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classroom behavior detection captures fine-grained student behaviors with low
latency. Additionally, we have developed a visualization system that presents data
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enhanced YOLOv11 model achieves an mAP@0.5 of 87.2% on the evaluated
datasets, surpassing baseline models. This significance lies in two aspects. First, it
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1. Introduction

Classroom behavior is an important indicator of students’ engagement and attentiveness. It can also serve as
an indirect measure of teaching effectiveness. Having timely behavioral data allows teachers to detect issues in
their teaching and take focused remedial actions (Fredricks et al., 2004; Smith et al., 2013). Traditional data
collection methods rely mainly on manual observation or on reviewing recorded classroom videos. These methods
require substantial time and effort and cannot provide immediate feedback (Wang et al., 2023). With the rise of
smart education, real-time classroom monitoring has become a key trend in the future development of education.
Teachers can comprehensively monitor teaching dynamics by tracking student behaviors and learning progress in
real time, combined with visual analytics technology. Such data not only provide an evidence base for designing
personalized instructional strategies but also help improve student performance and overall teaching quality (Wu
etal., 2022; Zheng et al., 2021). Against this backdrop, developing an automated tool capable of reliably analyzing
classroom activities has become an important goal in educational technology. In recent years, there have been
rapid advances in artificial intelligence. These advances have driven the widespread adoption of computer vision
techniques. These techniques are now being used in educational settings. As a key component of computer vision,
object detection enables the localization and classification of targets in images or videos. This capability provides
the technical foundation for automated recognition and analysis of classroom behavior.
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However, despite its improved architecture and speed, YOLOv11 still exhibits several practical limitations
that are salient for classroom analytics. First, Real-classroom benchmarks highlight occlusions, pose variation, and
inconsistent scales, which make subtle behaviors (e.g., hand-raises, phone use, writing) easy to miss. Recent
classroom-specific work built on YOLOv11 explicitly reports remaining difficulties in densely populated frames,
inter-person occlusions, and small targets, and therefore adds a high-resolution detection head and large-kernel
attention to recover fine details (Hou & Huang, 2025). Second, repeated down-sampling and low-resolution high-
level maps weaken tiny-target cues, so YOLOvI11 variants in high-resolution remote sensing add shallow heads
and stronger cross-scale fusion to curb feature loss and improve detection under cluttered backgrounds (Wu et al.,
2025). Third, the speed—accuracy trade-off remains hardware-sensitive in crowded, occluded settings: UAV studies
observe that YOLOV1 1-s/m often miss densely distributed small targets in complex scenes; modules like C2PSA can
raise parameter counts, and lightweight separable stacks may become memory-bound on GPUs, so alternative heads
and stabilized box losses are adopted to recover throughput and localization (Zhong et al., 2025). These gaps—small,
subtle gestures; frequent occlusions; and real-time constraints—mirror classroom conditions, motivating our tailored
improvements to enhance fine-grained behavior detection while maintaining real-time performance.

2. Related Work
2.1. Evolution of Object-Detection Models

From the perspective of model evolution, object detection methods can be broadly divided into one-stage and
two-stage approaches. Faster R-CNN is a two-stage detector that first generates candidate regions then classifies
and regresses the features within these regions. The R-CNN family achieves strong accuracy. However, proposal
generation and multi-stage processing introduce substantial computational overhead. As a result, its applicability
to classroom behavior recognition where real-time performance is essential and limited. In contrast, one-stage
detectors discard explicit proposal generation. The design achieves much higher inference speed by performing
parallel bounding-box regression and classification directly on feature maps.

Since its introduction in 2015, the YOLO series has undergone continuous refinement that preserves very
high speed while steadily improving accuracy. This combination makes the YOLO family a natural choice for
large-scale deployment in smart-classroom systems on standard GPUs. For example, YOLOv11 was released by
Ultralytics in 2024 as an optimized successor to YOLOVS and it maintains detection accuracy while significantly
improving computational efficiency and model compactness. It replaces C2f with the more expressive C3k2 in the
feature-fusion network and introduces C2PSA in the backbone which further enhances feature representation
capacity (Khanam & Hussain 2024).

2.2. Behavior Recognition in Classroom Settings

Research on classroom behavior recognition has developed along three main technical lines. These tasks are
posing estimation video action recognition and object detection (Chen et al. 2022; Yin et al. 2022; Li & Peng
2025). Early studies frequently used skeletal pose information as the primary cue. On the ActRec-Classroom
dataset (Yang, 2023), for example, Faster R-CNN is first applied to detect students. OpenPose then extracts body
joints and facial key points. A CNN classifier finally predicts behavior labels based on these pose features. This
pipeline couple’s detection with pose analysis and it performs well for canonical actions such as hand raising or
leaning. However, its robustness decreases in crowded classrooms where severe occlusion is common. Thus, pose
based methods face challenges in realistic high density teaching environments.

Video based action recognition focuses on modeling temporal dynamics and Li et al. use an improved
SlowFast model to analyze student behaviors (Li et al., 2022). These 3D convolutional networks process
consecutive frames and capture complex motion patterns over time. Such 3D convolutional networks can
effectively process consecutive frames and capture complex temporal patterns but they require substantial annotated
data and incur heavy computation. This requirement hinders their real-time deployment in ordinary classrooms.

Beyond purely vision-based pipelines, sensor-based and multimodal classroom behavior recognition has also
attracted considerable attention. Some studies use depth cameras (e.g., Microsoft Kinect) to obtain 2D-3D skeletal
data of students, including head pose, gaze direction, and body posture, and then apply machine learning models
to estimate attention or engagement levels over time (Zaletelj & Kosir, 2017; Wang et al., 2023). These approaches
can infer high-level states such as “attentive”, “distracted”, or “off-task” by fusing facial and postural cues, and
have reported promising accuracy in small-scale university classrooms (Stimer et al., 2021). Other work leverages
wearable or ambient motion sensors to detect typical classroom actions such as standing up, turning around, or
leaning on the desk. For example, multisource sensing systems based on inertial measurement units and
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environmental sensors have achieved very high recognition rates for predefined classroom behaviors under
controlled conditions (Yin et al., 2022).

However, sensor-based solutions typically require additional hardware at the student or classroom level,
increasing deployment costs and potentially causing usability or acceptance issues. In contrast, object-detection-
based methods build on commodity RGB cameras that are already widely installed in smart classrooms. By directly
detecting posture- and behavior-related visual patterns from video streams, these methods are easier to scale across
multiple rooms and campuses. At the same time, object detection can be integrated with other modalities at the
system level, forming a flexible, multimodal analytic framework. Against this background, our work adopts an
improved YOLOv11-based detector as the core vision engine, and focuses on enhancing fine-grained classroom
behavior recognition under occlusions and dense student layouts while retaining real-time performance.

2.3. Student Engagement Quantification Methods

Quantifying classroom engagement is more critical than merely classifying behaviors. Compared with
subjective, low-frequency measures, computer vision leverages head pose, gaze, and facial expressions to generate
time series of attention/engagement at both individual and class levels. For example, prior work in real classrooms
models engagement by combining face detection, head pose, and facial features, and aggregates results into class-
level indicators (Siimer et al., 2021); other real-time systems use commodity cameras to infer each student’s
attentive/inattentive state and visualize class-wide attention dynamics over time (Renawi et al., 2022); earlier
studies approximate on-task vs. off-task states via gaze targets (teacher/board, notebook, elsewhere) (Zaletelj &
Kosir, 2017). Common challenges include robust feature selection, multimodal fusion, and generalization to
authentic classroom conditions.

3. Experimental Design

3.1. Datasets

In this study, we employ two publicly available classroom-behavior datasets—SCB-Dataset3 (Yang & Wang,
2023) and POCO (Li et al., 2024)— to train and evaluate our model. We selected SCB-Dataset3 as our primary
benchmark for classroom-behavior detection. It contains 5686 images and 45,578 bounding-box annotations across
six behavior categories: hand-raising, reading, writing, phone use, head-lowering, and leaning over the desk. Table 1
summarizes the number of classes, images and annotations for both SCB-Dataset3 and POCO.

Table 1. Comparison of Public Classroom Behavior Datasets.

Model Classes Images Annotations
SCB3-S 3 5015 671
SCB3 SCB3-U 6 25810 19768
POCO 10 1903 137960

Within SCB-Dataset3, we further analyse class-level distributions as shown in Table 2. Notably, SCB3-S
emphasizes core classroom behaviors (hand-raising, reading, writing) in a structured teaching setting, while SCB3-
U captures more diverse and natural student postures—such as phone use, head-lowering and leaning over the
desk—in a university-level scenario.

Table 2. Class Distribution in SCB-Dataset3.

Model Classes
Classes SCB3
SCB3-S SCB3-U
Hand raising 11207 6
Reading 10841 7826
Writing 3762 2984
Using phone / 6976
Bowing the head / 947
Leaning over the table / 1029

In addition, we exploit the POCO dataset to broaden our analysis of student behavior. It provides ten fine-
grained classroom states, encompassing head posture, phone/book usage, body posture and writing poses. The
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dataset consists of 1903 images and 137960 bounding-box annotations. Table 3 details each behavior code, its
class label and description.

Table 3. POCO Dataset: Behavior Codes, Classes, and Descriptions.

Codes Classes Descriptions
Raise head and focus on the teacher or blackboard. Indicates that the student is interested
front_face front face . . .
- and interacting with the teacher.
bowed_head bowed head  Head and eyes down. Indicates that the student is negative about the class.
side_face side face Head turns significantly to one side. Indicates that the student is switching attention.
phone phone Phone on desk without hands on it. Indicates a neutral state; nothing significant is happening.

phone hands phone with hands Phone with hands on it. Indicates that the student may be focusing on the phone.

book book Book on desk without hands on it. Indicates a neutral state; nothing significant is happening.

book hands book with hands Hands on the book. Indicates that the student may be focusing on the book.

head _arms head in arms  Head in arms or on desk. Indicates that the student is negative about the class.

Upper body without bending. Indicates that the student may be focusing on the teacher or

upright uprightbody ) " surse.

body desk  body on the desk Upper body is lying on the desk. Indicates that the student is negative about the class.

3.2. Evaluation Metrics

(1) Precision: Precision quantifies the number of true positive predictions divided by the total number of positive
predictions made by the model. It effectively measures the model’s accuracy in identifying only relevant instances.

True Positives ( TP)

Precision = ( 1)
True Positives (TP) + False Positives (FP)

(2) Recall (True Positive Rate): Recall measures the proportion of actual positives that are correctly identified
by the model. It is crucial for determining the model’s capability to detect all relevant instances without
missing any.

True Positives(TP)

Recall = (2)
True Positives(TP) + False Negatives(FN)

(3) F1 Score: The F1 Score is the harmonic mean of precision and recall. It is a single metric that balances both
the precision and the recall, providing a comprehensive measure of a model’s accuracy, especially when the
class distribution is uneven.

Precision x Recall

Fiscore = 2% 3)

Precision + Recall
(4) Average Precision (AP): Average Precision summarizes the precision-recall curve as the weighted mean of
precisions achieved at each threshold, with the increase in recall from the previous threshold used as the

weight. It provides a single-figure measure of quality across recall levels, which is particularly useful for
evaluating models where predictions must be ranked.

AP = I; Precision(Recall)dRecall 4)

(5) Mean Average Precision (mAP): Mean Average Precision extends AP to multi-class problems. It first
computes the AP for each class and then averages these values. Thus, mAP reflects the overall detection
quality across all categories.

l N
mAP =—> AP, (5)
NS

In Equations (1)—(5), TP denotes true positives correctly identified as positive cases. FP denotes false
positives, where negative cases are incorrectly labeled as positive. FN denotes false negatives, where positive cases
are missed by the model. N is the total number of classes in the dataset. APk is the Average Precision for the k-th
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class. For instance, AP50 uses an IoU threshold of 0.50, whereas AP75 uses 0.75. These definitions enable
consistent comparison of models across classes and IoU thresholds.

3.3 Experimental

All experiments were conducted on Ubuntu 22.04 using the PyTorch deep learning framework. The
software/hardware environment was: Python 3.9, Intel Core 19-13900H CPU, NVIDIA GeForce RTX 3090 GPU,
and 24 GB system memory. Unless otherwise stated, the input resolution was fixed at 640 x 640. Mosaic
augmentation was applied throughout training except for the last 10 epochs; batch size = 8, epochs = 600.

As illustrated in Figure 1, we augment YOLOv11 with three targeted modules to tackle three classroom-
specific bottlenecks—Iloss of small-object details, poor depiction of slender limbs, and confusion under heavy
occlusion. First, CARAFE replaces conventional interpolation with content-aware upsampling (Wang et al., 2019),
providing a larger effective receptive field and instance-adaptive kernel generation to better reconstruct fine details
(e.g., writing, head-down) with negligible overhead. Second, DySnakeConv (Figure 2) introduces dynamic
sampling along slender or curved contours in the backbone under a topological connectivity constraint, markedly
improving recall and boundary sensitivity for elongated shapes such as raised arms (Qi et al., 2023). Third, DyHead
injects spatial-channel-task—multi-scale attentions into the detection head, jointly strengthening classification and
regression, thereby separating adjacent targets more reliably and improving localization consistency in
crowded/occluded scenes. SMFA (in Figure 3) performs self-modulated fusion after feature concatenation,
preserving both global context and local textures to reduce false positives in complex backgrounds (Zheng et al.,
2024). Together they target detail reconstruction, shape modeling, and discriminative representation, forming a
complementary bundle that enhances features for small/elongated structures, boosts robustness of discrimination
and localization in crowded views, and preserves lightweight, real-time efficiency.
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Figure 1. Improved YOLOv11 Network Architecture Diagram.
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Figure 3. SMFA Module.

4. Experimental Results and Analysis
4.1. System Design

The system employs a PyTorch-based YOLOvI11 detector to perform real-time recognition of student
postures and behaviors in classroom video frames. For data processing, OpenCV and NumPy are used for image
pre-processing and vectorized computation, while exponential moving averages and per-second aggregation
enable real-time estimation of multi-region metrics, including Engagement Index, temporal variability estimate,
and momentum. The visualization interface is built with PyQt5, using pyqtgraph for interactive bar and line charts
and embedding Matplotlib pie charts for composition analysis.

Finally, the system supports CSV export via the Python standard library, local PDF generation with
ReportLab, and optional professional report.

Figure 4 shows the initial interface of the Classroom Monitor System. The system consists of a video panel
on the left and a data-visualization panel on the right. The home page presents three metrics: Engagement Index,
Counts, and Timeline. The Engagement Index divides the classroom view into a 3 x 3 grid (front-middle-back x
left—center—right), and computes an engagement score for each region at every frame. The behavior labels are
grouped as follows: On-Task = upright, look book, book, bow_head, turn_head, bend; Interact =raise_head; Off-
Task = phone, play_phone, sleep. EI aggregates the proportions of On-Task, Interact, and Off-Task behaviors and
normalizes them by the number of people, defined as follows:

a-On_ (1) + f-Inter, (1) - y - OFF. (1)

EL(@#) =
0 max(Countz (t),l)

€ [0, 1] (6)

Let On_(r), Inter () , Off () denote, for that region r at ¢, the numbers of students in the On-Task, Interact,
and Off-Task categories, respectively. Let «, B, » = 0 > 0 be the corresponding weights, with >« to treat
Interact as stronger engagement, and y as the penalty for Off-Task.
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Figure 4. Initial interface of the Classroom Monitor System.

Figure 5 Initial interface of the Classroom Monitor System. After the video feed is connected, the left panel
shows the live video and the right panel shows the analytics dashboard. The top row summarizes key performance
indicators (Present, FPS, EI (avg)). The two bar charts in the middle visualize zone-level EI and zone-level
headcounts, respectively. The bottom Timeline is a line plot with one point per second, tracking recent trends in
class size and mean engagement.

1 Classroom Monitor System f- I

Figure S. Dashboard module.

Figures 6 and 7 Class view (sliding-window mode). A user-defined time window (e.g., 60—120 s) is applied.
The pie chart reports the percentage shares of fine-grained behaviors. The three-bar chart aggregates them into
On-Task/Interact/Off-Task, plotted as percentages summing to 100%, which quickly indicates the class status
within the window.

The system not only presents data through interactive visual charts, but also supports report export (Figure 8).
The report includes: the analysis mode (sliding-window duration or cumulative), keywords, core metrics (Present,
FPS, EI (avg), SEI, TVE, EI Momentum, percentages of On-Task /Interact/Off-Task, PBI-F/B, PBI-L/R), and per-
region EI tables, enabling both overall and spatial analyses of classroom engagement. On the Metrics page, users
can inspect the data and export a CSV with one click for further processing; on the PDF page, they can generate a
neatly formatted report to help teachers quickly review class dynamics, archive sessions, and share findings.
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4.2. Effectiveness Analysis of the Proposed Module and Ablation Experiments Analysis

This study utilized CARAFE for replacing all upsamplings, integrating DySnakeConv into the Backbone,
substituting DyHead for detection heads, and replacing C3k2 with SMFA after Concat for achieving self-
modulation fusion. These modifications led to a substantial enhancement in detection accuracy and real-time
performance in classroom scenarios with small targets or occlusions.

To assess the effectiveness of the introduced modules, we perform stepwise ablations on the YOLOvI11
baseline the outcomes are presented in Table 4 (P 84.7, R 78.4, mAP@0.5 83.3, mAP@0.5:0.95 57.2). Replacing
all upsampling layers with CARAFE yields P85.6, R78.8, mAP@0.5 84.1, and mAP@0.5:0.95 57.9. Adding
DySnakeConv to the backbone (CARAFE + DySnakeConv) produces P 85.4, R 80.6, mAP@0.5 84.8,
mAP@0.5:0.95 59.1. With DyHead as the detection head (CARAFE + DySnakeConv + DyHead), the results reach
P 86.8, R 80.4, mAP@0.5 86.9, mAP@0.5:0.95 59.7. Finally, replacing C3k2 with SMFA after concatenation for
self-modulated fusion (full stack) yields P 87.6, R 81.8, mAP@0.5 87.2, and mAP@0.5:0.95 61.0. Overall,
CARAFE improves small-object detail preservation; DySnakeConv better models elongated and contour-like
structures and strengthens high-IoU performance; DyHead enhances discrimination in crowded scenes; and SMFA
consolidates accuracy through global-local coordination, leading to clear synergistic gains on small and occluded
targets. Quantitatively, CARAFE increases mAP@0.5 by 0.8 percentage points compared with the baseline,
DySnakeConv brings an additional +0.7 gain, DyHead further improves +2.1, and SMFA contributes +0.3 to reach
the overall +3.9 improvement.

Table 4. Comparison of ablation experiment results.

Model Upsample DySnakeConv DyHead SMFA Precision Recall mAP@0.5 mAP@0.5:0.95

A 84.7 78.4 83.3 57.2
B v 85.6 78.8 84.1 57.9
C v v 85.4 80.6 84.8 59.1
D v v v 86.8 80.4 86.9 59.7
E v v v v 87.6 81.8 87.2 61.0

Note: v indicates that the corresponding component is used.

4.3. Comparative Experiments

Using a standardized data split and a consistent training/inference protocol, we comparatively evaluated
YOLOvS, YOLOvVS, YOLOvV9, YOLOv10, YOLOvl1, and our proposed model, as summarized in Table 5.
Successive iterations of YOLO demonstrate incremental improvements across all evaluated metrics from YOLOVS5
to YOLOv11. In comparison to the most robust baseline, YOLOv11, our model enhances Precision, Recall, and
mAP@.5 by +2.9, +3.4, and +3.9 percentage points, respectively. Experimental results demonstrate that jointly
integrating CARAFE, DySnakeConv, DyHead, and SMFA not only consistently improves the model’s recall and
discriminative capability, but also maintains a high level of stability during both training and inference.

Table 5. performance comparison of different models.

Model Precision (%) Recall (%) mAP@0.5 (%)
YOLOv5n 81.0 73.9 78.6
YOLOv8n 82.2 75.5 80.3
YOLOvVn 83.6 76.6 81.2
YOLOvI10n 84.2 77.4 82.1
YOLOvl1n 84.7 78.4 83.3
Our model 87.6 81.8 87.2

5. Implications and Ethical Considerations
5.1. Practical Implications for Teaching and Learning

A real-time behavior detection system continuously analyzes students’ engagement data in class. It provides
teachers with an immediate evidence base for refining their instructional strategies. Once the system detects that
students are becoming distracted or confused, it promptly alerts the teacher. Based on this feedback, teachers can
flexibly adjust their teaching approach or incorporate more engaging content. This will help them to guide students
back into an effective learning state in a timely manner (Xu et al., 2023). The feasibility of this model has been
supported by prior research. For example, Renawi et al. (2022) showed that a simple vision-based attention
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monitoring tool not only received positive feedback from teachers but also had the potential to enhance
instructional effectiveness. Building on such findings, teachers can rely on real-time data provided by the system
to implement precise instructional interventions. For example, they can adapt the pace of instruction or initiate
timely interactive questioning to maintain a high level of classroom engagement.

5.2. Multimodal Extensions and Feedback Loops

In future system design and optimization, a key direction is to integrate multimodal data and build more
sophisticated feedback mechanisms to comprehensively enhance the learning experience. For example, (1) audio
analysis can capture speaking intensity and questioning frequency in the classroom. It can provide quantitative
evidence for teacher—student interaction (Jia et al., 2025); (2) facial expression and gaze-tracking techniques can
reveal students’ emotional states and levels of attention (Falcon et al., 2023); and (3) physiological signal
monitoring, using wearable devices to collect indicators such as heart-rate variability and electrodermal activity.
It can objectively reflect students’ cognitive load and emotional arousal (Bustos-Lopez et al., 2022). Integrating
these multimodal signals will lay the technical foundation for more accurate assessment of student engagement.
With such feedback mechanisms, future classroom systems will not only present behavioral data but may also
draw on the ideas of intelligent tutoring systems to provide teachers with deep-learning-based, personalized
instructional recommendations (Zhao, 2024). However, these recommendations should enhance teachers’
professional autonomy and creativity, rather than replacing their pedagogical judgement (Zhu et al., 2025).

Another important development direction is to leverage longitudinal data for personalized learning analytics.
This approach can be combined with the multimodal feedback described above. The system can regularly generate
reports on students’ engagement and academic performance. These reports support reflective dialogue between
teachers and students on how to improve engagement and adjust learning strategies (Yang et al., 2024). With a
multimodal and adaptive design, the system can gradually evolve into a comprehensive intelligent classroom
assistant. It will not only recognize classroom behavior but also support ongoing improvement of both teaching
and learning processes. These advances will help turn smart classrooms from theory into practice and make sure
that technology truly supports the fundamental goals of education.

5.3. Ethical and Privacy Considerations for Real-Time Classroom Analytics

Although deploying Al-based monitoring technologies in classrooms holds considerable application
potential. Any use of such systems must be very careful. The goal is to make sure the technology is used in a
positive way and students’ rights are protected. A recent review by Zhu et al. (2025) categorized the ethical risks
of Al in education into three dimensions: technology, education, and society. At the technological level, key risks
include privacy breaches, model opacity, and potential bias in algorithmic decision-making. In education, there
are concerns about over-reliance on Al It may lead to homogeneous teaching, weaken the role of teachers, and
harm teacher—student relationships as well as students’ psychological well-being. In addition, a recent systematic
review on Al and critical thinking has shown that AI technologies can function either as facilitators or as barriers
to the development of students’ critical thinking skills, depending on how they are designed and embedded in
instruction (Lin et al., 2025). For the societal aspect, Al systems may worsen the digital divide. They also raise
difficult questions about who should be held accountable when the system makes an error.

Al-based classroom behavior systems must prioritize transparency, informed consent, and fairness in both
their design and deployment. The above analysis shows that excellent technical performance alone is not sufficient
to guarantee responsible use. In practical terms, schools should use video-based monitoring only after students and
parents have been fully informed and have given their consent. All monitoring activities must strictly comply with
the relevant data privacy regulations. All collected data should be securely stored and anonymized to minimize the
risk of misuse. The feedback from the system should only play a supportive and advisory role. It is designed to
empower teachers, not to replace their professional judgment. In this way, teachers can still keep their main
authority and leading role in the classroom. This aligns with the core principle of “responsible Al in education”:
technology should empower educators instead of undermining their authority and creativity (Song & Gong, 2024).

Looking ahead, building trustworthy intelligent classroom systems is a systemic endeavor in which ethical
safeguards must take priority. For the technological issues, regular audits for algorithmic bias are needed to ensure
fairness, alongside continuous reinforcement of privacy-preserving techniques such as differential privacy and
federated learning. At the level of teaching practice, system design and iteration should incorporate the perspectives
of teachers, students, and administrators, ensuring that technology genuinely supports teachers’ professional
judgment and classroom creativity. At the governance level, transparent and accountable rules and oversight
mechanisms should be put in place. These rules need to state clearly how data can be used and who is responsible.
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They should also provide channels for informed consent and appeal for teachers, students, and parents. Only by
strictly following a responsible AIED framework and systematically addressing these ethical challenges can real-time
behavior monitoring technologies return to their original educational mission (Zhu et al., 2025; Miao et al., 2021).

6. Conclusions

This study proposes a real-time student behavior detection and visualization system for smart classrooms,
which is of significant value for both educational practice and research. Built on an improved YOLOv11 model,
the system provides real-time feedback and interactive functions, effectively addressing several limitations of
existing work. Through this system, teachers can monitor classroom dynamics in real time, promptly identify
students who are not paying attention. By observing classroom activity, teachers can flexibly adjust their teaching
pace and strategies to enhance instructional precision and optimizing classroom management.

Educational administrators and researchers can also draw on the objective behavioral data generated by the
system to rigorously evaluate teaching methods and levels of student participation, thereby supporting evidence-
based educational decision-making. Experiments on public classroom-behavior datasets show that the proposed
model achieves higher mean Average Precision (mAP) and recall than YOLOvVS, YOLOv7, YOLOv8, YOLOV9,
and YOLOv10.

At the same time, it maintains a higher frame rate, which enables smooth online deployment in real classroom
environments. Ablation studies further verify the effectiveness of each individual module and their combined
contribution. This research effectively integrates computer vision techniques with authentic educational settings
and promotes the transition of smart classroom systems from theoretical validation to practical application. At the
same time, we acknowledge several limitations of the current system. The set of behavior categories covered
remains relatively limited, and its adaptability to different subjects, grade levels, and complex classroom scenarios
still needs further validation. Future work will focus on expanding the behavior classification system and
incorporating multimodal data to capture students’ learning states in a more comprehensive way, thereby further
enhancing the model’s representational capacity and robustness in real-world educational contexts.
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