Fi infrastructure
and devices save the cost on expanding the services. Similarly, Long-Term Evolution (LTE) or 5G signal suit more
for outdoor localization tasks because they can provide better coverage and transmission quality in urban or wide
open area [6—8]. On the other hand, the localization performance also suffers from the characteristics of the wireless

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).
[

Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.sciltp.com/journals/aieng
https://doi.org/10.53941/aieng.2026.100001
https://creativecommons.org/licenses/by/4.0/

Xia et al. Al Eng. 2026, 2(1), 1

technologies. For example, although the UWB-based system can generally achieve centimeter level localization
accuracy, its performance will be greatly affected in non-line of sight (NLOS) environments due to its weak signal
penetration. A similar problem also exists in BLE-based localization systems, because the weak signal penetration
affects the coverage of BLE devices. In general, the choice of a wireless standard needs to take these properties into
account to fit the requirement of a specific application. Usually, the main concern of the localization service, such as
precision, coverage, latency, or cost, can be different depending on the application scenario.
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Figure 1. General flow of a DL-based localization system.

Therefore, how to compensating the shortcomings of different wireless technologies or further enhancing the
localization performance are still challenging tasks. Recent studies and research focus on developing advanced
localization methods to achieve higher-resolution localization accuracy or increase the robustness in different
environments. Localization methods, in general, can be categorized into range-based methods and range-free
methods. The former one requires that multiple anchors in the space need to monitor the signals transmitted back
from the target and each of the anchors estimates their distance to the target accordingly. Then a multi-lateration
problem can be formed using the distance information to estimate the location of the target, which usually makes
the problem a non-linear one. This type of method, even though is able to achieve solid localization accuracy, does
not fit well into the application with NLOS environments, because any obstruction between the anchors and the
target can deteriorate the distance estimation [3,9, 10]. Localization accuracy is highly dependent on the channel or
environment modeling, which can be challenging and inaccurate in practical scenarios due to NLOS effect, fading,
etc. [11]. The range-free methods, however, have looser constraints on the complexity of the environment [12]. The
signal exchange between anchors and reference points in the space builds a profile, which is also called fingerprint,
for each reference point [13]. Then when coming to the localization steps, the fingerprint of the target will be
compared with the fingerprints of all the reference points to find the best match. However, both types of the
methods requires the predefined environment information or geometrical model of the space where the localization
is performed. Practically, the environment information can be very limited or even unknown [14]. The methods may
not have enough generality for different environments, or be robust enough to any fluctuations of signals [5].

One of the main reasons that DL algorithms start to be adopted in localization problems is to capture the
complexity or variation in the environment or wireless channel in a learning manner [5]. Through the data-driven
process, one will be able to train a DL model using the distance data or fingerprint collected from the reference points
all over the space in order to get a more accurate representation of the environment, and thus provide more accurate
location estimation even in complex environments. Also, with the learning mechanism, the DL model can be
updated with real-time collected data so that it will be more robust to any changes in the environment [15]. Moreover,
the mapping between the received signal data to the location information is nonlinear, while DL algorithms have
been validated to be an effective approximator to such kind of relationship [16].

While DL algorithms are being studied and utilized in wireless localization problems, related works have also
been summarized by several reviews and survey papers from various perspectives. Ref. [17] mainly categorizes ML
and DL related works according to the corresponding types of localization technologies used, such as optic-based,
radio frequency (RF)-based and acoustic-based localization, etc. Refs. [18-20] focus more on RF-based localization
methods that uses ML algorithms or some fundamental DL architectures like CNN and RNN. Some reviews aim
at one or some certain types of localization technologies only. The authors in [21] summarize DL-based indoor
localization methods in Wi-Fi environment only. The ones of [8] concentrate on the works in 5G and future 6G
localization deployment scenarios. Moreover, in [22], the authors dedicated significant efforts in how ML algorithms
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improve localization performance in various scenarios like NLOS and minimize signal fluctuation. Alhomayani
and Mahoor emphasis on fingerprint-based localization methods, and summarizes the related studies based on the
types of DL algorithms implemented in [23]. They also include a summary of available fingerprint datasets in their
review. Ye et al. categorize the related works into device-oriented and device-free localization [24]. Besides DL
related surveys, there are also reviews and report like [6, 13,25], focusing more on the theoretical modeling and
analysis of localization problems, which are also considered to be informative and insightful to the this research
area. The major focuses and novelties of our work are further highlighted Table 1 comparing with other state-of-art
survey paper in the related fields.

Table 1. Existing survey papers in the literature.
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On the other hand, the existing survey papers do not summarize how to design and integrate the components of
a DL model in order to fit the needs of various localization application scenarios. In addition, as DL algorithms and
models are constantly and rapidly evolving, an up-to-date survey which takes those most advancing DL methods,
such as generative Al (Gen-Al), is crucial for future research in wireless localization. Therefore, in this paper, we
study and review the most recent research works that investigating the DL-based wireless localization methods to
provide some systematic reviews and insights about related studies. We focus on how DL algorithms are being
utilized under different wireless technologies. We also address three main components that contributes to the
studies of DL-based localization methods, which are available datasets, data-preprocessing methods, and available
simulators for wireless propagation. Moreover, we further discuss through categorizing the DL-related wireless
localization works from these perspectives, we aim at providing the readers a comprehensive reference or guidance
on how to choose/design the elements of a DL-based localization system under different circumstances. The key
contributions are listed as follows.

1. We present a detailed and up-to-date survey of various DL-based wireless localization research works proposed
from 2016 to 2024. We focus on those most recent studies from 2019 to 2024, which adopt the advancing
DL algorithms.

2. This survey discusses the common issues and challenges existing in the localization with different wireless
technologies, including Wi-Fi, cellular, UWB, and BLE, and provides a detailed summary about how DL
models or algorithms address those problems.

3. We categorize and analyze the related studies by their design and implement choices of a DL-based localization
system, including the datasets, data preprocessing method, DL algorithms, and wireless environment simulator.
We are dedicated to present a comprehensive reference about how different methodologies are adopted in
different scenarios or to address different issues, in order to support the design of the components in a DL
system in future studies.

4. We further discuss the challenges of achieving sub-meter level accuracy and the latency problem in real-time
deployment. We present some existing methods and also some potentially useful ones that can approach these
issues by cooperating DL related algorithms.

5. We also discuss how some of the most advancing DL models such as Gen-Al can be utilized to improve the
localization performance or improving the system efficiency.

The rest of the paper is organized as shown in Figure 2. In Section 2, we will present the localization datasets
which are available for use, the common data preprocessing methods for various data, and the simulators available
for researchers to emulate the environments and wireless channels. Sections 3-5 introduce the recent DL-based
localization methods under different wireless systems. Sections 3 and 4 focus on Wi-Fi and cellular system-based
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localization, and Section 5 illustrate the localization under other common wireless systems including UWB and
BLE. Section 6 provides some related discussions. Section 7 concludes the paper.
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Figure 2. The structure of this paper.

2. Dataset, Data Preprocessing, and DL Methods

DL algorithms has become an effective solution in many applications thanks to its power in obtaining key
features from a large dataset. In order to build an effective DL-based system, both the data and the DL algorithms
are crucial. It is necessary to have a clean and accurate dataset to support the training of the learning model. At
the same time, the choice of DL algorithms also needs to match the dedicated localization task, including the
data format or those specific constrains of the corresponding applications. Therefore, in this section, we aim to
summarize and categorize the recent wireless localization research works in the following two main perspectives:
the data and the DL algorithms. Firstly, we tabulate those datasets that have open access to support the localization
studies. We also highlight some of the commonly used data preprocessing methods for various data or applications.
We believe that the data preprocessing in a crucial step that leads to the accomplishment of a DL-based localization
task, due to the fact that most of the collected wireless data contain noisy or even jamming information which
stops the DL algorithms from capturing the characteristics of the wireless signals, which can easily deteriorate
the localization performance. As for the algorithms perspective, we summarize the recent works according to the
types of DL model/method applied in the research. We also highlight some of the features such as the input data
format in this section, to give the readers a sense of how the DL algorithms and preprocessing methods are chosen
corresponding to the wireless data in different wireless environments. We believe that this summary can help to
design the DL-based localization model in various scenarios.

2.1. Dataset

A high-quality dataset is usually considered to be the foundation of a successful DL-based system. In general,
training a DL model requires that the size of the training dataset is large enough, and the data itself cannot be polluted
with noise or other interferencing information. The later one is especially crucial in wireless communications tasks,
due to the fact that wireless signal transmission can suffers from radiation, signals or noise from other resources,
and obstacles in the space, etc. These are also some of the reasons why the current localization tasks are challenging,
as any models or algorithms need to deal with these inherent problems of the data in order to achieve better accuracy
on estimating the location. From the implementation point of view, a standardized and public available dataset can
help to compare the performance of different models or algorithms [4]. In addition, the environments in which the
dataset is measured or simulated should also contain a certain level of complexity and variety in order to further
justify the performance and generality of the implemented DL-based methods. For example, NLOS environment
has been considered to be one of the most challenging case especially in the indoor localization tasks as it is a type
of scenario expected in many real-world applications. How to address the mobile targets/agents is also a focus
of recent studies for some localization tasks such as trajectory monitoring or prediction. Therefore, in Table 2,
we summarize those datasets which are (1) public available; (2) collected or generated in different environments,
especially under different wireless technologies; and (3) commonly used in other related research works. We also
include some of the newly published datasets to show more possibility of the data to be used in current or future
localization applications.
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Table 2. Datasets available for localization tasks.

Simulated Dataset . . . Related Research
Dataset Data/Measurements Size Signal Metric Signal Type Papers
JUIndoorLoc [14] Real world data 25,364 RSSI Wi-Fi [26]
UJIndoorLoc [27] Real world data 21,050 RSSI Wi-Fi [2,4,16,26,28-30]

RSSI, magnetic,

IPIN 2016 [31] Real world data 36,795 accelerometer., orientation Wi-Fi [30]
UTSIndoorLoc [4] Real world data 9494 RSSI Wi-Fi [4,30]
DSI [32] Real world data 1717 RSSI Wi-Fi [2]
UJI 2018 [33] Real world data 63,504 RSSI Wi-Fi [2,12]
COMPASS [34] Real world data 2310 RSSI Wi-Fi [2]
TAU [35] Real world data 1428 RSSI Wi-Fi [2]
TAU additional [36] Real world data 19,676 RSSI Wi-Fi [2]
TAU additional v2 [37] Real world data 4638 RSSI Wi-Fi [2,4]
Alhomayani 2020 [38] Real world data 12,000 RSRP and cell identity LTE [38]
Aranda 2020 [39] Real world data 10,737 RSSI BLE [39]
RSSI Wi-Fi [40]
Outfin [40] Real world data >100,000 RSS BLE [40]
RSRP LTE [40]
RadioLocSeer [3] Simulated data 7920 RSS maps Cellular [3]
RadioToASeer [3] Simulated data 7920 ToA maps Cellular [3]
Hoang 2019 [16] Real world data 365,000 RSSI Wi-Fi [41]
Comiter 2017 [42] Real world & simulated data 2184 AoA 5G [42]
Koutris 2022 [43] Simulated data 22,050 RSSI BLE [43]

Reference signal received power (RSRP); Time of arrival (ToA); Angle of arrival (AoA).

UlIndoorLoc [27] is one of the most commonly used datasets in wireless localization studies. It contains
measurements in 3 buildings and 4 to 5 floors for different indoor environments. It also involves multiple devices
and users in the data collection phase to add more variety. The authors of [27] extend their works in another
domain in [33] by taking measurements at the same set of locations for 15 months. This dataset provides an option
to test the robustness of DL-based localization methods against the signal variation in time domain, and also a
possibility to explore the potential temporal correlation among different localization parameters. Besides these,
UTSIndoorLoc [16] and IPIN2016 [31] include more data dimensions when building the datasets: the former one
consists of measurements in 16 floors in a building, which provides higher data resolution in vertical dimension
compared to most of the existing datasets. Ref. [31] collects other types of data, including geo-magnetic fingerprint
and inertial sensor data, along side with the received signal strength (RSS) to enable the usage of data fusion
techniques to enhance the localization accuracy. Datasets in [14,16,32,35-37] are also some of the fine-grained
datasets collected in indoor space such as universities or labs, and can be used to test the performance of localization
algorithms in different environments. In particular, the authors of [16,32,37] collect part of the data along some
designed routes, which offers the researchers the chances to explore the trajectory prediction functionality of their
DL-based models.

While most of the current available localization datasets are collected under Wi-Fi networks, [38—40, 43]
fill the gap by gathering measurements under LTE and BLE networks. In particular, both [39,40] also include
measurements in outdoor scenarios, which can help to test the performance of outdoor localization methods.
Moreover, although collecting real-world measurements to train and test the DL models seems to be the trend of
most current studies, generating synthetic wireless data is always a potential option to save the data collection efforts
and to ensure the amount of data needed during the training phase, and it has started to gain the attention in some
of the recent research works. The authors of [3,42,43] simulate the wireless signal propagation environments via
software implementation, and create the signal datasets in the predefined localization scenarios. The localization
performances in the corresponding space are validated in their studies as well.

2.2. Data Preprocessing Methods

Learning directly from the raw signal data is generally challenging in a localization task due to several reasons:
first of all, not all recorded values necessarily contain useful or even meaningful information during the data
collection phase. When collecting a data sample or fingerprint for one location, a typical process is to record the
signal data sent from a set of APs. However, usually only the signal sent from neighboring APs can be received.
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Others can suffer from the pathloss, NLOS effect, or even interference in the environments, which usually leads to
missing values or extremely low values in the measured data sample. In fact, these kind of data points can be the
majority of each collected data sample, which can seriously slow down the convergence of the learning process.
Secondly, the values of the input data for DL models are generally need to be bounded in some certain range, usually
in [0, 1], in order to prevent training from diverging. Moreover, techniques like filtering, data transformation or
augmentation can be effective to reveal the essential features in some certain scenarios. In this section, we aim to
summarize those data preprocessing techniques that are applied in the recent works. Note that even though various
of preprocessing methods are being used, there is no clear trend showing any of the methods outperforms the others
in terms of localization performance. Therefore, here we include the methods, the types of data being processed,
and the corresponding usage scenario to provide a reference for future studies, as shown in Tables 3 and 4.

Table 3. Data preprocessing methods for localization tasks.

. Data Related
Data Type Preprocessing Methods Format  Research Papers
RSSI into greyscale images. Image [12]
RSSIori inal — 1%SSImin
RSSI ized = E Vector 11,12,15,44
normalized RSSImax — RSSImm [ ]
11—«
RSS ized =+ ———————(RSS — RSSp; Vector 11
normalized RSSmax — Rssmin ( mm) [11]
1
A moving filter: RSS), = W Zjvigl RSSi+j Vector [5]
RSS; + 100
RS, = oo H 10D Vector [28]
max(RSS) + 100
Fill missing entries with —100 dBm Vector [26]
0, RSS; is None
RSSI/RSS Powed = ¢ 'RSS; — min 4 . Vector [4]
(———————)P, otherwise
—min
Average over all samples for each AP at different reference point. Vector [41]
Standarized RSSI to zero means, and convert it to AoA:
PA
1.6 = cos™ 1 (—— 43
(27rd) Vector [43]
RSSILop — RSSI
2.d=10 10n
Add a random number to each RSSI value according to their mean. Vector [45]
Convert to 2D greyscale images. Image [3]
1. Set unmeasured values to minimum minus 1.
Vector 2]
2. Add the unmeasured values to all samples.
1 _ -
AoA AoA; = W Zjﬂio 1 AoAi Vector [51
ToA Min-max normalization Vector [15]
TDoA Min-max normalization Vector [15]
Normalize to value of [0,1] Vector [46]
. . . L . Vector
Convert into time-domain CIR using inverse Fourier Transform. Keep the first channel and (5]
tap. Then convert the CIR back to CSI using Fourier Transform. image !
1. Transform CSI into polar coordinates.
A R 27 Vector [47]
CSI 2. Phase calibration for measured 0: (L, n) = 0(L,n) + ™ 52z
FFT
2D Fourier Transform, and convert into 2D cartesion domain. Image [9]
1. Convert frequency domain CSI to delay domain.
2. Computing autocorrelation matrix of the matrix got in previous step. Vector [48]
3. Vectorize and normalize the autocrrelation matrix.
RTT Normalize to be in range of [0, 1] Vector [49]
CFR Flatten raw CFR data into 2D images. Image [1]
FP amplitude Min-max normalization Vector [15]
Occurrence Min-max normalization Vector [15]

of saturation

Access point (AP); Time of arrival (ToA); Time difference of arrival (TDoA); Channel impulse response (CIR); Fast Fourier Transform (FFT);
Channel frequency response (CFR).
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Table 4. Location data preprocessing methods.

. Data Related
Data Type Preprocessing Methods Format Research Papers
d(L*,S™)
lon(S*) = lon(L*) — (lon(L*) —lon(R*)) —————
on(§) = lon(L*) — (lon(L") ~lon(R")) ;s
d(L*,S*
lat(S™) = lat(L*) — (lat(L™) — lat(R*))ﬁ
. ) ong(L*, ) Vector [44]
Longitude & latitude lon g = lonorigin — lonmin
nommatiee lonmax — lonmin
latorigin — latmin
latnormalized = lorigin 7 min
latmax — latmin
Subtract by mean Vector 2]
. X — Xmin .
2D coordinates Xnormalized = X —x for both x, y coordinates. Vector [11]
) C = sin(latA)sin(lat B) + cos(lat A)cos(lat B)cos(lonA — lonB)
Distance from longitude N/A [44]
& latitude arccos(C)m

distance = R
180

S*, is the sampling point location. L*, and R* is the reference point at the left and right end of the building.

Normalization is one of the most commonly used preprocessing techniques in DL-based localization. As
we mentioned earlier, it is necessary in most of the cases to shift the range of the signal data. Also, it can help to
increase the resolution of the received data to further highlight the essential measurement data points. Min-max
normalization is a typical choice and has been used in processing different types of data including Received Signal
Strength Indicator (RSSI) [4,11,12,44], time of arrival (ToA), time difference of arrival (TDoA), first path (FP)
amplitude, occurrence of saturation [15] and the location data (longitude and latitude) [1 1,44]. It is also deployed as
the first step before any further data processing [12]. Some of the variants of min-max normalization have also been
developed. In [11], a predefined factor « is introduced to normalize the non-zero signal strength into the range of
[, 1]. Song et al. transform the raw RSS data into a powed form to increase the localization performance [4]. Powed
or even exponential representations of RSS data are considered to be more informative than other representations like
positive representation and zero-to-one normalization [4,50]. Computations in the powed transformation introduce
the non-linearity into the relation between the RSS values and the distance. In this way, the RSS values received at
close range can be more distinguishable than the ones received at long distance. Since the signal received from
the longer range is more likely to be fluctuated and can include higher randomness, it is considered to be less
informative. Thus the powed representation can focus more on the RSS values from closer distance. In addition,
another advantage of introducing this non-linearity is that, the variation of RSS values is more noticeable when the
RSS values are high comparing to the values in a linear scale [50]. As the result, the RSS values can reflect more
detailed spatial information when the RSS values are large enough. Meanwhile, the variation of powed RSS values
at lower range becomes negligible, and hence can prevent the randomness from jeopardizing the learning of DL
models. These provide an intuition on why some RSS representations like powed representations outperform other
linear representations in localization tasks. In fact, the min-max normalization can be considered as a combination
of positive and zero-to-one normalized representations, and thus still maintains the linearity from the raw RSS
data. The readers can refer to the analysis in [50] for more details regarding different distance functions and data
representations used in localization problems.

Besides shifting the range of the data, how to compensate the missing or unmeasured data points has also been
studied in the recent works. For the RSSI data, the value of each valid data point usually can varies from —150 to
0 dBm, while the bounds can be slightly different in different application scenarios. In [26], all the missed data
points are filled with —110 dBm, while the range of the RSSI measurements is [—100, —11] dBm, to be distinct
from the minimum value. A similar approach is mentioned in [2]. On the other hand, the undetected values are set
to 0 in [4]. The authors in [28] simply add 100 to all signal strength values before normalization to compensate all
the negative-value entries.

Preprocessing of channel state information (CSI) tends to be more complex as it generally involves data
transformation in different domains to eliminate the interference or errors occurring during signal transmission. It is
also considered to be a necessary step for DL-based methods because raw CSI data can be affected by various factors
such as channel conditions or hardware imperfection, which brings more challenges to the learning process [48].
Ref. [5] designs a three-steps filtering and phase calibration process to remove interference from other Wi-Fi APs
and mitigate the effect of multipath fading. In [48], the frequency-domain CSI is transformed into delay-domain
via discrete Fourier Transform (DFT). Then the autocorrelation matrix is calculated to alleviate the effect caused
by synchronization errors, carrier frequency offset or phase noise. Finally, the preprocessing process finishes with
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a real-valued decomposition and normalization to serve as the needs of DL models. The authors further enhance
the localization performance by combining consecutive CSI features and CSI probability maps in time domain to
track the movement of target. With all these preprocessing steps, the proposed method in [48] is able to achieve
sub-meter-level mean distance error in both LOS and NLOS scenarios. The collected CSI data is transformed into
polar coordinates in [47] to enable further phase calibration step in order to remove the random jitter and noise
caused by hardware malfunction. Noise reduction is another crucial step in processing raw CSI data to improve
localization performance. Filtering has been proven to be an effective and common strategy in noise reduction and
outlier removing. In [51], Kalman filtering is integrated with a Gaussian Mixture Model (GMM) to reduce the noise
in the CSI data. The authors in [52] applied Hampel filter and wavelet filter in order to eliminate data outliers and
reduce noise. Besides filtering, [53] proposed a KNN-based algorithm to for removing significant data outliers. The
studies presented in [54] implemented a noise and dimension reduction approach where polynomial regression is
applied for noise filtering.

Transforming the raw data into images is another direction of data preprocessing which can compose 2D radio
map to better reveal the spatial features. This type of approaches also allows the utilization of those compelling
image processing algorithms in DL to further exploit the location information from the data. Chen et al. [12]
convert the normalized RSS matrix into a greyscale image, in which the signal strength received at the reference
point is encoded in the pixel color, thus indicating the distance between the reference point and surrounding APs
and represent the location information of a coordinate. Yapar et al. [3] incorporates the greyscale images and the
black-white images which depict the environment layouts and base station locations as the input features of their DL
model. In [1], the raw channel frequency response (CFR) data is transformed into an image for each antenna pair
in multiple-input and multiple-output (MIMO) system to highlight the angle of arrival (AoA) information which
is closely related to the positional information. The authors in [9] build a 2D heatmap using the AoA and time of
flight (ToF) information extracted from the raw CSI data to alleviate the randomness on the CSI data caused by the
environmental changes.

In addition to these, the authors of [43] transform the RSSI data to AoA to enable the usage of the built-in
BLE direction finding function for localization. When processing the RSSI data, they also propose a method which
eliminating the absolute phase value, but keeping only the values of relative phase difference to the first antenna, in
order to improve the AoA estimation and also reduce the dimension of input data. Averaging the RSSI samples is
another approach to reduce the small-scale fading effect in the raw measurement [3, 12,4 1]. Moreover, normalization
and transformation of the location information is also crucial in training the DL model. Table 4 includes a few of
the methods used in the existed studies, including how to calculate the distance between different nodes according
to their measured longitude and latitude data.

2.3. DL Algorithms

Since DL algorithms demonstrated the power in image classification few years ago, they have been widely
adopted in many other applications including localization. The stacked multi-layer architecture enables models like
neural network (NN) or convolutional neural network (CNN) to extract the characteristics from wireless signal data.
The mapping from an input data to a location is learned through a data-driven process to increase the robustness
of the location algorithms. This learning process also makes the location estimator more adaptive to the signal
variations or changes of environments because the DL model can be updated with additional data. Compare to
traditional range-based or range-free localization methods, DL. model does not rely on hand-crafted features or
prior assumptions of statistical signal modeling [5]. In this section, we focus at each type of algorithms used for
localization and how these are implemented and adopted in different scenarios, and especially what types of input
data is processed as shown in Table 5.

2.3.1. DNN

Deep neural network (DNN) is an extension of NN model used to capture more complex features by stacking
more layers. It has been demonstrated to be an effective solution in processing various localization data and is one of
the commonly used DL algorithms in this area. Refs. [11,29,46] all develop a six-layer DNN architecture to estimate
the coordinate from signal data directly. Various DNN-based localization models are also considered to improve the
localization performance or provide additional functionalities. The authors in [44] propose a two-stage DNN model
to achieve both floor classification and coordinate estimation. DNN with different number of layers are implemented
in [5] for different indoor room settings and input data types. Lu et al. train the DNN with six different types of input
data and combine the outputs of six classifier to improve the localization accuracy [15]. Comiter et al. integrate multiple
multi-layer perception (MLP) architectures together to process the phase information measured at different base stations
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and combine them to produce the final location estimation [42]. Similarly, [43] design a hierarchical MLP model to
fuse the data collected on multiple channels. Unlike conventional DNN-based localization algorithms which predict the
coordinate of the location, the authors of [41,48] modify the DNN models to produce the distribution of data sample at
each reference point in the environments, and then to infer the location information based on that.

Table 5. DL algorithms for localization tasks.

Algorithm Input Data System Type Related Research Paper
AoA 5G, Wi-Fi [5,42]
CSI Wi-Fi [5,46,48]
RSSI 5G, Wi-Fi, BLE, UWB, [11,15,29,41,43-45]
DNN ToF 5G [29]
I/Q data BLE [43]
ToA UWB [15]
TDoA UWB [15]
CIR UWB [15]
RSSI Wi-Fi, cellular, BLE [2,4,5,12,38,45]
CSI Wi-Fi, 5G [5,47,55]
CFR 5G [1]
CNN Magnetic field and intertial sensor data Wi-Fi [38]
CSI Wi-Fi [5]
ToA UWB [56]
RSSI Wi-Fi [16]
RSS Wi-Fi [4,28]
Autoencoder AoA and ToF Wi-Fi [9]
RSRP LTE [38]
DRL RSSI Wi-Fi [30]
GAN CSI Wi-Fi [571

In-phase and quadrature: (I/Q); Generative adversarial network (GAN).

2.3.2. CNN

CNN is another type of multi-layer DL architecture. Comparing to DNN, it has the advantage of capturing the
correlation between the neighboring input features of the same layer. Being the backbone of many existing image
processing algorithms, CNN is a natural choice to handle the localization data that can be transformed into an image
form. The authors of [12] implement a CNN-based model to predict location from the grayscale image transformed
from RSSI data. Gao et al. propose a CNN architecture to capture the signal behavior in adjacent channels from
CFR images [1]. In addition to image, CNN is also suitable for processing the data in 2D matrix. In [47,55], a
CNN-based model is designed to estimate location information from 2D CSI matrix. Although primarily used for
image processing, CNN has also proven to be effective in dealing with sequence data in wireless communications
issues, including wireless localization. 1D-CNN layers are implemented in [2,4] to predict the location coordinate
from a RSSI vector. Wisanmongkol et al. develop both 1D and 2D-CNN-based models and compare the localization
performance under different scenarios.

2.3.3. RNN

Recurrent neural network (RNN) is usually considered to be a better fit to process wireless signals, because it has
the advantage of capturing the sequential correlation of the data. This property also makes RNN a suitable solution in
predicting the location based on time-dependent measurements. In [56], RNN-based algorithms are trained to predict
the trajectory of the moving targets. Hoang et al. propose five different RNN models to support input and output in
different length in order to achieve both location and trajectory prediction [16]. The authors of [5] also implement both
single-layer and multi-layer LSTM models to estimate the location information from CSI data.

2.3.4. Autoencoder

Unlike previously discussed algorithms, autoencoder (AE) is trained with an unsupervised way in which the
target of training is usually the data itself or a transform of it. The goal of autoencoder is to compress the original
input data into a latent representation which contains enough information to reconstruct the target one. In [4], the
AE architecture is used as a feature extractor to capture the fingerprint characteristics. These information are feeded
into a CNN or DNN model to finish the location estimation. In addition, adding random noise to the input data
is a common technique in implementing AE to force the model learning the essential feature from the corrupted
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data. This idea is adopted in [28] to further enhance the localization performance. The authors of [9] propose a
AE with one encoder and two decoder, while one decoder is trained to reconstruct the heatmap for the surrounding
environments, and the other one to the image revealing the location information.

2.3.5. Others

With the revolution of DL algorithms, more and more advancing models have also been developed for
localization purposes. For example, Ref. [30] models the localization problem into a Markov decision process,
and implement a deep reinforcement learning (DRL)-based algorithm to tackle the 3D localization problem. The
authors of [57] utilize the generative adversary network (GAN) to generate CSI data to support the training of the
localization model.

2.4. Wireless Localization Simulators

While many of the localization studies choose to collect the data though wireless communications devices in a
real-world space, simulating the signal transmission environments to gather the data is still a common approach,
especially when implementing DL-based localization algorithms. A sophisticated simulator provides the freedom of
emulating the signal propagation in an arbitrary or dedicated environment. It also offers the amount and variety
of the data in order to develop the DL models. Using a software platform allows to manipulate the settings or
parameters of a wireless communications system to generate the signal data in different scenarios. It can also save
the effort in data collection and ensure that the DL model is trained and tested with sufficient amount of data. In
Table 6, we list the simulators that are able to model the localization scenarios in different wireless standards.

Table 6. Simulators for localization tasks.

Source Software

Article Signal Type Platform Remarks
[42] 5G Python Support both 2D and 3D simulation
[58] 5G Matlab CSlI-based localization
[59] Cellular and Wi-Fi Python Enable simulating signal propagation and designing of the environments; include an interactive interface.
[60] BLE Matlab BLE direction finding; support both 2D and 3D localization.
[61] UWB Matlab UWB localization using TDoA.
[62] BLE Matlab AoA and AoD based direction finding.
[63] LTE Matlab TDoA-based localization.
[64] Wi-Fi Matlab ToA-based localization.
[65] ZigBee and UWB Matlab N/A
[66] 5G Matlab TDoA-based localization.
[67] Wi-Fi Matlab CSl-based localization.

Winprop [59] is a software used to simulate the signal propagation in various environments. It enables the
designing of a propagation space and thus can help to create a detailed localization scenario. It also includes
modules to support the planning under heterogeneous wireless standards such as Wi-Fi, LTE, and 5G. As one of the
most commonly used software platform in wireless communications, Matlab also provides various of toolbox for
localization studies in those commonly deployed wireless standards, including Wi-Fi [64,67], LTE [63], 5G [66],
ultra-wideband (UWB) [61], BLE [60,62] and ZigBee [65]. The authors in [58] develop a CSI-based localization
platform using Matlab, which support both sub-6GHz and millimeter wave (mmWave) operating behavior. Moreover,
Comiter et al. [42] build a simulator using Python to model the 5G communication environments and can generate
ToF and AoA data for localization tasks.

3. Localization Using Wi-Fi Systems

Implementing a localization system under the Wi-Fi networks is one of the most popular choices, especially
for the indoor localization applications. The localization functionality can be implemented in the existing Wi-Fi
infrastructures and devices to save the deployment cost. On the other hand, the localization performance is affected
by various factors including the NLOS and multipath effect, fading, signal fluctuation, moving target or objects,
and environmental variations, etc. [4,30,31]. Existing research and studies focus on improving the localization
accuracy by mitigating the effect brought by these challenges in the current Wi-Fi localization system. In this
section, we summarize how DL algorithms are applied in Wi-Fi-based localization tasks to handle those challenges.
In particular, we compare the works according the types of localization data used as the input, including RSSI,
round trip time (RTT), CSI, and AoA as listed in Table 7. Different wireless data reveal the location information in
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different ways and they all have their own advantages and shortcomings in a specific localization scenarios.

Table 7. Summary of Wi-Fi based localization.

Data Data DL Algorithm How DL Is Used Dataset Performance Remarks So“.rce
Format Representation Article
Learning based For JUIndoorLoc, 80% of error
RSSI, mean and method (BayesNet, Fingerprint based using JUlndoorLoc “““{4 Bay est: tand KNN are.w1.thm Weighted ensemble
. and UlJIn- 5 m; 80% of the error are within 3 © e [26]
variance SVM, KNN RSSI N » approaches
4 K*) doorLoc m using SVM, and 80% of the
an error are within 3.6 m using K*.
1. For UJIndoorLoc, 94.6%
DNN and stacked accuracy in floor recognition, and
RSS, denoising Feature extraction and UJ:SS?Z;II‘OC 2 a;zzzti?f?fjlllt;?;‘:ezrfi?xz;:iestA229 lr;‘;m Static and dynamic 28]
fingerprinting auto-encoder, denoising using RSSI . i L. Lo trajectory estimation -
robabilistic model world data average position error in fiynan_nc
P i positioning, and 1.22 m in static
positioning.
CNN and support Fingerprint based usin 85% of the error are within 3.46 m,
Images of RSS vector regression gerp RSSI 2 UJT’s library and 65% of the error are within N/A [12]
(SVR) 2.45m.
Multi-floor: 1. In UJIndoorLoc,
IPIN2016 75% of the error are within 0.188 Include all single floor
Dynamic decision UTSIndoc;’- m; 2. In UTS, 80% of the error are and multifloor
RSSI Deep reinforcement mali/in OCess usin Loc within 0.219 m. performance; [30]
learning & Process using Ulndeor Single floor: 1. In IPIN, 75% of UTSIndoor covered 16
Loc the error are within 1.97 m; 2. In floors including 3
o¢ UL, 75% of the error are within basement levels.
0.197 m.
Fingerprint based
RSSI/RSS ENN. 1D-CNN. regression and 1. In closed-room, average position
RSS, AoA, CSI 2D-£ZNN and ’ classification; Real world error is 1.86 m. Ensemble of different 5]
and hybrid LSTM range-based using RSS data 2. In corridor, average position error data format.
and AoA, range-free is 3.18 m.
using RSS and CSI
fingerprint based using Real world 1. Wi-FI only: 0.19-0.44 m. Consider Wi-Fi and
RSS DNN RSSI data 2. Cellular + Wi-Fi: 0.17-0.41 m. cellular L4l
1. For self-collected dataset, 75% Consider different # of
RSS DNN Fingerprint based using Real world of the error are within 1.82-2.69 m. APs, and RPs, also [41]
RSSI data 2. For dataset in [16], 75% of the different # of RSS
error are within 1.03-1.39 m. samples.
RSSI RNN N/A Rea(]i:lv:rld 80% of the errors are within 1 m. Trajectory position [16]
RSS CNN and transfer Fingerprint based using Real world Mean error varies from 1.82 m to Training using 15 2l
learning RSSI data 29.352 m in different dataset. ‘Wi-Fi RSS datasets -
1. For UTSIndoorLoc, 94.57% in
floor recognition with a mean error
of 7.6 m.
Real world 2. For UllIndoorLoc, 96.03% in
RSS CNN N/A data floor recognition with a mean error Dataset available [4]
of 11.78 m.
3. For Tampere, 94.22% in floor
recognition with a mean error of
10.88 m.
) Deep learning and - vernrint hac oo ’ Synchronization not
RTT Tol;“;idn:ilrg(;um probabilistic Flnéerprlxﬁ%n;sed using Redcllavtv:rld Median error < 0.75 m required, impact of AP [49]
P location estimator density
. . . Consider relocated
2D heatmap of Autoencoder Fingerprint based using Simulator Med:s:;zzu;?r?; 0‘: 6‘5“::‘:2' 9nl om furniture and 1]
AoA and ToF u CSI and real data s Torin u W reflectors, different
environment, .
bandwidth
Logistic regression
: . and DL, also . . .
CS;;]ng::eude computational Fmgerprmct; Ia sed using Reaé;v:rld Median error 0.97 m N/A [68]
phas methods to increase
robustness.
CS:;S“;E:S‘;"“* N/A F‘“ge”’"‘gé’;‘sed using Re"‘éa”::”d Median error 0.972 m N/A [47]
csI DNN F‘“ger”"“éé’f“" using Re“éa”tv:”" 70% of the error are under 1.7 m. N/A [46]
CSI
Fingerprint based
i d
FNN, ID-CNN, Fegression and
RSS, AoA,4CSI 2D-CNN, and clasgﬁcal{on, Real world RMSE~2m. N/A 5]
and hybrid range-based using RSS data
LSTM
and AoA, range-free
using RSS and CSI
Consider distance
between Aps that
GAN for data affecting the
csI generation, Fingerprint based using Real world 90% of the positioning errors are correlation of CSL. [57]
1D-CNN-LSTM for CSI data within 1.43 m. Consider mixing both :
learning simulated and
real-world data in
training.
Fingerprint based
ENN, 1D-CNN regression and 1. In closed-room, average position
AoA RSS, AoA, CSI 2D-éNN and ’ classification; Real world error is 1.86 m. Ensemble of different 151
and hybrid LSTM range-based using RSS data 2. In corridor, average position error data format. g

and AoA, range-free
using RSS and CSI

is 3.18 m.

Support vector machine (SVM); K nearest neighbor (KNN); K* is an instance-based learner using an entropic distance measure; Indoor
positioning and indoor navigation (IPIN); Reference points (RPs); Forward neural network (FNN); Root mean square error (RMSE); Long
short-term memory (LSTM).
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3.1. RSSI

RSSI is one of the most easily obtained localization data. It can be used to estimate the distance information
to neighboring APs or construct radio map to reveal the location of the reference point in the space. The general
work flow of a RSSI-based localization system is depicted in Figure 3. However, RSSI can be largely affected
by interference signal or any signal fluctuation caused by other factors such as hardware imperfection [14]. Also,
obstacles and multi-path effect are also the reason that the collect RSSI data cannot accurately represent the
location information [69]. Therefore, existing studies attempt to resolve the related issues from different aspects.
As highlighted in Figure 3, the DL algorithms can be applied in the feature extraction process to enhance the
spatial information hidden in the raw RSSI data, as well as in the location prediction domain to further explore
the correlation between the extracted RSSI fingerprint and the location information. The authors in [28] adopt a
stacked-denoising autoencoder structure to improve the feature extraction from RSSI fingerprint. A constrained
Kalman filter and hidden Markov model are implemented to alleviate the RSSI fluctuation and uncertainty due
to the movement of the user that are being localized. Chen et al. focus on improving the runtime efficiency of
the CNN-based localization model to fit need of real-time localization. Dou et al. model the localization process
as a sequential decision making process using Markov decision process (MDP), and train a DRL algorithm to
enable it perform the localization operation through searching the space, and thus accommodating the environmental
variations on the RSSI data [30]. The authors in [5] combine the multiple DL-based model trained with different
types of data, including RSSI, to fit the localization tasks in different indoor space. Similarly, Zhang et al. [44]
implements one DNN model for floor-level classificaiton followed by three different DNN models for coordinate
estimation in three different floors. In order to resolve the ambiguity of RSSI data, Hoang et al. propose a RNN-
based algorithm that combines RSSI measurements in sequential locations to enhance the localization accuracy [16].
State-based modeling is also considered in [41] to predict the location of user from the preceding positions, and
thus enable the localization of moving target or trajectory prediction. The DNN model in this work is trained to
capture the distribution of RSS measurements at each reference points rather than learning the mapping from the
signal strength to the coordinates directly, in order to denoise the RSS data. The localization efficiency in terms
of the length of RSS samples used as the input of the model is also studied in [41]. Klus et al. pretrain the model
with 15 RSSI localization datasets to improve the adaptivity to different environments. The proposed model is then
fine-tuned with individual dataset for location estimation in the corresponding indoor space [2]. In addition, the
authors of [4] integrate an AE and 1D-CNN architecture to help extracting features from RSSI data suffering from
noise and multi-path effect.

Data Feature

. . DL model
preprocessing extraction

Raw RSS Processed RSS RSS features Location

data data estimation

Normalization,

. Al-based approach
filtering,

Non-Al based approach

Figure 3. A RSS-based localization system using DL
3.2. RTT

In order to overcome the shortcomings of using RSSI, time-based data has also been studied for localization
tasks, including round trip time (RTT). RTT-based methods log the time which the localization signal takes to travel
between the target and the APs, and infer the distance information accordingly. In this way, the data suffers less
from the fluctuation or attenuation of the wireless signal, and experience less affect by environmental changes like
multi-path interference. However, this type of method has its own shortcomings. The RTT measurement generally
requires accurate synchronization between multiple devices [58]. Thus, synchronization errors will unavoidably
introduce errors in the localization step. In [49], the authors proposed a DL-based system without requiring a
synchronization block, and is able to mitigate the effect of environmental variation or interference.

3.3. CSI

Channel state information (CSI) is another representation of wireless signals which includes frequency-domain
information and also contains signal information in multiple channels. Therefore, it is usually considered to have
a more complete location profile than RSSI data and is also a more stable representation [46,57]. Meanwhile, as
summarized in Figure 4, raw CSI data generally requires additional transformation or preprocessing steps in order
to reveal the spatial information, and reduce the interference or errors on the raw data. Similar to RSSI-based
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methods, related works in CSI-based localization also focus on utilizing DL algorithms in two stages: first, in
the CSI feature construction stage to translate the raw CSI data into proper format which contains more spatial
information; and second in the location prediction stage to improve the accuracy and robustness. In [9], the authors
use 2D FFT to extract AoA and ToF information from raw CSI measurements, which is then trained to reveal both
the target location and the surrounding environmental information. The authors of Refs. [47,68] focus on enhancing
the robustness of CSI-based localization system by adding a perturbation to the training dataset. Wisanmongkol
et al. transform the CSI into different dimension to fit different DL algorithms for performance comparison [5].
Zhang et al. [57] concatenates LSTM and CNN architectures to capture both spatial and temporal information from
CSI data. On the other hand, collecting CSI data usually requires specialized hardware and the raw data often needs
several preprocessing steps before analyzing the location information [41,49]. Therefore, CSI-based localization
methods can be time consuming and with a large computation overhead. Improving the efficiency of processing the
CSI data is also a focus of some of the current studies [46].

Data Feature
transformation construction DL model

P dcsl i
Raw CSl data rocesse Csl features chathn
data estimation
Calibration, Al-based approach
normalization, Non-Al based approach
filtering,

Figure 4. A CSI-based localization system using DL

4. Localization Using Cellular Systems

Cellular signal-based localization system is another promising solution to the various applications. It can utilize
the existing cellular-service infrastructures and mobile devices. Most importantly, it can provide wider coverage
than Wi-Fi based systems especially in outdoor and urban environments. With the advancing and deployment of 5G
networks, the technologies such as mmWave and massive multi-input multi-output (massive MIMO) enable the data
capturing in a higher resolution to provide more accurate (e.g., centimeter level) localization service [42,70-72].

On the other hand, localization in 5G networks can also be affected by some of the environmental factors
such as NLOS [73,74]. Current studies approach and resolve these challenge by adopting DL-based algorithms.
In this section, we summarized the existing related research works in Table 8 from both the data and algorithm
perspective, while also highlight the application scenarios and performance achieved by each of the studies. The
authors of [73] propose a NN and random-forest based algorithm to localize a moving target in urban area, where
NLOS condition frequently occurs. Yapar et al. [3] integrates the location information of the base stations (BS), the
estimated radio map of the area, together with the RSS data to provide a location estimation in a simulated urban
area. Comiter et al. develop a DNN-based method for localization in both indoor and outdoor area. The proposed
method is able to handle the potential collinearity problem when collecting angle information from multiple BS
which are aligned in a straight line, and also the multi-path effect in the indoor environments. Gao et al. develop a
CFR data-generation scheme and the preprocessing methods to capture the features from a multi-antenna setup,
as well as improve the robustness of the algorithm [1]. In [44], the authors implement a localization algorithm
which is trained using the data collected in Wi-Fi, cellular networks, and the fusion of both, and then compare the
performance of different setups. Moreover, Arnold et al. [75] aims at improve the indoor localization performance
in both LOS and NLOS indoor scenarios, and demonstrates that their proposed methods can achieve sub-meter level
accuracy in both circumstances.

Efficiency is another main concerns in localization tasks in cellular networks, especially when DL-based
methods are deployed. The data collection process is usually time and labor consuming. Also, it is necessary and
challenging to ensure that the collected data completely represent the complexity of the environment, especially
in indoor space. Therefore, many research and studies focus on approaching the localization problem from this
direction. Both the authors of Refs. [76,77] consider cooperating a GAN architecture with the localization model.
The GAN-based model can be trained to generate artificial radio map or fingerprint to reduce the amount of real
world measurements needed during the training of the localization model. Experiments also indicate that including
both real and synthetic data in training can further improve the localization accuracy. Tarekegn et al. [77] further
validates that only a relative small amount of real data can be sufficient to provide a reasonable localization accuracy,
and thus the data collection and environment survey efforts can be largely reduced. Localization efficiency in terms
of latency and the number of training data is also investigated in [42]. Currently, DL-based localization method is
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still being explored and is becoming a potentially important part of the future high-precision localization service [78]
in cellular networks. In addition, using the ray-tracing tools and software are also shown to be effective in modeling
the cellular networks and environments to simplified the data collection process [79,80].

Table 8. Summary of cellular system based localization.

Data . Signal DL Source
Format Data Representation Type Algorithm Dataset 2D/3D Performance Remarks Article
-~ MAE varies from 4.8 m to W P
RSS and ToA Wi-Fi DNN Simulated data D 19.6 m in different Use Winprop to simulate 5]
cellular N signal propagation.
environment.
1. Cellular only: mean
Wi-Fi Real world 2D + floor error is 3.7-4.3 m. " S ;
RSS cellular DNN data identification 2. Cellular + Wi-Fi: Consider Wi-Fi + cellular. L4l
0.17-0.41 m.
Beam reference signal Neural
received power (BRSRP) network and 80% of the error are 7
. and distance of 56 random N/A 2D within 10 m. N/A (731
Signal departure (DoD) forest
strength
Real world 1. Indoor: margin error
RSSI LTE GAN data and oD within 0.4 m . ) Use srsLTE to simulate [76]
- 2. Outdoor: margin error LTE network.
simulated data i
within 10 m.
Real world Mean distance error: Combine both synthetic
RSS Wi-Fi GAN and data and oD 0.47 m. radio map generated by 771
cellular LSTM - . 88.95% of the error are GAN and real world data
simulated data P A L
within 1 m. in training.
RSRP 5G DNN and Simulated data 3D Mean distance error 1.4 m. B‘?']d 1'ay-trac1ng model [79]
decision tree using WinProp.
1. When using only real
data in training, median
squared error varies from
Both synthetic 0.74mto 1.2 m. Consider training using
AoA AoA 5G DNN data and real 2D 2. When using both real synthetic data or measured [42]
world data and synthetic data in data.
training, median squared
error varies from 0.33 m to
0.76 m.
-~ Simulated MAE varies from 4.8 m to W T
ToA RSS and ToA WiFi DNN data/available N/A 19.6 m in different Use Winprop to simulate 3]
cellular . ) . signal propagation.
software environment.
1. In indoor scenario,
90% of the error are
. Real world within 0.51 m.
CFR CFR image 5G DNN data 3D 2. Tn urban canyon, 90% N/A [11
of the error are within
0.36 m.
Real world Mean distance error
Raw CSI data 5G CNN dat 3D ~0.75 m in LOS; N/A [75]
ata ~0.95 m in NLOS.
CSI
. . . Build ray-tracing
AoA, delay, received 6G LSTM Simulated data 3D Mean distance error: simulation model using [81]

power and ToA 0.27 m in NLOS

Wireless InSite

Mean absolute error (MAE).

Moreover, it is envisioned that the developing of future 6G communications is targeting at bringing the
wireless localization service into a next level. While featuring with technologies like THz communications and
extremely-large scale multiple-input multiple-output (XL-MIMO), 6G network is expected to enable the deployed
localization service to deliver lower-latency and sub-centimeter level precision performance because of its advantages
such as high-speed data transmission or accurate beamforming [82,83]. Furthermore, the massive connectivity
provided by the 6G communications can potentially catalyze the support the joint communications and sensing
(JCAS) framework. With this widely deployed and coordinated network infrastructure, the scale and performance
of localization service can be further enhanced to support various of next generation applications such as UAV
surveillance, precision agriculture and traffic monitoring [84].

On the other hand, those advancing technologies in 6G communications also introduce challenges to localiza-
tion performance. THz communications can lead to less robustness of localization in NLOS scenarios and will suffer
more severe multipath effects. In addition, the channel characteristics of each antenna on a XL-MIMO system can
have a high variance due to its location or orientation, thus cause the challenge on high-precision localization [82].
Recent research and studies have started to focus on resolving these issues by using DL algorithms. In [85], an
attention-based network was proposed to alleviate the NLOS and multipath effects from the CSI data in a MIMO
system. The authors in [82] adopted a CNN-based architecture to address the spatial non-stationarity and for
noise reduction. The proposed method is also shown to be effective in revealing the spatial information to provide
accurate location estimation. Moreover, Pan et al. develop a foundation model for localization in [86]. They further
demonstrate that the knowledge from that large foundation model can be transferred into a lightweight model to
perform localization service in single or across multiple device or infrastructures. Nevertheless, the utilization of
DL algorithms on localization in 6G networks is still far from being fully investigated. But the integration of DL

https://doi.org/10.53941/aieng.2026.100001 14 of 23


https://doi.org/10.53941/aieng.2026.100001

Xia et al. Al Eng. 2026, 2(1), 1
with localization application is undoubtedly one of the main direction in the future 6G networks.

5. Localization Using Other Wireless Systems

Localization based on other wireless standards besides Wi-Fi and cellular networks has also been investigated
to provide the service in different scenarios. UWB and BLE are the standards that are commonly deployed in
indoor and outdoor applications, and thus can be utilized to provide localization services with the deployed devices.
Besides, 1oT standards are also the viable choices. A system like radio frequency identification (RFID) or ZigBee
has the advantage in managing connections for sensors or devices, which is the foundation of the tracking or
monitoring applications [44,87]. On the other hand, those systems also have their constraints due to the unique
signal properties, which limit them from wide deployment as Wi-Fi or cellular systems [88]. In this section, we will
discuss about the advantages and drawbacks of UWB and BLE based localization methods. We also summarize
some of the features of existing studies in Table 9 for the comparison.

Table 9. Summary of UWB and BLE based Localization.

. Data DL Source
Environment Representation  Algorithm Dataset 2D/3D Performance Remarks Article
RSSI, ToA, 1. Indoor positioning with mean
TDoA, first LSTM and Real world D error of 0.02 m. Consider fusion of [15]
path amplitude, DNN data 2. Indoor tracking with mean different features. :
and CIR error of 0.08 m.
UWB Raw signal LSTM Simuated N/A Mean error of 0.07 m. N/A 156]
Real world Mean error varies from 0.113mto  Channel classification
CIR CNN data 2D +3D  0.65m depending on the number and ranging error [89]
of anchor nodes used. regression.
1. When the funiture is high,
mean error varies from 0.61 to Estimate anele from
RSSI and 1-Q DNN and Simulated D 1.03 m. RSST vale Use [43]
data CNN data 2. When the furniture is low, oo vatue. LS b
. WinProp.
mean error varies from 0.69 to
1.3 m.
BLE ResNet and Real world R -
RSSI DNN data 2D Positioning accuracy ~97%. N/A [45]
1. Mean distance error varies
CNN, Real world 2D + from 0.74 to 2.18 m across Use GAN to generate
RSS LSTM and data floor different Wi-Fi datasets/ synthetic data to improve [90]
GAN number 2. Mean distance error ~0.94 m performance.

in two BLE datasets.

Residual network (ResNet).

5.1. UWB

UWB based localization systems are able to achieve centimeter level accuracy because of its high data rate
and nanosecond-level resolution in time-domain measurements [15,91]. In addition, the property of having large
bandwidth helps to improve its immunity to multipath effect. However, the resulting weak signal penetration
becomes the reason why UWB-based localization suffers in NLOS environments [92]. The infrastructure and
hardware cost is another burden which stops UWB from being widely applied like Wi-Fi or cellular standard [5].
Existing research has focused on how to extend the usage of UWB for localization in NLOS environments while
maintaining a satisfactory level of performance. Poulose et al. [56] propose a multilayer LSTM-based method
to better capture the location information from the ToA data and improve the performance in NLOS scenarios.
The authors in [89] implement a CNN-based algorithm to exploit the location data from channel impulse response
(CIR), which is considered to be less suffering from the NLOS effect in the environment compared to conventional
time-based data. Lu et al. [15] integrate multiple DL-based models which are trained using different types of data to
enhance the localization accuracy. Despite of being able to provide high precision, UWB-based localization requires
dedicated devices or hardware components, which can greatly raise the cost of the deployment. Meanwhile, this will
also prevent the UWB-based localization from being widely used, as most of the common devices or infrastructures
do not have the corresponding function blocks embedded within [39].

5.2. BLE

BLE is usually used as a energy efficient wireless standard for short-distance communications. Bluetooth
signal characteristics largely limit its coverage area and usage in outdoor space [5]. The multi-path effect or fading
deteriorate the BLE signal more than they do to many other wireless signals such as UWB or Wi-Fi [43]. However,
it can still be utilized in many indoor scenarios, and enables more portable localization services. Koutris et al. [43]
proposes a CNN and DNN-based hierarchical architecture to fuse the data collected from different channels to
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improve the localization accuracy in the NLOS environments. The robustness of the proposed method is tested
under several simulated indoor environments where different number of furnitures are placed in the space to emulate
various levels of NLOS effect. Liu et al. [45] includes a ResNet architecture in the developed model to help the
feature extraction from BLE fingerprint. In [90], the authors design a GAN-based synthetic radio map generator to
cooperate with the localization model to further improve the localization accuracy. The model is forced to learn
the most relevant spatial information from the raw input fingerprint and then to generate an enriched version of
fingerprint to better serve for the localization process.

6. Challenges and Future Directions

Precision and time-efficiency are always the prime concerns in practical localization applications. While most
of the existed localization studies limit the error around 1-10 meters, sub-meter and even centimeter-level accuracy
are becoming the major pursue of some of the current research in order to satisfy the needs of future applications
such as IoT factory, IoT farm, robotics or drone monitoring and tracking [6,93]. Low run-time or latency is another
important challenge for providing real-time localization services. As for DL-based localization methods, quantity
and quality of training data, as well as the efficiency of data collection are the foundations of a localization system.
Therefore, in this section, we highlight some of the existing works which tackle the sub-meter level precision,
latency and data engineering issue through DL-based techniques.

6.1. Sub-Meter Level Localization

Traditional KNN or even DNN-based methods usually have limited ability to capture essential features from
signal data. Factors like small-scale fading, noise, or NLOS effect can largely deteriorate the signal measurement
and thus lead the location prediction away from the actual one. Adopting more advancing DL algorithms to
increase efficiency the feature extraction is one of the directions to approach sub-meter level precision. Dou et
al. [30] improves the precision by modeling the localization problem into a sequential searching process. The
search space is getting narrowed down during the bisection process and eventually converge to the final location.
Utilizing DRL-based algorithms enables the proposed method to update its location prediction accommodating
any environmental changes or signal fluctuation during the searching process. The authors in [42] construct a
structured MLP model with a unique loss function to overcome multi-path and fading effect to achieve sub-meter
level accuracy in both indoor and outdoor environment. Besides, CNN [1,57,68] and autoencoder-based algorithms
[46] are shown to be more powerful options comparing to traditional KNN or DNN-based approaches.

From the data point of view, CSI [46,48,57] or RTT-based [49] localization can potentially offer higher
precision, because of the advantage in containing richer environmental information, and being more resilient to
fading, multi-path effect, etc. For CSI data, developing feature engineering technique is another viable option to
further enhance the localization performance [48]. Moreover, data or feature fusion in different signal metrics [15],
channels or APs [43] or time-stamps [48] is also a potential design choice to enhance the robustness and resolve the
problem when processing data in single modality.

6.2. Latency

For localization methods using DL-based algorithms, the time consumption consists of three categories:
training time, run-time/test time, and data collection time. The run-time for localization methods attracts most of
the interest of related studies, because it measures the time that a method needs to execute and output a location
prediction, which is the one that mostly related to the time-efficiency of a localization application. In general,
the algorithm or model complexity, data dimension, and data-preprocessing step can all be the source of run-time
consumption. Early works like [12] achieves run time at 0.612 s in average with using CNN-based models to
process RSS images. Hashem et al. [49] improve the location estimation time to 0.085 s while offering sub-meter
level precision. The DNN-based methods proposed in [28] achieve the run-time consumption to around 0.01 s.
The authors in [30] develop a bisection method to partition the space more efficiently to reduce the computation
complexity. The time consumption can be reduced to 6-10 ms during the prediction stage for single-floor localization.
In [3], the location prediction can be finished in around 5 ms while processing the image-type input data. A recent
study in [41] achieves the run-time in as low as 31.1 ps maintaining the precision at around 1-2 m. In general,
optimizing the run-time performance usually needs to sacrifice the localization accuracy or other performance
metrics. Thus, how to determine the priority or to compensate the performance loss in either side should be taken
into account as well.

Model training is the most time consuming part when considering the latency issue in DL-based methods.
Large size-dataset and complex DL models or algorithms are usually effective in improving localization accuracy,
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but unavoidably extend the training time. Although the training process can be finished before deploying the service,
which eases the needs of improving training efficiency in many cases, reducing the time spent on training DL. model
can still be necessary when there is demand of updating the model frequently with real-time signal measurements.
Experiment and analysis on impact of the factors like size of LSTM units and batch size [57] or number of training
samples [41] can be a good way to examine the optimal design choice for DL algorithms or determine the trade-off
between the localization accuracy and time-efficiency or other concerns for a given application.

Besides, the time spent on collecting sufficient data to train or retrain the DL model is also a potential concern
especially in real-time localization applications. Minimizing the data collection time can be achieved by reducing
the number of data involved during the training process or the length of data samples for each received signal. If the
DL model can be trained or retrained with less amount of data, it can be updated more frequently to accommodate
any real-time environmental changes or signal fluctuation which impact the localization performance. Related
analyses have already been conducted in [41,49] regarding training with few or even single RSS data sample.
How to improve the data collection time efficiency while minimizing the localization precision still remains as a
challenge.

6.3. Data Engineering

While implementing DL-based localization system, gathering sufficient and informative training data is usually
a time and labor consuming process. This feature inevitably introduces excessive costs and leads to inefficiency in
real-time deployment. Starting from the last few years, the Gen-Al model has been developed as a powerful image
generation and data augmentation tool. The related algorithms and architectures soon become a promising solution
to address the aforementioned data related issues in localization. GAN and variation auto-encoder (VAE) are two of
the main generative architectures adopted in the related studies.

One of the major usage of Gen-Al models is to generate artificial signal data to satisfy the needs of training
a DL-based localization model. In [94,95], the GAN-based algorithms are proposed to generate artificial CSI
fingerprints to improve the localization accuracy. The GAN models implemented in [96,97] are utilized only to
generate artificial RSSI data, but also to predict the corresponding coordinates to enrich the training dataset. The
authors of [98] developed a GAN-based method to integrate the collected data and pre-defined ray-tracing signal
propagation model to generate more realistic synthetic RSS maps.

Another common challenge in wireless localization application is that, some measured signal data are missed
or polluted due to either the hardware malfunction or any moving objects blocking the signal propagation. This
issue can potentially cause larger error in some trajectory or object tracking applications. Gen Al model is also
considered to be a promising direction to approach this type of problem. In [99—-101], the authors all implement a
GAN-based model to recover the incomplete RSSI maps. A RNN model is further integrated in [99] to process the
time-dependent information in order to serve for a tracking application. The GAN model proposed in [77] is trained
not only to recover missed RSS samples, but also mitigating the effect of signal fluctuation, interference, and fading.

Gen Al models are also adopted to improve the data collection efficiency by reducing the amount of training
data needed. In general, localization application requires a sufficient amount and evenly distributed sensors or
reference points in the area to provide high precision and accurate location estimation. In [95], the authors aim at
alleviating this data collection efforts by reducing the number of reference points needed in the data collection phase.
They start with the data from a less amount and sparsely distributed reference points, and propose a GAN-based
approach that can interpolate or estimate the CSI values for those intermediate reference points. In this way a dense
radio map can be constructed by using the measurements from only a limited amount of reference points. Besides,
Chen et al. [102] also consider using GAN model to explore how to generalize the spatial information collected
from a small amount of labeled data to the set of unlabeled data, which can be collected any time during the actual
localization service deployment stage.

Moreover, both GAN and VAE models are investigated to improve the localization accuracy. In [76], the GAN
algorithm is implemented to improve both indoor and outdoor localization performance, and is able to achieve about
0.4 m-level of accuracy in indoor scenarios. The GAN-based method proposed in [103] can achieve 0.19 m-level of
accuracy in the testing dataset while maintaining a very low model storage usage at about 50 Kb, which makes the
localization service deployable at a mobile phone. In addition, the VAE is utilized as one of the most advancing and
compelling feature extractor to process wireless signal data, and is adopted in [104] to exploit the distribution of
RSSI data over the space.
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6.4. Generality to Devices and Environments

While DL algorithms have been widely adopted in wireless localization, these types of learning-based
methodologies can still be suffering when dealing with device and environment heterogeneity. Common DL-based
localization works are implemented based-on a dataset collected using certain types of devices like cellphone,
or in a particular environment such as a lab on campus. Although the DL models are trained and demonstrated
to be effective on the given dataset, deploying the same models for locating a different hardware or in a new
location while maintaining the same level of performance can be struggling, and thus become another major burden
in the related fields. Another important reason that makes transferring the model challenging is that, common
localization-related wireless data, including RSSI and CSI, can be heavily influenced by the device or environment
variation, respectively. While containing the spatial information of a given environment or space, these data are
too closely bonded with that some particular types of devices or a specific environment, which makes the models
trained based on them lost the generality to other ones.

Therefore, recent studies also start to focus on how to relieve these impact by accommodating various DL-
based designs or algorithms. In [105], the authors address the device heterogeneity issue by combing the ideas of
transfer learning and multi-task learning. They showed that, by transferring the trained model on a base dataset and
fine-tuning it with only a few RSS data samples from the new devices, the model can be adapted to locate the new
devices as well. Hao et al. [106] proposed an adversarial training strategy to alleviate the variance introduced by the
device heterogeneity. The studies in [107] focus on addressing the similar problem by designing a hybrid structure
incorporating multiple formats of fingerprint and integrating multiple classifiers.

Regarding the cross-domain localization problem, the authors in [108] developed a semi-supervised learning
framework and enabled the edge devices to work in a self-learning way to adopt environmental variations. The
concept of meta-learning is studied and investigated in [109] to improve the model’s adaptivity in a dynamic or
unseen environment, while minimizing the efforts needed on retraining the model. Wang et al. investigated the idea
of training the DL network to predict the AP-centered polar coordinate instead of the regular coordinates. In this way,
the model can learn the relative spatial information rather than the absolute one, which improves the localization
robustness against environmental variations. This work also adopted a multi-task learning frame work to enhance the
accuracy. Zhang et al. [110] approaches the domain adaptation problem from another perspective: they introduced
augmented CSI-based fingerprint into the learning framework, and implemented a forgetting mechanism to keep
the model refreshing from outdated data. Their studies also demonstrate the real-time adaptivity to environmental
changes. The authors in [111] build the foundation of their localization system in a fully self-supervised learning
way. The model is forced to focused on the intrinsic information in the CSI fingerprint by training the model with
unlabeled data. The experiment results show that this pre-trained model can work in a scenario-agnostic way by
finetuning with very limited amount of data whenever it deployed to a different environment.

7. Conclusions

DL algorithms have been demonstrated to be effective in various localization scenarios. It is becoming an
efficient way to process the wireless signal data and extract essential location information from it. Meanwhile, as a
data-driven approach, DL-based localization method requires sufficient training data and effective data-preprocessing
techniques to improve the feature extraction process. It is also crucial to consider different data format or modality,
as well as proper algorithms for the particular localization applications. In this paper, we reviewed how the DL
algorithms are adopted in different wireless environments to compensate the challenges in the corresponding
localization tasks. Furthermore, we reviewed different components of a DL-based method, including the datasets,
data preprocessing methods, DL algorithms, and simulators of localization scenarios, to support the future research
and studies.
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