
Journal of Artificial Intelligence for Automation
https://www.sciltp.com/journals/jaia

Review

A Survey on Neural Dynamics for Computing and Control:
Theories, Models, and Applications
Long Jin
School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China; jinlongsysu@foxmail.com

How To Cite: Jin, L. A Survey on Neural Dynamics for Computing and Control: Theories, Models, and Applications. Journal of Artificial
Intelligence for Automation 2026, 1(1), 1.

Received: 16 November 2025

Revised: 25 December 2025

Accepted: 6 January 2026

Published: 13 January 2026

Abstract: Neural dynamics provides a powerful and unifying tool for understanding
systems that learn, adapt, and interact. This survey provides a comprehensive overview
of the theories, models, and applications of neural dynamics at the intersection of com-
puting and control. We first articulate the core concept of neural dynamics, explaining
the close connection between this concept and dynamical system theory. We then
demonstrate the broad applicability of neural dynamics by reviewing a wide range of
models across various key domains. In the field of control, we survey neural dynamics
approaches to classical problems of stability and optimality, especially within control
systems and multi-agent systems (MASs). In the field of computing, we focus on deep
learning, analyzing both model architectures and optimizers as different dynamical sys-
tems. The principal contribution of this work is to bridge these domains, revealing the
computation and control topics governed by neural dynamics theories. This integrated
viewpoint illuminates numerous applications and inspires future research directions
focusing on advanced models in terms of computation and control.

Keywords: control systems; deep learning; dynamical systems; multi-agent systems;
neural dynamics

1. Introduction

With the rapid advancement of artificial intelligence (AI), modern intelligent systems, such as automatic
control systems [1–3], embodied intelligence systems [4–6], multi-agent systems (MASs) [7–9], and deep learning
models [10], increasingly exhibit a deep and inextricable integration of computation and control. On one hand,
these systems must perform complex computations to process vast amounts of information. On the other hand, they
must interact with the physical world through precise control to maintain stability and accomplish tasks. At the
theoretical level, however, the disciplinary foundations for these domains—computational science, centered on
deep learning, and control science, centered on control systems—have evolved mainly along separate trajectories.
This theoretical divide not only hinders a unified understanding of complex intelligent systems but also poses a
fundamental challenge to designing the next generation of high-performance systems.

To bridge this theoretical divide, we propose neural dynamics as a unifying analytical language and theoretical
framework. As an interdisciplinary field studying the temporal evolution of neural states using mathematical tools
from dynamical system theory [11,12], neural dynamics is intrinsically rooted in neuroscience [13]. However, the
idea of utilizing dynamical system theory to analyze complex systems extends far beyond its biological origins.
The dynamical system theory offers a powerful toolkit, including stability analysis [14], attractor theory [15], and
bifurcation theory [16], to describe and predict the behavior of time-evolving systems. This makes neural dynamics
an ideal bridge to connect knowledge across the disparate fields of computation and control.

As shown in Figure 1, this survey systematically reviews the theoretical foundations, core models, and wide-
ranging applications of neural dynamics at the intersection of computation and control. In the field of computation,
we focus on deep learning, analyzing how both the forward propagation in model architectures and the parameter
update in optimization algorithms can be characterized as distinct dynamical systems. In the field of control, we
explore how neural dynamics models address classical control problems of stability and optimality, as well as their

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution
(CC BY) license(https://creativecommons.org/licenses/by/4.0/).
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.sciltp.com/journals/jaia
https://creativecommons.org/licenses/by/4.0/

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

application in modeling distributed coordination and emergent collective behavior in MASs. Through this com-
prehensive review, the principal contribution of this work is to unveil the dynamical mechanisms and underlying
principles governing both computation and control. We argue that this integrative perspective on neural dynamics not
only offers profound insights into macroscopic properties of existing systems, such as generalization and robustness,
but more importantly, it illuminates a path toward building future hybrid intelligent systems that seamlessly integrate
perception, learning, reasoning, and decision-making, providing a solid theoretical foundation for this endeavor.

Control System

Theory

Model and Application

Control
System

Input

St
at

e

Time
Control System Dynamical System

Output

• Model Predictive Control

• Reinforcement Learning
Based Control

Multi-Agent System

Theory

Model and Application
St

at
e

Time
Multi-Agent System Dynamical System

• Consensus Protocols
• Containment Control
• Flocking and Swarming Models
• Replicator Dynamics

Deep Learning

Theory

Model and Application

St
at

e

Time
Deep Learning Dynamical System

Agent Interaction
Layer

Fe
at

ur
e

• Neural ODE
• Neural SDE
• Deep Equilibrium Model
• Neurodynamic Optimization

Figure 1. Framework of this paper.

2. Neural Dynamics

Neural dynamics is fundamentally grounded in dynamical system theory, which provides a mathematical
framework to describe how the state of a system evolves over time [11,12]. This section introduces the key concepts
and tools from dynamical system theory that are essential for understanding neural dynamics.

2.1. Neural Dynamics and Dynamical Systems

Neural dynamics is an interdisciplinary theoretical framework dedicated to investigating the dynamical systems
that govern neural activity [13]. It integrates principles from neuroscience, mathematics, physics, and computer
science to understand how the states of a neural system evolve over time and how this temporal evolution gives rise
to complex behaviors. The early research on neurodynamics can be traced back to the Hopfield network [17] in the
1980s. In recent years, this framework has been increasingly applied beyond its biological origins to investigate
problems at the intersection of control and computation, yielding promising theoretical insights [18,19].

Despite its biological origin, in the context of this paper, neural dynamics can be viewed as a specialized branch
of dynamical system theory. A dynamical system is formally described by a state space and a rule that dictates
the evolution of its state variables [20]. The power of this mathematical abstraction lies in its universality: The
state variables and the evolution rule are defined by the specific properties of the system under investigation. This
adaptability allows the theoretical tools from dynamical systems to serve as a unifying framework for computation
and control. Specifically, in control theory, the state evolution of a control system under feedback can be naturally
modeled as a dynamical system [21], where the objective is to guide the system towards a stable equilibrium or a
desired trajectory. In MAS, the emergent collective behavior of a group is described as the evolution of the agents’
combined state, governed by local interaction rules and communication topologies [22]. In deep learning, a dual
dynamical system perspective can be adopted. The forward propagation of hidden states through a deep neural
network can be modeled as a dynamical system that maps input data to an output through a sequence of non-linear
transformations [23]. Concurrently, the learning process itself, driven by an optimization algorithm like gradient
descent, can be modeled as another dynamical system evolving in the high-dimensional parameter space [18].

Neural dynamics frames these seemingly disparate problems in a common language of dynamical systems,
allowing us to leverage a powerful analytical toolkit to analyze their stability, convergence, and robustness, thereby
revealing the fundamental principles that connect them.

2 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

2.2. Differential Equations and Dynamical Systems

The relationship between differential equations and dynamical systems is foundational and deeply connected [24].
They represent two complementary perspectives for analyzing the evolution of a system over time. A differential
equation provides a local description of change. Specifically, an ordinary differential equation (ODE) of the form
dx/dt = f(x, t) defines the instantaneous rate of change of a system’s state at any given time t [25]. It is the
mathematical expression of the underlying mechanism governing the system from one moment to the next. On
the other hand, the theory of a dynamical system offers a global, geometric framework [26]. It encompasses not
only the evolution rule given by the differential equation but also the entire state space in which the system’s
evolution unfolds. The primary object of study in dynamical system theory is the qualitative behavior of the system’s
trajectories—the paths traced by the state x(t) as it evolves from various initial conditions. Therefore, a differential
equation can be understood as the infinitesimal generator of the dynamics, defining the vector field that directs the
flow within the state space. The solution to an initial value problem for the differential equation corresponds to
a single, unique trajectory within this global state space. This dual perspective allows us to translate the specific,
mechanistic rules encoded in a differential equation into a macroscopic, qualitative understanding of system-level
behaviors such as stability, periodicity, and chaos [27,28]. For instance, in deep learning, the models known as
neural ODE [29] explicitly define the forward pass as the solution to a differential equation whose dynamics are
parameterized by a neural network. Analyzing this system from a dynamical system perspective allows researchers
to investigate properties like invertibility and computational efficiency by studying the stability and flow of its
learned vector field [30,31].

3. Application of Neural Dynamics in Control Systems

In this section, we explore the application of neural dynamics in control systems, focusing on stability analysis
and optimal control. Neural dynamics provides a framework for modeling and analyzing complex control systems,
enabling the design of robust and adaptive controllers.

3.1. Theoretical Basis: Modeling Control Systems as Dynamical Systems

Control theory is an interdisciplinary field of mathematics, physics, and computer science that deals with the
analysis of control systems [32]. As shown in Figure 2, control systems can be broadly classified into two categories:
Open-loop and closed-loop systems [33–35]. Open-loop systems do not use feedback to control the output [36].
The input is predetermined, and the system operates based only on this input without monitoring the output. While
closed-loop systems use feedback to control the output [37]. The output is monitored, and the input is adjusted
accordingly to achieve the desired output. In both types of systems, the state of the system can be represented as a
vector in a high-dimensional space, and the evolution of the state over time can be described by a set of differential
equations [38]. Therefore, control systems can be effectively modeled as dynamical systems, which aligns with the
core idea of neural dynamics. In 1993, Colonius et al. [21] formally models control systems as dynamical systems,
providing a theoretical foundation for applying neural dynamics to control theory. It argues that control systems are
projections of specific dynamical systems. Specifically, consider a control-affine system of the form:

ẋ(t) = X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t)), (1)

where x(t) ∈ Rn is the state vector which evolves on a smooth manifold M ; ẋ(t) is time derivative of the state
which represents the velocity vector of the state’s trajectory in the manifold M , indicating the instantaneous
direction and rate of change; u(t) = [u1(t), u2(t), . . . , um(t)] is the control input, a time-varying vector function
that can be manipulated to steer the system’s behavior, with each component ui(t) being a scalar control function;
U ∈ Rm is the control space, a compact set from which the instantaneous control vectors u(t) must be chosen;
X0, X1, . . . , Xm are vector fields on Rn, with each vector field Xi determines how the corresponding scalar control
input ui(t) influences the system’s dynamics at state x(t). The key insight is to associate this control system (1)
with a corresponding dynamical system that evolves on an extended state space U × M . The state of this new
system at any time is a pair (u,x), consisting of both the entire control function and the system’s physical state.
The evolution of this pair over time t is defined as

ϕ(t,u,x) = (θtu, φ(t,x,u)), (2)

3 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

where ϕ : R × U × M → U × M is the flow map of the dynamical system which takes an initial state (u,x)

and an evolution time t and returns the state to which the system has evolved after that time; θt is the time-shift
operator which acts on a control function u(t0) to produce a new function that is shifted in time. Specifically,
θtu(t0) = u(t0 + t); φ(t,x,u) is the solution to the control system (1) at time t, starting from the initial state x

and under the influence of the control function u. This construction establishes a profound correspondence between
the topological properties of the control system and the dynamical properties of ϕ. Specifically, it has been shown
that a subset D ⊂ M is a control set of the control system (1) if and only if there exists a compact invariant set
D ⊂ U ×M of the dynamical system ϕ such that D = πM (D), where πM : U ×M → M is the projection onto
the second component. This result provides a rigorous mathematical foundation for analyzing control systems
using the tools and techniques from dynamical system theory. In 1998, the study in [39] investigates the relation
between discounted and average deterministic optimal control problems for non-linear control systems. It uses
the mathematical tools from dynamical system theory to analyze the controllability properties of the system. In
2007, ref. [40] extends the classical Grobman-Hartman theorem to control systems, providing conditions under
which a non-linear control system can be locally topologically conjugate to its linearization around a hyperbolic
equilibrium point. This extension further solidifies the connection between control systems and dynamical systems,
enabling the application of linearization techniques and stability analysis from dynamical systems theory to control
problems. In 2021, ref. [41] introduces six types of equi-invariability, which are the analogies to equi-continuity,
equi-continuity in the mean, and mean equi-continuity in topological dynamical systems. Then, it utilizes three
versions of equi-invariability to characterize bounded invariance complexity, bounded invariance complexity in the
mean, and mean L-stability for control systems, respectively. Moreover, it obtains two new dichotomy theorems
for a control set with dense interior. Based on dynamical system theory, in 2025, ref. [42] establishes Bowen’s
equations for the upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control
systems. It introduces a new invariance pressure, called induced invariance pressure on partitions, that specializes
the upper capacity invariance pressure on partitions and then shows that the two types of invariance pressures
are related by Bowen’s equation. In summary, these works demonstrate the theoretical basis for applying neural
dynamics to control theory by modeling control systems as dynamical systems. This modeling approach enables
the use of dynamical system theory to analyze and design control systems, providing a powerful framework for
addressing complex control problems, such as stability analysis and optimal control.

Controller
Input Control Signal Controlled

Process
Output

(a) Open-loop control system

Input
ControllerFusion Controlled

Process
Control Signal Output

Feedback Signal

(b) Closed-loop control system

Figure 2. Diagram of control systems.

While the aforementioned theoretical foundations are primarily established in the continuous-time domain,
practical implementations on modern digital hardware require discretization. The translation from continuous neural
dynamics to digital controllers typically involves numerical integration methods, such as Euler or Runge-Kutta
schemes. It is crucial to note that the stability guarantees derived for the continuous system hold for the discrete
implementation provided that the sampling rate is sufficiently high to capture the system’s dynamics. If the sampling
interval is too large relative to the system’s time constants, discretization errors may accumulate, potentially leading

4 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

to numerical instability or aliasing effects that compromise the theoretical convergence properties.

3.2. Core Models and Their Applications in Control Theory

Building upon the theoretical foundation that treats control systems as dynamical systems, the central task
becomes identifying the specific mathematical form of the governing equations [43–45], typically expressed as
ẋ = f(x, u). The methods for defining this function f have evolved significantly, transitioning from classical,
first-principle models like model predictive control (MPC) [46–48] to modern, data-driven paradigms such as
reinforcement learning (RL) [49–51], which utilizes neural network architectures. This section outlines these core
modeling paradigms and their primary applications in control theory.

MPC: MPC [46–48] is a widely used control strategy that relies on an explicit model of the system to predict
future behavior and optimize control actions. In MPC, the control problem is formulated as an optimization problem
that minimizes a cost function over a finite prediction horizon, subject to the system dynamics and constraints.
The system dynamics are typically represented by a set of differential equations, which can be derived from first
principles or identified through data analysis. The optimization problem is solved at each time step, and the first
control action is applied to the system. This process is repeated in a receding horizon fashion, allowing the controller
to adapt to changes in the system and environment. Specifically, the operation of MPC can be summarized by three
fundamental principles:

(1) Prediction: At each time step k, given the current measured state xk, a model of the system dynamics,
typically in the form xk+1 = f(xk,uk), is used to predict the future state trajectory over a predefined
prediction horizon N . This prediction is contingent upon a candidate sequence of future control inputs,
Uk = {uk,uk+1, . . . ,uk+N−1}.

(2) Optimization: An optimal control problem is solved online to find the control sequence Uk that minimizes a
cost function J . This cost function typically penalizes deviations from a desired reference trajectory and the
magnitude of control effort. The problem is formally stated as:

min
Uk

J(xk, Uk) =

N−1∑
i=0

(
∥xk+i|k − xref,k+i∥2Q + ∥uk+i∥2R

)
+ ∥xk+N |k − xref,k+N∥2P ,

s.t. x− ≤ xk+i|k ≤ x+,

u− ≤ uk+i ≤ u+,

(3)

where the matrices Q, R, and P are positive semi-definite weighting matrices, and ||x||2Q = xTQx; xk+i|k is
the predicted system state for the future time step k + i at the current time step k; xref,k+i is the reference
state we set for the system at the future time step k + i. This optimization is performed subject to constraints
on system dynamics, states, and control inputs.

(3) Receding horizon implementation: Upon solving the optimization problem, an optimal control sequence
U∗
k = {u∗

k|k,u
∗
k+1|k, . . . ,u

∗
k+N−1|k} is obtained. However, only the first element of this sequence, u∗

k|k, is
applied to the system. The remainder of the sequence is discarded. At the next time step, k + 1, a new state
measurement is taken, and the entire process—prediction and optimization—is repeated to compute a new
optimal control sequence.

This receding horizon strategy is the core characteristic of MPC. By continuously re-evaluating the optimal
control plan based on the most recent state information, it establishes a powerful feedback mechanism. This allows
the controller to inherently handle system constraints and effectively compensate for external disturbances and model-
plant mismatch, resulting in a robust and high-performance closed-loop control system. MPC is successfully applied
in various domains, including process control [52–54] and robotics [55–57]. In terms of robust control for robotics,
ref. [58] proposes a modified primal-dual neural network designed for the motion control of redundant manipulators.
By incorporating a dynamic noise-rejection mechanism, this approach effectively suppresses harmonic noises
during operation, ensuring precise trajectory tracking even in the presence of periodic disturbances. Complementing
this, Cao et al. [59] address the challenges of underactuated systems by presenting a robust neuro-optimal control
strategy for snake robots, specifically employing experience replay to enhance adaptability and robustness. In terms
of process control, ref. [52] proposes a distributed economic model predictive control (EMPC) framework for
a non-linear chemical process network. The proposed method is based on a sequential distributed MPC design
and guarantees closed-loop stability. The effectiveness of the proposed method is demonstrated through extensive
simulations on a catalytic alkylation of benzene process network. Moreover, literature [53] presents a process
control framework for deep drawing based on MPC. The proposed framework represents the deep drawing process

5 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

as a single-input multiple-output model that relates the blank holder force to the draw-in of n different critical
points around the die, allowing for the avoidance of workpiece defects caused by the abnormal sliding of the metal
sheet during the forming phase. Additionally, Huang et al. [54] proposes a long short-term memory (LSTM) neural
network-based MPC approach for process control. The LSTM is applied to predict the behaviors of the controlled
process, which can automatically match different operation modes without requiring a switching strategy. Then,
combined with the MPC framework, an adaptive gradient descent method is introduced to handle the optimization
problem and its constraints. In terms of robotics, literature [60] presents a data-driven neural dynamics-based
MPC algorithm, which consists of an MPC scheme, a neural dynamics solver, and a discrete-time Jacobian matrix
updating law. With the help of the updating law, the future output of the model-unknown redundant manipulator is
predicted, and the MPC scheme for trajectory tracking is constructed. The neural dynamics solver is designed to
solve the MPC scheme to generate control input driving the redundant manipulator. Moreover, ref.[56] designs a
varying-parameter complementary neural network and combines it with MPC to solve the multi-robot tracking and
formation problems via a leader-follower strategy. Additionally, ref. [57] presents a novel snap-layer minimum
motion scheme, otherwise known as the minimum motion planning and control scheme for redundant robot arms, to
obtain smoother kinematic control of minimum motion. The proposed scheme is based on the neural dynamics
equivalency and solver, which can be used to solve the multi-layer physical limits of redundant robot arms.

RL-based control: Another core model in control theory is RL [49–51], which is a data-driven approach that
learns optimal control strategies through interaction with the environment. In RL, an agent learns to make decisions
by taking actions in an environment to maximize a cumulative reward signal. The behavior of the agent is typically
modeled as a Markov decision process (MDP) [61,62], where the state of the system evolves according to a transition
function that depends on the current state and action taken by the agent. To tighten the connection with dynamical
system theory, it is crucial to recognize that this state transition probability, denoted as P (s′|s, a), serves as the
stochastic, discrete-time equivalent of the differential equation ẋ = f(x, u) used in classical control. This mapping
reveals that RL and MPC are mathematically isomorphic in their objectives: Both aim to optimize a system’s
trajectory. The primary distinction lies in their underlying dynamics—MPC typically assumes a deterministic,
continuous evolution, whereas RL operates within a stochastic, discrete framework. The agent’s goal is to learn a
policy that maps states to actions in a way that maximizes the expected cumulative reward over time. RL algorithms
can be broadly classified into two categories: Model-based and model-free methods [63]. Model-based methods
learn a model of the system dynamics and use it to plan optimal actions, while model-free methods directly learn a
strategy or value function from experience without explicitly modeling the dynamics. RL has been successfully
applied to various control problems, including robotics [64,65] and autonomous driving [8,66]. In terms of robotics,
literature [64] presents a reinforcement learning approach for acquiring motor skills in a robotic system. The
proposed method utilizes a stochastic real-valued reinforcement learning algorithm to represent the policy, which
learns the optimal policy through trial-and-error interactions with the environment. The effectiveness of the proposed
method is evaluated on two classic tasks with a robotic arm. Moreover, Raffin et al. [65] address the poor exploration
issues in RL by adapting state-dependent exploration to deep RL algorithms. It presents two extensions to the
original state-dependent exploration, utilizing more general features and resampling the noises periodically, which
leads to a new exploration method: generalized state-dependent exploration. In terms of autonomous driving,
Sallab et al. [66] first present a deep reinforcement learning approach for autonomous driving in complex urban
environments. The presented method incorporates recurrent neural networks [67,68] for information integration,
enabling the car to handle partially observable scenarios. It also integrates the attention models to focus on relevant
information, thereby reducing the computational complexity for deployment on embedded hardware. The framework
was tested in an open-source 3D car racing simulator. Additionally, ref. [8] presents a decentralized solution based
on the attention mechanism and recurrent neural networks, utilizing a multi-agent distributed deep deterministic
policy gradient, to solve the real-time task offloading and heterogeneous resource allocation problem in vehicular
edge computing systems. The proposed method enables each vehicle to make optimal offloading decisions and
allocate computational resources based on its own observations and the historical information of other vehicles.

4. Application of Neural Dynamics in Multi-Agent Systems

MASs consist of multiple interacting agents that work together to achieve a common goal or perform complex
tasks [69–71]. The study of MAS gains significant attention in recent years due to its wide range of applications,
including robotics [72,73], sensor networks [74], and social systems [75]. Neural dynamics provides a powerful
framework for modeling and analyzing the behavior of MAS, enabling the design of robust and adaptive coordination
strategies. In this section, we first introduce the theoretical basis for applying neural dynamics to MAS, and then
review the core models and their applications in MAS.

6 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

4.1. Theoretical Basis: Modeling Multi-Agent Systems as Dynamical Systems

As illustrated in Figure 3, MASs can be characterized by a variety of organizational structures. An organiza-
tional structure defines the fundamental relationships between agents, governing their roles, privileges, patterns
of information flow, and coordination protocols [76]. These structures typically fall into several key paradigms,
including centralized, decentralized, and hierarchical, with each paradigm determining the system’s underlying
communication topology among the agents. MASs with different organizational structures can be effectively
modeled as different kinds of dynamical systems, where the state of the system is represented by the states of
all agents, and the evolution of the state over time is governed by a set of differential equations. This modeling
provides a promising framework for analyzing the decentralized intelligence and emergent collective behaviors of
MAS, especially in large-scale applications such as smart grids [76], autonomous vehicle fleets [77], and sensor
swarms [78]. In these systems, coordination must be achieved with limited global information and under stringent
real-time constraints [79]. The framework enables each agent to evolve its state based on local observations and
interactions, thereby achieving system-level objectives through local computation. The interactions between agents
can be captured by coupling terms in the differential equations, which model the influence of neighboring agents
on each agent’s state. This approach allows for the analysis of stability, convergence, and robustness of the MAS
using tools from dynamical system theory. The work in [80] presents novel distributed near-optimal consensus
protocols for input-constrained double-integrator MASs by modeling one-dimensional MASs as dynamical systems.
Specifically, consider an MAS consisting of N agents with a scalar state xi. The communication topology of the
agents can be described by an undirected connected graph G = (V, E), where V = {1, 2, . . . , N} is the set of
nodes representing the agents, and E ⊆ V × V is the set of edges representing the communication links between
agents. The degree of a node vi, i.e., the number of nodes connecting with the node vi, is denoted by deg(vi). The
adjacency matrix of the graph G is denoted by A = [aij] ∈ RN×N , where aij = 1 if vi and vj is connected. The
degree matrix of the graph is denoted by D = diag(di) ∈ RN×N , where di = deg(vi). The Laplacian matrix of
the undirected connected graph is defined as L = D −A. Building on this, the dynamics of each agent is given by:

dxi(t)

dt
= vi(t),

dvi(t)

dt
= ui(t),

(4)

where t is the time variable, xi ∈ Rn is the position of agent i, vi ∈ Rn is the velocity of agent i, and ui ∈ Rn is
the control input of agent i. The objective of the MAS is to design the control inputs ui such that the agents achieve
a desired collective behavior, such as the state consensus with a common state x∗ ∈ Rn and a common velocity
v∗ ∈ Rn, i.e., limt→∞ xi(t) = x∗ and limt→∞ vi(t) = v∗ for all i = 1, 2, . . . , N . The agents are with limited
actuation capabilities, modeled by the constraint u−

i ≤ ui ≤ u+
i , where u−

i and u+
i are the lower and upper bounds

of the input of the i-th agent, respectively. The collective dynamics of the MAS can be written in a compact form as

dx(t)

dt
= v(t),

dv(t)

dt
= u(t),

(5)

where x = [x1, x2, . . . , xN] ∈ RN , v = [v1, v2, . . . , vN] ∈ RN , and u = [u1, u2, . . . , uN] ∈ RN . The
input constraints of the agents can be written as u− ≤ u ≤ u+, where u− = [u−

1 , u
−
2 , . . . , u

−
N] and u+ =

[u+
1 , u

+
2 , . . . , u

+
N]. For achieving the consensus of the double-integrator multi-agent system, a receding-horizon

performance index is defined as:

J(t) =

∫ T

0

x(t+ τ)⊤Lx(t+ τ)dτ, (6)

where T > 0 ∈ R is the predictive period, and L is the Laplacian matrix of the undirected connected communication
graph of the MAS. The objective is to design the control input u(t) to minimize the performance index J(t) at each
time instant t with input constraints of the agents. This performance index ensures that the velocity of the agents is
zero when consensus is achieved, which means that the position of the agents is eventually static. Therefore, the
consensus problem is converted into an optimization problem as

7 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

min
u(t)

J(t),

s.t.
dx(t)

dt
= v(t),

dv(t)

dt
= u(t),

u− ≤u(t) ≤ u+,

(7)

where u(t) is the control input of the MAS at time t. Applying the Taylor expansion to the system dynamics (5) yields:

x(t+∆t) ≈ x(t) + ∆tv(t) +
∆t2

2
ẍ(t),

= x(t) + ∆tv(t) +
∆t2

2
u(t).

(8)

(a) Centralized (b) Decentralized (c) Hierarchical
Figure 3. Examples of different MAS structures. (a) Centralized structure, (b) Decentralized structure, (c) Hierarchical
structure.

This equation describes how the positions of all agents in the MAS evolve over a small time interval ∆t based
on their current positions, velocities, and control inputs. The term ∆tv(t) represents the contribution of the current
velocities to the change in position, while the term (∆t2/2)u(t) captures the effect of the control inputs on the
agents. Based on this, the optimization problem (7) can be relaxed as

J(t) ≈
∫ T

0

(
x(t) + τv(t) +

τ2

2
u(t)

)⊤

L(
x(t) + τv(t) +

τ2

2
u(t)

)
dτ

=
T 5

20
u(t)⊤Lu(t) +

T 3

3
x(t)⊤Lu(t)

+
T 4

4
v(t)⊤Lu(t) + ∗

= Ĵ(t) + ∗,

(9)

where ∗ is the sum of the terms that are independent of the control input u(t). Therefore, the optimization problem
(7) can be relaxed as

min
u(t)

Ĵ(t),

s.t. u− ≤u(t) ≤ u+,
(10)

where Ĵ(t) = (T 5/20)u(t)⊤Lu(t) + (T 3/3)x(t)⊤Lu(t) + (T 4/4)v(t)⊤Lu(t). Building on this, literature [80]
obtain the optimal control input u∗(t) by modeling the optimization problem as a dynamical system:

λ
du(t)

dt
= −u(t) + P (u(t)− ∂Ĵ

∂u(t)
), (11)

where λ > 0 ∈ R is a constant used for scaling the convergence rate, P (·) is a projection operator that ensures
the input constraints of the agents are satisfied, which can be defined as P (xi) = min(max(u+

i , xi), u
−
i), and

8 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

∂Ĵ/∂u(t) = (T 5/10)Lu(t) + (T 3/3)Lx(t) + (T 4/4)Lv(t) is the gradient of the performance index Ĵ(t) with
respect to the control input u(t). This dynamical system describes how the control input u(t) evolves over time to
minimize the performance index Ĵ(t) while satisfying the input constraints of the agents. The term −u(t) represents
a damping effect that prevents the control input from growing unbounded, while the term P (u(t) − ∂Ĵ/∂u(t))

represents a gradient descent step that drives the control input towards the optimal solution. The optimal control input
u∗(t) is obtained when the system reaches equilibrium, i.e., du(t)/dt = 0. The proposed method guarantees that
the MAS achieves consensus while satisfying the input constraints of the agents. Thereafter, ref. [81] demonstrates
that the method presented in [80] can be extended to cases where the privacy protection of agents’ initial positions
is necessary. Different from the one-dimensional MAS studied in [80], the multi-dimensional MAS is a more
general case, where the state of each agent is represented by a vector xi ∈ Rn instead of a scalar. For achieving the
consensus of a multi-dimensional MAS, consider the following multi-objective optimization problem given in [82]:

min
x

N∑
i=1

ωifi(xi),

s.t. Lx̃ = 0,xi ∈ Γ,

(12)

where ωi > 0 ∈ R is a fixed weight coeffcient, x̃ = col{x1,x2, ...,xN} ∈ Rn×N , L = L⊗ In ∈ RnN×nN with
In being the identity matrix of dimension n, and Γ = {x|Ax < b, g(x) < 0,x ∈ Ω}, where Ω is a convex set. The
objective of the problem (12) is to find the common state x∗ ∈ Rn such that the agents achieve a desired collective
behavior, i.e., limt→∞ xi(t) = x∗ for all i = 1, 2, . . . , N . Building on this, ref. [82] solves the optimization
problem (12) by modeling the consensus optimization problem as a dynamical system:

dxi(t)

dt
= −xi(t) + P (xi(t)− ωi

∂fi(xi(t))

xi(t)

− ∂g(xi(t))

xi(t)
yi(t)−A⊤zi(t))

+

N∑
j=1

ωij(xj(t) + ηj(t)− xi(t)− ηi(t)),

dyi(t)

dt
= −yi(t) + (yi(t) + g(xi))

+,

dzi(t)

dt
= Axi − b,

dηi(t)

dt
=

N∑
j=1

ωij(xi − xj),

(13)

where (·)+ = max{·,0}, and ηi(t) is an auxiliary variable used to estimate the global information of the MAS.
Moreover, Yang et al. [82] prove that the dynamical system (13) is globally asymptotically stable and can find
an accurate solution to the consensus optimization problem. This modeling approach allows us to analyze the
collective behavior of MAS using tools from dynamical system theory, such as stability analysis, bifurcation theory,
and attractor theory [83]. In 2004, ref. [84] presents a consensus algorithm for MAS with switching topology and
time-delays. It uses graph theory to model the communication network among agents and analyzes the convergence
properties of the consensus algorithm using Lyapunov functions and matrix theory. Thereafter, literature [85]
presents a distributed neurodynamic approach for solving constrained optimization problems in MAS. It models the
optimization problem as a dynamical system and employs this approach to design distributed algorithms, where
each local objective function is minimized individually. In 2024, ref. [86] presents a distributed neurodynamic
approach for solving a class of time-dependent non-linear equation systems, over multi-agent networks from a
distributed optimization perspective. It models the non-linear equation system as a dynamical system to solve.

In summary, these works demonstrate the theoretical basis for applying neural dynamics to MAS by modeling
them as dynamical systems. This modeling approach enables us to analyze and design coordination strategies for
MAS using tools from dynamical system theory.

4.2. Core Models and Their Applications in Multi-Agent Systems

In the study of MAS through the lens of neural dynamics, several core models have emerged as foundational
paradigms. These models, which conceptualize collective behaviors as the emergent results of interconnected dynam-

9 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

ical systems, are instrumental for both theoretical analysis and practical applications. Key among them are consensus
protocols [87], containment control [88], flocking and swarming models [89], and replicator dynamics [90], each
addressing a different facet of coordination and collective action.

Consensus protocols: Consensus is a fundamental problem in cooperative control, representing the challenge
of getting all agents in a network to agree on a certain quantity of interest [91]. This agreement is achieved through
local communication, where each agent updates its state based on the information received from its neighbors. The
study of consensus in MAS is a benchmark for understanding multi-agent coordination, revealing the crucial role
of the system’s communication topology, which is often represented by a graph [91]. From a neural dynamics
perspective, the consensus process is modeled as a system of coupled differential or difference equations, and its
convergence is analyzed using tools from stability theory and algebraic graph theory [92]. A typical formulation
is the leader-follower consensus, where one or more leader agents have a desired state, and the follower agents
must converge to this state [93]. This framework is particularly relevant for guiding a group of autonomous
agents. The applications of consensus models are extensive and varied, including attitude synchronization [94],
sensor networks [95], and robot coordination [96]. Attitude synchronization [94] ensures that a fleet of satellites or
spacecraft achieves and maintains a common orientation. Sensor networks [95] average measurements across a
distributed network of sensors to obtain a more accurate global reading. Robot coordination [96] coordinates the
velocity or position of multiple robots for tasks such as formation control and cooperative transport.

Containment control: Containment control is a sophisticated extension of consensus and formation control,
designed for scenarios involving leaders and followers [97]. The primary objective is to drive a group of follower
agents into the convex hull formed by a group of leader agents [98]. This ensures that the followers are contained
within a safe or desired operational area defined by the leaders. The leaders can be static or dynamic, allowing for
both fixed and time-varying containment regions [99,100]. The analysis of containment control protocols heavily
relies on Lyapunov stability theory to mathematically guarantee that the followers will converge to and remain
within the leaders’ convex hull [97]. Moreover, neural networks are often employed to handle unknown non-linear
dynamics within the agents, enhancing the model’s applicability to real-world systems with uncertainties. Key
applications include autonomous vehicle platooning [101] and search and rescue operations [102]. Autonomous
vehicle platooning aims to guide a platoon of autonomous vehicles, where the lead vehicles define the path and
boundaries for the followers [101]. Search and rescue operations aim at deploying a team of robots where leaders
can identify and surround a hazardous area, ensuring follower robots operate within this safe zone [102].

Flocking and swarming models: Inspired by the collective motion observed in nature, such as flocks of birds
and schools of fish, flocking and swarming models aim to produce cohesive, coordinated movement from simple,
decentralized rules [103,104]. These models typically involve three fundamental rules for each agent, including
cohesion [105], separation [106], and alignment [107]. Cohesion steers to move toward the average position of local
flockmates [105]. Separation steers to avoid crowding local flockmates [106]. Moreover, alignment [107] steers
toward the average heading of local flockmates. The resulting emergent behavior is a characteristic of complex
dynamical systems, where organized global patterns arise from local interactions without a central coordinator. This
self-organization is a powerful principle for engineering robust and scalable multi-agent systems. Applications are
particularly prevalent in robotics and autonomous systems, such as unmanned aerial vehicle (UAV) swarms [108],
autonomous underwater vehicles (AUVs) [108], and financial modeling [109]. UAV swarms aim at coordinating
large groups of drones for surveillance, environmental monitoring, or entertainment [108]. The study of AUVs
aims at enabling teams of AUVs to collaboratively map the seabed or track marine life [108]. As for the financial
modeling, it focuses on simulating the collective behavior of traders in financial markets to understand market
dynamics and return predictability [109].

Replicator dynamics: In the domain of multi-agent reinforcement learning (MARL) [110,111], a significant
challenge is the non-stationarity of the environment; as one agent learns and changes its policy, the environment
effectively changes for all other agents. This can lead to instability in standard learning algorithms like policy
gradient methods [112]. Replicator dynamics [113], a model originating from evolutionary game theory, offers a
robust framework for learning in such environments. It describes how the prevalence of different strategies in a
population changes over time based on their relative success. The recently developed neural replicator dynamics
(NeuRD) algorithm [114] integrates this classical dynamical model into modern deep reinforcement learning.
NeuRD modifies the standard policy gradient update to mimic the replicator dynamics, allowing agents to adapt
more dynamically and stably to the changing policies of others. This approach has proven effective in complex,
competitive, and cooperative scenarios, with applications including game playing [115], resource allocation [116],
and economic modeling [117]. Game playing focuses on training AI agents to play imperfect information games
like poker and Goofspiel, where they must adapt to the strategies of their opponents [115]. Resource allocation aims

10 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

at managing the allocation of network resources or computational power among competing users or processes [116].
Moreover, economic modeling aims to simulate how competing companies adjust their strategies in a market
environment [117].

In summary, these core models of neural dynamics in multi-agent systems provide a rich theoretical framework
for understanding and designing collective behaviors. Their applications span a wide range of fields, demonstrating
the versatility and power of this approach in addressing complex coordination challenges in MASs.

5. The Application of Neural Dynamics in Deep Learning

Deep learning has revolutionized various fields, including computer vision [118], natural language processing [119],
and speech recognition [120]. However, the theoretical understanding of deep learning models remains limited. Neural
dynamics provides a powerful framework for analyzing and understanding the behavior of deep learning models,
enabling the design of effective deep neural network (DNN) architectures and optimizers. In this section, we first
introduce the theoretical basis for applying neural dynamics to deep learning, and then review the core models and their
applications in deep learning.

5.1. Theoretical Basis: Modeling DNN Architectures and Optimizers as Dynamical Systems

As shown in Figure 4a, DNNs can be effectively analyzed from the perspective of dynamical systems, where
the hidden states through layers of a DNN are treated as the states over time in a dynamical system. Concurrently,
as shown in Figure 4b, the optimization process of DNNs’ parameters can also be modeled as a dynamical system,
where the parameters of the DNN evolve over time based on the gradients of a loss function. This modeling
provides a promising framework for understanding the behavior of DNNs, including their stability, convergence,
and generalization properties [18,121].

Layer Index

Fe
at

ur
e

Feature⇔State Layer Index⇔Time

Neural Dynamics of DNN Architecture

𝒉𝒉𝑡𝑡 = 𝒉𝒉𝑡𝑡−1 + 𝜏𝜏𝑒𝑒(𝒉𝒉𝑡𝑡, 𝑡𝑡)

Neural Dynamics of DNN Optimizer

Parameter⇔State Iteration⇔Time

𝜽𝜽𝑡𝑡 = 𝜽𝜽𝑡𝑡−1 + 𝜏𝜏𝑔𝑔(𝜽𝜽𝑡𝑡, 𝑡𝑡)

（a） （b）

Figure 4. Relationship between deep learning and dynamical systems. (a) The DNN architecture defines a dynamical
system that governs the evolution of hidden states ht through layers, with the vector field e determining the evolution
rule. (b) The optimizer defines a dynamical system that governs the evolution of the model parameter θt during
training, with the vector field g determining the evolution rule.

For the architectures of DNNs, ref. [122] discusses the connection between DNN architectures and dynamical
systems in 2017. Specifically, consider a residual neural network (ResNet) [123] with L layers, where the input to
the network is denoted by x0 ∈ Rn, and the output of the l-th layer is denoted by xl ∈ Rn for l = 1, 2, . . . , L. The
ResNet architecture can be described by the following equation:

xl = xl−1 + f(xl−1,θl), (14)

where f is a nonlinear function representing the transformation applied by the l-th layer, and θl is the parameter of
the l-th layer. By interpreting the layer index l as a discrete time variable, the evolution of the hidden states through
the layers of the ResNet can be viewed as a dynamical system. Specifically, the continuous-time limit of the ResNet
can be described by the following ODE:

dx(t)

dt
= f(x(t), t,θ), (15)

where x(t) is the state of the system at time t, and θ(t) is the parameter of the network at time t. This ODE
describes how the hidden states evolve over time as they pass through the layers of the ResNet. The study in [122]
further discusses how this dynamical system perspective enables the analysis of the stability properties of the
DNN architecture using tools from dynamical system theory. Furthermore, the study in [124] presents new

11 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

forward propagation techniques inspired by the dynamical system theory, which alleviates exploding and vanishing
gradient problems and leads to well-posed learning problems for arbitrarily deep networks. The backbone of
this approach is interpreting deep learning as a parameter estimation problem of non-linear dynamical systems.
Given this formulation, Haber et al. [124] analyze the stability and well-posedness of deep learning and use
this new understanding to develop new network architectures. Moreover, the study in [125] presents that many
architectures of DNNs can be associated with the discretization of differential equations. Specifically, pre-activation
ResNet (PreResNet) [126] corresponds to the forward Euler discretization. PolyNet [127] can be regarded as an
approximation of the backward Euler discretization. FractalNet [128] is similar to the second-order Runge-Kutta
method [129].

As for the optimizers of DNNs, modern deep learning models are typically trained using variants of stochastic
gradient descent (SGD) [130], which uses a randomly selected mini-batch of data to estimate the gradient and
updates the parameter of the DNN iteratively. The update rule of SGD can be written as:

θk+1 = θk − η∇LBk
(θk), (16)

where θk is the parameter of the DNN at iteration k, η is the learning rate, ∇LBk
(θk) is the gradient of the loss

function estimated using the mini-batch Bk. Ref. [131] presents that the optimization process of SGD can be
modeled as a stochastic differential equation (SDE). Specifically, the update rule of SGD (16) can be reformulated as

θt+1 − θt = −η∇L(θt) +
√
ηξt, (17)

where L(θt) is the loss function on the entire dataset at step t, and ξt =
√
η(∇L(θt)−∇LBk

(θt)) is a random
variable representing the noise introduced by the mini-batch sampling. In the continuous-time limit, this update rule
can be described by the following SDE:

dθ(t) = −∇L(θ(t))dt+
√
ηΣ(θ(t))dW (t), (18)

where Σ(θ(t)) is the covariance matrix of the noise, and W (t) is a standard Wiener process. This SDE describes
how the parameters of the DNN evolve over time under the influence of both the deterministic gradient descent and
the stochastic noise from the mini-batch sampling. Literature [131] further discusses how this SDE perspective
enables the analysis of the convergence properties of SGD using tools from dynamical system theory. From
this perspective, Chaudhari et al. [132] demonstrate that SGD minimizes an average potential over the posterior
distribution of weights, subject to an entropic regularization term. This potential, however, is generally not the
original loss function used to compute the gradients. Therefore, while SGD can be viewed as performing variational
inference, it does so for a different objective than the one explicitly defined. Specifically, literature [132] shows that
the continuous-time limit of SGD can be described by the following SDE:

dθ(t) = −∇L(θ(t))dt+
√
2β−1D(θ(t))dW (t), (19)

where D(θ(t)) = (1/N
∑N

k=1 ∇LBk
(θt)∇LBk

(θt)
⊤)−∇L(θt)∇L(θt) is the diffusion matrix representing the

covariance of the gradient noise, and β is the inverse temperature that controls the strength of the gradient noise.
This SDE describes how the parameter of a DNN evolve over time under the influence of both the deterministic
gradient descent and the stochastic gradient noise. Ref. [132] further discusses how this SDE perspective enables
the analysis of the generalization properties of SGD using tools from dynamical systems.

In summary, modeling DNN architectures and optimizers as dynamical systems provides a powerful framework
for analyzing and understanding the behavior of deep learning models. This perspective enables the design of
efficient and effective architectures and optimizers, ultimately advancing the field of deep learning.

5.2. Core Models and Their Applications in Deep Learning

Based on the theoretical basis introduced above, several core models have emerged as foundational paradigms
for applying neural dynamics to deep learning. For the DNN architectures, the most representative models include
the neural ODE [29], neural stochastic differential equation (SDE) [133], and deep equilibrium model (DEQ) [134].
For the optimizers of DNNs, SGD [131] and its variants, such as SGD with momentum [135] and Adam [136],
are widely used in practice. While these gradient-based algorithms offer rapid convergence and computational
efficiency, they are prone to getting trapped in local minima. Meta-heuristic optimization algorithms are known for
their global search capabilities, which can help escape poor local minima; however, they often suffer from high
computational costs and may converge slowly compared to gradient-based algorithms [137,138]. Therefore, inspired

12 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

by the perspective of neural dynamics, gradient-based algorithms are combined with meta-heuristic algorithms to
train DNNs, a technique commonly referred to as collaborative neurodynamic optimization [82,139,140].

Neural ODE: In 2018, literature [29] presents the neural ODE [29], which generalizes the DNN architecture
by allowing for continuous-depth models. In neural ODE, the transformation applied by each layer is replaced by a
continuous-time ODE, enabling the model to adaptively choose the number of layers based on the complexity of the
input data. This approach achieves competitive performance on various tasks while reducing the computational cost.
Specifically, the forward propagation of the neural ODE can be described by

x(T) = x(0) +

∫ T

0

f(x(t), t,θ)dt

= x(0) + ODESolver(f,x(0), 0, T,θ),
(20)

where x(0) is the input to the neural ODE, x(T) is the output of the neural ODE at time T , and ODESolver is a
numerical solver that computes the solution of the ODE defined by f from time 0 to time T . It is worth noting that
while the continuous-time formulation offers theoretical elegance, the practical performance is intrinsically linked
to the discretization scheme of this underlying solver. The choice of numerical method (e.g., Euler methods versus
Runge-Kutta methods) directly impacts the computational error and the model’s ability to handle stiff dynamics
effectively. For the backpropagation of the neural ODEs, literature [29] uses the adjoint sensitivity method to
compute the gradients of the loss function with respect to the parameters θ. This method involves solving a second
ODE backward in time, allowing for the efficient computation of gradients without storing intermediate states. The
adjoint state a(t) is defined as:

a(t) =
∂L

∂x(t)
, (21)

where L is the loss function. The dynamics of the adjoint state can be described by the following ODE:

da(t)

dt
= −a⊤(t)

∂f(x(t), t,θ)

∂x(t)
. (22)

The gradients of the loss function with respect to the parameters θ can be computed as:

∂L
∂θ

= −
∫ T

0

a⊤(t)
∂f(x(t), t,θ)

∂θ
dt. (23)

This approach enables the efficient training of neural ODEs using standard optimization algorithms, such as SGD.
Neural SDE: In 2019, ref. [133] presents the neural SDE, which extends the neural ODE by incorporating

stochasticity into the model. Neural ODE exhibits several advantages over traditional discrete DNNs in terms of
memory efficiency, parameter efficiency, and explicit control of the numerical error. The neural ODE model lacks
some regularization mechanisms commonly employed in discrete DNNs, which has been demonstrated to be crucial
in reducing generalization errors. For example, dropout [141] is a widely used mechanism for preventing overfitting,
which injects Gaussian random noise during the forward propagation [142]. However, due to their deterministic
nature, neural ODEs preclude the direct application of these regularization mechanisms commonly used in discrete
DNNs. Therefore, neural SDE incorporates stochastic noise injection-based regularization mechanisms into neural
ODE to improve generalization performance. Neural SDE models the stochastic noise in the forward propagation
using an SDE, providing theoretical insights into understanding why introducing stochasticity during DNN training
and testing leads to improved generalization performance. Moreover, experiments in [133] show that the stochastic
noise in neural SDE can enhance the robustness of the model against adversarial attacks. Specifically, the forward
propagation of the neural SDE can be described by

dx(t) = f(x(t), t;w)dt+ g(x(t), t;v)dW (t), (24)

where x(t) is the state of the system at time t, f is a drift function representing the deterministic part of the dynamics
parameterized by w, g is a diffusion function representing the stochastic part of the dynamics parameterized by v,
and W (t) is a standard Wiener process which is a continuous time stochastic process such that W (t+ s)−W (s)

follows Gaussian distribution with mean zero and variance t. Equation (24) describes how the hidden states evolve
over time under the influence of both deterministic and stochastic components. It can include many existing noise
injection mechanisms with residual connections under different forms of g. For example, when g(x(t), t;v) = σx(t)

with σ > 0 being a constant, the neural SDE reduces to the case of multiplicative noise injection, which is commonly

13 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

used in dropout. For the backpropagation of the neural SDE, the study in [133] extends the adjoint sensitivity
method used in neural ODE to compute the gradients of the loss function with respect to the parameters w and v.

DEQ: In 2019, literature [134] presents the deep equilibrium model (DEQ), which is an implicit deep learning
model that defines the hidden states of the network as the fixed points of a non-linear dynamical system. Historically,
this concept traces its lineage back to Hopfield networks [17], which characterized memory retrieval as the system’s
convergence to an energy minimum. DEQs generalize this foundational principle by treating the entire depth
of a neural network not as a fixed sequence of layers, but as a continuous fixed-point iteration problem. The
motivation of DEQ is based on an observation that the hidden states of DNNs converge towards some fixed points,
and DEQ is presented to find these equilibrium points via root-finding. DEQ can be viewed as an extension of
the traditional DNN, where the depth of the network is effectively infinite, and the hidden states are obtained by
solving a fixed-point equation. This approach can significantly improve memory efficiency, maintaining constant
memory usage during training of large-scale sequence models. Experiments demonstrate that DEQ allows for
efficient training and inference while maintaining competitive performance on various sequence modeling tasks.
Specifically, DEQ directly computes the fixed point z∗

1:T of the following non-linear dynamical system:

z∗
1:T = fθ(z

∗
1:T ,x1:T), (25)

where z∗
1:T is the fixed point of the dynamical system defined by a non-linear transformation fθ, x1:T is the input

sequence to the DEQ, T is the sequence length, and θ is the parameter of the DEQ. The fixed point z∗ can be
computed using root-finding algorithms such as Newton’s method [143] and Broyden’s method [144]. For the
backpropagation of DEQ, ref. [134] uses the implicit function theorem to compute the gradients of the loss function
with respect to the parameters θ. This method involves solving a linear system, enabling the efficient computation
of gradients without storing intermediate states. The computation method of the gradients is independent of the
root-finding algorithm used to compute the fixed point or the internal structure of the transformation fθ, and
thus does not require any storage of the intermediate hidden states, which is necessary for backpropagation in
conventional deep networks. Therefore, DEQ can achieve constant memory usage during training and inference.

Collaborative neurodynamic optimization: The concept of collaborative neurodynamic optimization is notably
advanced by literature [82] for multi-objective distributed optimization. The framework presented by [82] employs a
system of collaborative neural networks, with each network dedicated to a specific objective function and its associated
constraints, to identify Pareto optimal solutions. Building upon this collaborative approach, ref. [139] introduces
a neural solution tailored for time-varying nonconvex optimization with noise rejection. Their algorithm uniquely
integrates evolutionary computation with neurodynamic methods, utilizing a meta-heuristic rule alongside a robust,
gradient-based neural solution to effectively manage various forms of noise. More recently, the application of this
framework is further expanded by literature [140] to the domain of index tracking and enhanced index tracking. To
overcome the inherent nonconvexity of the objective function in these financial problems, they implemented a sparse
Bayesian regression algorithm using multiple RNNs within the collaborative neurodynamic optimization structure.

In summary, these core models of neural dynamics in deep learning provide a rich theoretical framework for
understanding and designing deep learning architectures and optimizers. Their applications span a wide range of
fields, demonstrating the versatility of this approach in advancing the field of deep learning.

6. Future Directions

The application of neural dynamics in control systems, MASs, and deep learning is a rapidly evolving field with
numerous promising directions for future research. Here, we outline several potential avenues for further exploration:

Integration of neural dynamics with reinforcement learning: The integration of neural dynamics with
RL presents a promising avenue for future research. By combining the strengths of both approaches, it is possible
to develop more robust and adaptive control strategies for complex systems. Future work could explore the use
of neural dynamics to model the environment and the agent’s behavior, enabling more efficient exploration and
exploitation in RL algorithms [145]. Crucially, standard RL often lacks rigorous safety assurances. Future research
should focus on integrating control-theoretic tools intrinsic to neural dynamics, such as Lyapunov stability analysis
and barrier functions, into RL frameworks. This integration paves the way for “safe RL”, where system constraints
and stability are mathematically certified even during the learning process, addressing a fundamental limitation of
current data-driven approaches.

Hybrid models combining neural dynamics with traditional control methods: The development of
hybrid models that combine neural dynamics with traditional control methods, such as MPC and adaptive control
systems [146,147], could lead to more effective and efficient control strategies. Future research could explore how
to integrate these approaches to leverage the strengths of both, potentially leading to improved performance in a

14 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

wide range of applications.
Scalability and robustness in multi-agent systems: As MASs become increasingly complex and large-scale,

ensuring scalability and robustness remains a significant challenge [148, 149]. Future research could focus on
developing neural dynamic models that can effectively handle large numbers of agents while maintaining stability
and performance. This may involve exploring new architectures, communication protocols, and learning algorithms
that are specifically designed for large-scale MASs.

Neural dynamics for explainable AI: As deep learning models become more complex, there is a growing
need for explainable AI techniques [150–152] that can provide insights into the decision-making processes of these
models. Future research could investigate how neural dynamics can be leveraged to enhance the interpretability and
transparency of deep learning models, enabling users to understand and trust their predictions.

Neural dynamics on hardware and edge computing: While current research focuses heavily on theoretical
frameworks and software simulations, the physical realization of neural dynamics is critical for real-world deploy-
ment. Future research should investigate hardware-software co-design strategies to implement continuous-time
neural dynamics on resource-constrained edge devices. A promising direction is the integration of neural dynamics
with neuromorphic computing architectures, which can inherently support the parallel and event-driven nature of
these models. This would significantly reduce latency and power consumption, enabling efficient embedded AI
solutions for time-sensitive applications such as autonomous robotics and distributed sensor networks.

In summary, the future directions outlined above highlight the potential for continued advancements in
the application of neural dynamics in control systems, MASs, and deep learning. By exploring these avenues,
researchers can contribute to the development of more effective, efficient, and interpretable models that can address
a wide range of challenges in these fields.

7. Conclusions

In this survey, we have examined how neural dynamics serves as a unifying bridge between the fields of
control, represented by control systems and MASs, and computation, represented by deep learning. We have
begun by introducing the theoretical basis for applying neural dynamics to these fields, highlighting how control
systems, MASs, and deep learning models can be modeled as dynamical systems. Moreover, we have reviewed the
core models and their applications in control systems, including MPC and RL-based control. For MASs, we have
discussed models such as consensus protocols, containment control, flocking and swarming models, and replicator
dynamics. In the context of deep learning, we have discussed models such as neural ODEs, neural SDEs, DEQs,
and collaborative neurodynamic optimization. Finally, we have outlined several promising directions for future
research in these rapidly evolving fields. By leveraging the strengths of neural dynamics, researchers can continue
to advance the state-of-the-art models in control systems, MASs, and deep learning, ultimately leading to effective
and efficient models that can address a wide range of challenges.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

Use of AI and AI-Assisted Technologies

During the preparation of this work, the author used Gemini 3.0 to improve the readability. After using this
tool/service, the author reviewed and edited the content as needed and takes full responsibility for the content of the
published article.

References

1. Awan, A.U.; Zamani, M. Reduced-Order Gaussian Processes for Partially Unknown Nonlinear Control Systems. IEEE
Trans. Autom. Control. 2025,70, 6893–6900.

2. Xie, M.; An, B.; Jia, X. Simultaneous Update of Sensing and Control DATA Using Free-Ride Codes in Vehicular Networks:
An Age and Energy Perspective. Comput. Netw. 2024, 252, 110667.

15 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

3. Xiang, Z.; Guo, Y. Controlling Melody Structures in Automatic Game Soundtrack Compositions With Adversarial Learning
Guided Gaussian Mixture Models. IEEE Trans. Games 2021, 13, 193–204.

4. Liu, H.; Guo, D.; Cangelosi, A. Embodied Intelligence: A Synergy of Morphology, Action, Perception and Learning. ACM
Comput. Surv. 2025,57, 1–36.

5. Ren, L.; Dong, J.; Liu, S.; et al. Embodied Intelligence Toward Future Smart Manufacturing in the Era of AI Foundation
Model. IEEE/ASME Trans. Mechatron. 2025, 30, 2632–2642.

6. Shen, T.; Sun, J.; Kong, S.; et al. The Journey/DAO/TAO of Embodied Intelligence: From Large Models to Foundation
Intelligence and Parallel Intelligence. IEEE/CAA J. Autom. Sin. 2024, 11, 1313–1316.

7. Li, J.; Guan, Y.; Deng, T.; et al. Periodic-Noise-Tolerant Neurodynamic Approach for kWTA Operation Applied to
Opinions Evolution. Neural Netw. 2025, 191, 107839.

8. Wang, C.; Wang, Y.; Yuan, Y.; et al. Joint Computation Offloading and Resource Allocation for End-Edge Collaboration in
Internet of Vehicles via Multi-Agent Reinforcement Learning. Neural Netw. 2024, 179, 106621.

9. He, J.; Treude, C.; Lo, D. LLM-Based Multi-Agent Systems for Software Engineering: Literature Review, Vision, and the
Road Ahead. ACM Trans. Softw. Eng. Methodol. 2025,34, 1–30.

10. Kumar, P. Large Language Models (LLMs): Survey, Technical Frameworks, and Future Challenges. Artif. Intell. Rev.
2024,57, 260.

11. Mudrik, N.; Chen, Y.; Yezerets, E.; et al. Decomposed Linear Dynamical Systems (dLDS) for Learning the Latent
Components of Neural Dynamics. J. Mach. Learn. Res. 2024,25, 1–44.

12. Tsuda, I. Toward an Interpretation of Dynamic Neural Activity in Terms of Chaotic Dynamical Systems. Behav. Brain Sci.
2001,24, 793–810.

13. Chialvo, D.R. Emergent Complex neural Dynamics. Nat. Phys. 2010,6, 744–750.
14. Mondié, S.; Egorov, A.; Ortiz, R. Lyapunov Stability Tests for Integral Delay Systems. Annu. Rev. Control. 2025,59, 100985.
15. Hu, J.; Hu, Y.; Chen, W.; et al. Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective. Adv.

Neural Inf. Process. Syst. 2024, 37, 20786–20818.
16. Dueñas, J.; Núñez, C.; Obaya, R. Bifurcation Theory of Attractors and Minimal Sets in d-Concave Nonautonomous Scalar

Ordinary Differential Equations. J. Differ. Equ. 2023, 361, 138–182.
17. Zhang, S.; Chen, C.; Zhang, Y.; et al. Multidirectional Multidouble-Scroll Hopfield Neural Network With Application to

Image Encryption. IEEE Trans. Syst. Man Cybern. Syst. 2025,55, 735–746.
18. Liu, G.-H.; Theodorou, E.A. Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective.

arXiv 2019, arXiv.1908.10920.
19. Coombes, S.; Wedgwood, K.C.A. Neurodynamics: An Applied Mathematics Perspective, 1st ed.; Springer: Cham,

Switzerland, 2023.
20. Stuart, A.M. Numerical Analysis of DYNAMICAL systems. Acta Numer. 1994, 3, 467–572.
21. Colonius, F.; Kliemann, W. Some Aspects of Control Systems as Dynamical Systems. J. Dyn. Differ. Equ. 1993,5, 469–494.
22. Yu, W.; Chen, G.; Cao, M. Some Necessary and Sufficient Conditions for Second-Order Consensus in Multi-Agent

Dynamical Systems. Automatica 2010,46, 1089–1095.
23. Bahri, Y.; Kadmon, J.; Pennington, J.; et al. Statistical Mechanics of Deep Learning. Annu. Rev. Condens. Matter Phys.

2020, 11, 501–528.
24. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd ed.;

Academic Press: Cambridge, MA, USA, 2013.
25. Hartman, P. Ordinary Differential Equations, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002.
26. Hu, Y.; Abu-Dakka, F.J.; Chen, F.; et al. Fusion Dynamical Systems With Machine Learning in Imitation Learning: A

Comprehensive Overview. Inf. Fusion 2024, 108, 102379.
27. Chakraborty, D.; Chung, S.W.; Arcomano, T.; et al. Divide and Conquer: Learning Chaotic Dynamical Systems With

Multistep Penalty Neural Ordinary Differential Equations. Comput. Methods Appl. Mech. Eng. 2024, 432, 117442.
28. Maranhão, D.M.; Medrano-T, R.O. Periodicity in the Asymmetrical Quartic Map. Chaos Solitons Fractals 2024, 186, 115204.
29. Chen, R.T.Q.; Rubanova, Y.; Bettencourt, J.; et al. Neural Ordinary Differential Equations. In Proceedings of the Advances

in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 1–13.
30. Jin, Y.; Hou, L.; Zhong, S. Extended Dynamic Mode Decomposition With Invertible Dictionary Learning. Neural Netw.

2024, 173, 106177.
31. Volkmann, E.; Brändle, A.; Durstewitz, D.; et al. A Scalable Generative Model for Dynamical System Reconstruction

From Neuroimaging Data. Adv. Neural Inf. Process. Syst. 2024, 37, 80328–80362.
32. Glad, T.; Ljung, L. Control Theory, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000.
33. Bernauer, C.; Leitner, P.; Zapata, A.; et al. Segmentation-Based Closed-Loop Layer Height Control for Enhancing Stability

and Dimensional Accuracy in Wire-Based Laser Metal Deposition. Robot. Comput. Integr. Manuf. 2024, 86, 102683.
34. Shim, H.; Jo, N.H. An Almost Necessary and Sufficient Condition for Robust Stability of Closed-Loop Systems With

Disturbance Observer. Automatica 2009, 45, 296–299.
35. Jain, S.; Garg, V. A Review of Open Loop Control Strategies for Shades, Blinds and Integrated Lighting by Use of

16 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

Real-Time Daylight Prediction Methods. Build. Environ. 2018, 135, 352–364.
36. Salo, M.; Tuusa, H. A Novel Open-Loop Control Method for a Current-Source Active Power Filter. IEEE Trans. Ind.

Electron. 2003, 50, 313–321.
37. Vengsungnle, P.; Poojeera, S.; Srichat, A.; et al. Optimized Performance of Closed Loop Control Electromagnetic Field for

the Electric Generators With Energy Storage. Eng. Sci. 2024,30, 1173.
38. Rosen, R. Dynamical Systems and Control Theory. In Optimality Principles in Biology; Springer: New York, NK, USA,

1967; pp. 155–165.
39. Grüne, L. On the Relation Between Discounted and Average Optimal Value Functions. J. Differ. Equ. 1998, 148, 65–99.
40. Baratchart, L.; Chyba, M.; Pomet, J.-B. A Grobman-Hartman Theorem for Control Systems. J. Dyn. Differ. Equ. 2007, 19,

75–107.
41. Zhong, X.; Chen, Z.; Huang, Y. Equi-Invariability, Bounded Invariance Complexity and L-Stability for Control Systems.

Sci. China Math. 2021, 64, 2275–2294.
42. Yang, R.; Chen, E.; Yang, J.; et al. Bowen’s Equations for Invariance Pressure of Control Systems. SIAM J. Control. Optim.

2025, 63, 1104–1128. https://doi.org/10.1137/23M1607684.
43. Course, K.; Nair, P.B. State Estimation of a Physical System With Unknown Governing Equations. Nature 2023, 662,

261–267.
44. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering Governing Equations From Data by Sparse Identification of Nonlinear

Dynamical Systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937.
45. Jia, D.; Zhou, X.; Li, S.; et al. Governing Equation Discovery Based on Causal Graph for Nonlinear Dynamic Systems.

Mach. Learn. Sci. Technol. 2023, 4, 045008.
46. Schwenzer, M.; Ay, M.; Bergs, T.; et al. Review on Model Predictive Control: An Engineering Perspective. Int. J. Adv.

Manuf. Technol. 2021, 117, 1327–1349.
47. Köhler, J.; Müller, M.A.; Allgöwer, F. Analysis and Design of Model Predictive Control Frameworks for Dynamic

Operation—An Overview. Annu. Rev. Control. 2024, 57, 100929.
48. Abdelghany, M.B.; Al-Durra, A.; Zeineldin, H.H.; et al. A Coordinated Multitimescale Model Predictive Control for

Output Power Smoothing in Hybrid Microgrid Incorporating Hydrogen Energy Storage. IEEE Trans. Ind. Inform. 2024,
20, 10987–11001.

49. Meyn, S. Control Systems and Reinforcement Learning, 1st ed.; Cambridge University Press: Cambridge, UK, 2022.
50. Kuhnle, A.; Kaiser, J.-P.; Theiß, F.; et al. Designing an Adaptive Production Control System Using Reinforcement Learning.

J. Intell. Manuf. 2021,32, 855–876.
51. Kiumarsi, B.; Vamvoudakis, K.G.; Modares, H.; et al. Optimal and Autonomous Control Using Reinforcement Learning:

A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2042–2062.
52. Chen, X.; Heidarinejad, M.; Liu, J.; et al. Distributed Economic MPC: Application to a Nonlinear Chemical Process

Network. J. Process Control. 2012, 22, 689–699.
53. Cavone, G.; Bozza, A.; Carli, R.; et al. MPC-Based Process Control of Deep Drawing: An Industry 4.0 Case Study in

Automotive. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1586–1598.
54. Huang, K.; Wei, K.; Li, F.; et al. LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process

Control. IEEE Trans. Ind. Electron. 2023, 70, 11544.
55. Ma, D.; Lv, J.; Xu, C.; et al. Logic-Adaptive Discrete Neural Dynamics for Distributed Cooperative Control of Multi-Robot

Systems via Minimum Infinity Norm Optimization. IEEE Trans. Fuzzy Syst. 2025, 33, 1–10.
56. Li, X.; Ren, X.; Zhang, Z.; et al. A Varying-Parameter Complementary Neural Network for Multi-Robot Tracking and

Formation via Model Predictive Control. Neurocomputing 2024, 609, 128384.
57. Tang, Z.; Zhang, Y.; Ming, L. Novel Snap-Layer MMPC Scheme via Neural Dynamics Equivalency and Solver for

Redundant Robot Arms With Five-Layer Physical Limits. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 3534–3546.
58. Li, S.; Zhou, M.; Luo, X. Modified Primal-Dual Neural Networks for Motion Control of Redundant Manipulators With

Dynamic Rejection of Harmonic Noises. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4791–4801.
59. Cao, Z.; Xiao, Q.; Huang, R.; et al. Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience

Replay. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 208–217.
60. Yan, J.; Jin, L.; Hu, B. Data-Driven Model Predictive Control for Redundant Manipulators With Unknown Model. IEEE

Trans. Cybern. 2024, 54, 5901–5911.
61. Iftikhar, A.; Ghazanfar, M.A.; Ayub, M.; et al. A Reinforcement Learning Recommender System Using Bi-Clustering and

Markov Decision Process. Expert Syst. Appl. 2024, 237, 121541.
62. Li, G.; Li, X.; Li, J.; et al. PTMB: An Online Satellite Task Scheduling Framework Based on Pre-Trained Markov Decision

Process for Multi-Task Scenario. Knowl.-Based Syst. 2024, 284, 111339.
63. Chebotar, Y.; Hausman, K.; Zhang, M.; et al. Combining Model-Based and Model-Free Updates For Trajectory-Centric

Reinforcement Learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11
August 2017; pp. 703–711.

64. Gullapalli, V.; Franklin, J.; Benbrahim, H. Acquiring Robot Skills via Reinforcement Learning. IEEE Control. Syst. Mag.

17 of 20

https://doi.org/10.1137/23M1607684

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

1994, 14, 13–24.
65. Raffin, A.; Kober, J.; Stulp, F. Smooth Exploration for Robotic Reinforcement Learning. In Proceedings of the 6th

Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2022; pp. 1634–1644.
66. Sallab, A.E.; Abdou, M.; Perot, E.; et al. Deep Reinforcement Learning Framework for Autonomous Driving. arXiv 2017,

arXiv:1704.02532.
67. Zeng, Z.; Wang, J.; Liao, X. Global Exponential Stability of a General Class of Recurrent Neural Networks With

Time-Varying Delays. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 2003, 50, 1353–1358.
68. Li, Z.; Li, S. Recursive Recurrent Neural Network: A Novel Model for Manipulator Control With Different Levels of

Physical Constraints. CAAI Trans. Intell. Technol. 2023, 8, 622–634,
69. Doostmohammadian, M.; Aghasi, A.; Pirani, M.; et al. Survey of Distributed Algorithms for Resource Allocation Over

Multi-Agent Systems. Annu. Rev. Control. 2025, 59, 100983.
70. Su, H.; Chen, M.Z.Q.; Lam, J.; et al. Semi-Global Leader-Following Consensus of Linear Multi-Agent Systems With Input

Saturation via Low Gain Feedback. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 1881–1889.
71. Li, K.; Liu, Q.; Zeng, Z. Multiagent System With Periodic and Event-Triggered Communications for Solving Distributed

Resource Allocation Problem. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 6245–6256.
72. Kalyva, D.; Psillakis, H.E. Distributed Control of a Mobile Robot Multi-AGENT System for Nash Equilibrium Seeking

With Sampled Neighbor Information. Automatica 2024, 166, 111712.
73. Su, H.; Zhang, J.; Zeng, Z. Formation-Containment Control of Multi-Robot Systems Under a Stochastic Sampling

Mechanism. Sci. China Technol. Sci. 2020, 63, 1025–1034.
74. Sun, Z.; Yu, Z.; Guo, B.; et al. Integrated Sensing and Communication for Effective Multi-Agent Cooperation Systems.

IEEE Commun. Mag. 2024, 62, 68–73.
75. Caprioli, C. The Integration of Multi-Agent System and Multicriteria Analysis for Developing Participatory Planning

Alternatives in Urban Contexts. Environ. Impact Assess. Rev. 2025, 113, 107855.
76. Izmirlioglu, Y.; Pham, L.; Son, T.C.; et al. A Survey of Multi-Agent Systems for Smartgrids. Energies 2024, 17, 3620.
77. Singh, A.; Raut, G.; Choudhary, A. Multi-Agent Collaborative Perception for Robotic Fleet: A Systematic Review. In

Proceedings of the European Conference on Computer Vision, Dublin, Ireland, 22–23 October 2025; pp. 1–15.
78. Hou, X.; Wang, J.; Du, J.; et al. Distributed Machine Learning for Autonomous Agent Swarm: A Survey. IEEE Commun.

Surv. Tutor. 2025, 28, 1597–1636
79. Katsikis, V.N.; Liao, B.; Hua, C. Survey of Neurodynamic Methods for Control and Computation in Multi-Agent Systems.

Symmetry 2025, 17, 936.
80. Deng, Q.; Zhang, Y. Distributed Near-Optimal Consensus of Double-Integrator Multi-Agent Systems With Input Constraints.

In Proceedings of the International Joint Conference on Neural Networks, Shenzhen, China, 18–22 July 2021; pp. 1–6.
81. Deng, Q.; Liu, K.; Zhang, Y. Privacy-Preserving Consensus of Double-Integrator Multi-Agent Systems With Input

Constraints. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 4119–4129.
82. Yang, S.; Liu, Q.; Wang, J. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 981–992.
83. Leonard, N.E. Multi-Agent System Dynamics: Bifurcation and Behavior of Animal Groups. Annu. Rev. Control. 2014, 38,

171–183.
84. Olfati-Saber, R.; Murray, R. Consensus Problems in Networks of Agents With Switching Topology and Time-Delays.

IEEE Trans. Autom. Control. 2004, 49, 1520–1533.
85. Le, X.; Chen, S.; Yan, Z.; et al. A Neurodynamic Approach to Distributed Optimization With Globally Coupled Constraints.

IEEE Trans. Cybern. 2018, 48, 3149–3158.
86. Li, H.; Qin, S. A Neurodynamic Approach for Solving Time-Dependent Nonlinear Equation System: A Distributed

Optimization Perspective. IEEE Trans. Ind. Inform. 2024, 20, 10031–10039.
87. Li, Z.; Wen, G.; Duan, Z.; et al. Designing Fully Distributed Consensus Protocols for Linear Multi-Agent Systems With

Directed Graphs. IEEE Trans. Autom. Control. 2015, 60, 1152–1157.
88. Lü, H.; He, W.; Han, Q.-L.; et al. Finite-Time Containment Control for Nonlinear Multi-Agent Systems With External

Disturbances. Inf. Sci. 2020, 512, 338–351.
89. Sar, G.K.; Ghosh, D. Flocking and Swarming in a Multi-Agent Dynamical System. Chaos Interdiscip. J. Nonlinear Sci.

2023, 33, 12306.
90. Khaw, Y.N.; Kowalczyk, R.; Vo, Q.B.; et al. Transition-State Replicator Dynamics. Expert Syst. Appl. 2021, 182, 115254.
91. Amirkhani, A.; Barshooi, A.H. Consensus in Multi-Agent Systems: A Review. Artif. Intell. Rev. 2022, 55, 3897–3935.
92. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE

2007, 95, 215–233.
93. Lin, L.; Cao, J.; Lam, J.; et al. Leader-Follower Consensus Over Finite Fields. IEEE Trans. Autom. Control. 2024, 69,

4718–4725.
94. Thunberg, J.; Song, W.; Montijano, E.; et al. Distributed Attitude Synchronization Control of Multi-Agent Systems With

Switching Topologies. Automatica 2014, 50, 832–840.

18 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

95. Wu, J.; Yuan, S.; Ji, S.; et al. Multi-Agent System Design and Evaluation for Collaborative Wireless Sensor Network in
Large Structure Health Monitoring. Expert Syst. Appl. 2010, 37, 2028–2036.

96. Ota, J. Multi-Agent Robot Systems as Distributed Autonomous Systems. Adv. Eng. Inform. 2006, 20, 59–70.
97. Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; et al. Containment Control in Mobile Networks. IEEE Trans. Autom. Control.

2008, 53, 1972–1975.
98. Ji, Z.; Wang, Z.; Lin, H.; et al. Interconnection Topologies for Multi-Agent Coordination Under Leader-Follower

Framework. Automatica 2009, 45, 2857–2863.
99. Liang, H.; Zhou, Y.; Ma, H.; et al. Adaptive Distributed Observer Approach for Cooperative Containment Control of

Nonidentical Networks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 299–307.
100. Li, J.; Ren, W.; Xu, S. Distributed Containment Control With Multiple Dynamic Leaders for Double-Integrator Dynamics

Using Only Position Measurements. IEEE Trans. Autom. Control. 2012, 57, 1553–1559.
101. Dai, S.; Li, S.; Tang, H.;et al. MARP: A Cooperative Multiagent DRL System for Connected Autonomous Vehicle

Platooning. IEEE Internet Things J. 2024, 11, 32454–32463.
102. Allouche, M.K.; Boukhtouta, A. Multi-Agent Coordination by Temporal Plan Fusion: Application to Combat Search and

Rescue. Inf. Fusion 2010, 11, 220–232.
103. Olfati-Saber, R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans. Autom. Control. 2006,

51, 401–420.
104. Chen, C.; Hou, Y.; Ong, Y. A Conceptual Modeling of Flocking-Regulated Multi-Agent Reinforcement Learning. In

Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp.
5256–5262.

105. Li, C.; Yang, Y.; Jiang, G.; et al. A Flocking Control Algorithm of Multi-Agent Systems Based on Cohesion of the Potential
Function. Complex Intell. Syst. 2024, 10, 2585–2604.

106. Brittain, M.; Wei, P. Scalable Autonomous Separation Assurance With Heterogeneous Multi-Agent Reinforcement
Learning. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2837–2848.

107. Zhang, H.-T.; Zhai, C.; Chen, Z. A General Alignment Repulsion Algorithm for Flocking of Multi-Agent Systems. IEEE
Trans. Autom. Control. 2011, 56, 430–435.

108. Tahir, A.; Böling, J.; Haghbayan, M.-H.; et al. Swarms of Unmanned Aerial Vehicles—A Survey. J. Ind. Inf. Integr. 2019,
16, 100106.

109. Chen, T.-T.; Zheng, B.; Li, Y.; et al. New Approaches in Agent-Based Modeling of Complex Financial Systems. Front.
Phys. 2017, 12, 128905.

110. Foerster, J.; Assael, I.A.; de Freitas, N.; et al. Learning to Communicate With Deep Multi-Agent Reinforcement Learning.
Adv. Neural Inf. Process. Syst. 2016, 29, 2145–2153.

111. Wen, M.; Kuba, J.; Lin, R.; et al. Multi-Agent Reinforcement Learning is a Sequence Modeling Problem. Adv. Neural Inf.
Process. Syst. 2022, 35, 16509–16521.

112. Zhang, J.; Koppel, A.; Bedi, A.S.; et al. Variational Policy Gradient Method for Reinforcement Learning With General
Utilities. Adv. Neural Inf. Process. Syst. 2020, 33, 4572–4583.

113. Tan, S.; Wang, Y. Graphical Nash Equilibria and Replicator Dynamics on Complex Networks. IEEE Trans. Neural Netw.
Learn. Syst. 2020, 31, 1831–1842.

114. Hennes, D.; Morrill, D.; Omidshafiei, S.; et al. Neural Replicator Dynamics: Multiagent Learning via Hedging Policy
Gradients. In Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems, Auckland,
New Zealand, 9–13 May 2020; pp. 492–501.

115. Roca, C.P.; Cuesta, J.A.; Sánchez, A. Evolutionary Game Theory: Temporal and Spatial Effects Beyond Replicator
Dynamics. Phys. Life Rev. 2009, 6, 208–249.

116. Wang, Q.; He, N.; Chen, X. Replicator Dynamics for Public Goods Game With Resource Allocation in Large Populations.
Appl. Math. Comput. 2018, 328, 162–170.

117. Branch, W.A.; McGough, B. Replicator Dynamics in a Cobweb Model With Rationally Heterogeneous Expectations. J.
Econ. Behav. Organ. 2008, 65, 224–244.

118. Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; et al. Deep Learning Advances in Computer Vision With 3D Data: A
Survey. ACM Comput. Surv. 2017, 50, 20.

119. Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 32, 604–624.

120. Kheddar, H.; Hemis, M.; Himeur, Y. Automatic Speech Recognition Using Advanced Deep Learning Approaches: A
Survey. Inf. Fusion 2024, 109, 102422.

121. Zeng, Z.; Wang, J.; Liao, X. Stability Analysis of Delayed Cellular Neural Networks Described Using Cloning Templates.
IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2313–2324.

122. Weinan, E. A Proposal on Machine Learning via Dynamical Systems. Commun. Math. Stat. 2017, 5, 1–11.
123. He, K.; Zhang, X.; Ren, S.; et al. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19 of 20

Jin J. Artif. Intell. Autom. 2026, 1(1), 1

124. Haber, E.; Ruthotto, L. Stable Architectures for Deep Neural Networks. Inverse Probl. 2017, 34, 014004,
125. Lu, Y.; Zhong, A.; Li, Q.; et al. Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical

Differential Equations. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 2018; pp. 3276–3285.

126. He, K.; Zhang, X.; Ren, S.; et al. Identity Mappings in Deep Residual Networks. In Proceedings of the European Conference
on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645.

127. Zhang, X.; Li, Z.; Loy, C.C.; et al. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
3900–3908.

128. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-Deep Neural Networks Without Residuals, In Proceedings of
the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016; pp. 1–11.

129. Zhang, Z.; Zheng, L.; Li, L.; et al. A New Finite-Time Varying-Parameter Convergent-Differential Neural-Network for
Solving Nonlinear and Nonconvex Optimization Problems. Neurocomputing 2018, 319, 74–83.

130. Sclocchi, A.; Wyart, M. On the Different Regimes of Stochastic Gradient Descent. Proc. Natl. Acad. Sci. USA 2024, 121,
e2316301121.

131. Li, Q.; Tai, C. Stochastic Modified Equations and Adaptive Stochastic Gradient Algorithms. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2101–2110.

132. Chaudhari, P.; Soatto, S. Stochastic Gradient Descent Performs Variational Inference, Converges to Limit Cycles for Deep
Networks. In Proceedings of the Proceedings of the Information Theory and Applications Workshop, San Diego, CA, USA,
11–16 February 2018; pp. 1–10.

133. Liu, X.; Xiao, T.; Si, S.; et al. Neural SDE: Stabilizing Neural Ode Networks With Stochastic Noise. arXiv 2019,
arXiv:1906.02355

134. Bai, S.; Kolter, J.Z.; Koltun, V. Deep Equilibrium Models. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 690–701.

135. Sutskever, I.; Martens, J.; Dahl, G.; et al. On the Importance of Initialization and Momentum in Deep Learning. Proc. Int.
Conf. Mach. Learn. 2013, 28, 1139–1147.

136. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on
Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

137. Si, T.; Bagchi, J.; Miranda, P.B. Artificial Neural Network Training Using Metaheuristics for Medical Data Classification:
An Experimental Study. Expert Syst. Appl. 2022, 193, 116423.

138. Hu, X.; Wang, J. Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the
Projection Neural Network. IEEE Trans. Neural Netw. 2006, 17, 1487–1499.

139. Wei, L.; Jin, L. Collaborative Neural Solution for Time-Varying Nonconvex Optimization With Noise Rejection. IEEE
Trans. Emerg. Top. Comput. Intell. 2024, 8, 2935–2948.

140. Zhang, F.; Wang, J. Index Tracking via Sparse Bayesian Regression and Collaborative Neurodynamic Optimization. IEEE
Trans. Cybern. 2025, 55, 1238–1249.

141. Zhang, Z.; Xu, Z.-Q.J. Implicit Regularization of Dropout. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4206–4217.
142. Huang, W.; Cui, Y.; Li, H.; et al. Practical Probabilistic Model-Based Reinforcement Learning by Integrating Dropout

Uncertainty and Trajectory Sampling. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 12812–12826.
143. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 2018, 60, 223–311.
144. Broyden, C. A Class of Methods for Solving Nonlinear Simultaneous Equations. Math. Comput. 1965, 6, 577–593.
145. Zhu, Q.; Wu, X.; Lin, Q.; et al. Two-Stage Evolutionary Reinforcement Learning for Enhancing Exploration and

Exploitation. Proc. AAAI Conf. Artif. Intell. 2024, 38, 20892–20900.
146. Sui, S.; Chen, C.L.P.; Tong, S. Command Filter-Based Predefined Time Adaptive Control for Nonlinear Systems. IEEE

Trans. Autom. Control. 2024, 69, 7863–7870.
147. Zhang, S.; Duan, G. Robust Adaptive Control of Uncertain Fully Actuated Systems With Unknown Parameters and

Perturbed Input Matrices. IEEE Trans. Cybern. 2025, 55, 927–938.
148. Golmisheh, F.M.; Shamaghdari, S. Optimal Robust Formation of Multi-Agent Systems as Adversarial Graphical Apprentice

Games With Inverse Reinforcement Learning. IEEE Trans. Autom. Sci. Eng. 2025, 22, 4867–4880,
149. Iervolino, R.; Manfredi, S. Global Stability of Multi-Agent Systems With Heterogeneous Transmission and Perception

Functions. Automatica 2024, 162, 111510.
150. Wani, N.A.; Kumar, R.; Mamta Bedi, J.; et al. Explainable AI-Driven IoMT Fusion: Unravelling Techniques, Opportunities,

and Challenges With Explainable AI in Healthcare. Information Fusion 2024, 110, 102472.
151. Černevičienė, J.; Kabašinskas, A. Explainable Artificial Intelligence (XAI) in Finance: A Systematic Literature Review.

Artif. Intell. Rev. 2024, 57, 216.
152. Bennetot, A.; Donadello, I.; Haouari, A.E.Q.E.; et al. A Practical Tutorial on Explainable AI Techniques. ACM Comput.

Surv. 2024, 57, 1–44.

20 of 20

	Introduction
	Neural Dynamics
	Neural Dynamics and Dynamical Systems
	Differential Equations and Dynamical Systems

	Application of Neural Dynamics in Control Systems
	Theoretical Basis: Modeling Control Systems as Dynamical Systems
	Core Models and Their Applications in Control Theory

	Application of Neural Dynamics in Multi-Agent Systems
	Theoretical Basis: Modeling Multi-Agent Systems as Dynamical Systems
	Core Models and Their Applications in Multi-Agent Systems

	The Application of Neural Dynamics in Deep Learning
	Theoretical Basis: Modeling DNN Architectures and Optimizers as Dynamical Systems
	Core Models and Their Applications in Deep Learning

	Future Directions
	Conclusions

