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Abstract: Carbon emissions affect sustainable urban development, and cities are 
the main carbon emission factors. To improve carbon performance from the 
perspective of urban density, the temporal and spatial evolution characteristics and 
associations, and indicative thresholds of urban density and carbon performance in 
the Chengdu-Chongqing urban agglomeration are analyzed by combining Slack 
Based Measure-Data Envelopment Analysis (SBM-DEA), Standard Deviation 
Ellipse Analysis, Regression Model, and Spatial Autocorrelation in this paper. The 
results show that: (1) there is no obvious trend in population density, road density 
increases faster than building density, and carbon performance shows a decreasing 
and then increasing trend. (2) The center of gravity of building density and 
population density migrates towards Chengdu-Chongqing. The road density 
develops in the southwest-northeast direction, and the spatial pattern of carbon 
performance shows the characteristic of “high in the southwest and low in the 
northeast”. (3) The building density, population density, road density, and carbon 
performance show an upward curve, an “N” curve, and an inverted “N” curve, 
respectively, and the order of influence is building density > road density > 
population density. (4) There is a positive spatial correlation between urban density 
and carbon performance in the Chengdu-Chongqing urban agglomeration, but it is 
not uniformly distributed, and there is a phenomenon of clustering in specific local 
areas, especially in the core city areas such as Chengdu. 
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1. Introduction 

With the rapid growth of the global economy, serious damage has been caused to the environment, 
particularly climate change caused by carbon emissions. Reducing carbon emissions is critical to achieving global 
sustainable development goals, and countries are taking measures to promote the growth of low-carbon cities in 
response to global climate change [1]. Cities are a major source of global carbon emissions, contributing about 
75% of the world’s energy consumption and 85% of greenhouse gas emissions, and play an important role in low-
carbon urban development, as they are home to a large number of people and economic activities [2,3]. In 2020, 
General Secretary Xi Jinping proposed a “dual-carbon” goal at the 75th session of the UN General Assembly, i.e., 
“strive to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060”, providing a 
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clear direction and target for the low-carbon transformation of Chinese cities. The concept of “people’s city” has 
brought urban development to a new level, emphasizing the need to improve the efficiency of resource utilization, 
guide the green transformation of economic and social structures, and fundamentally realize the harmonious 
coexistence of human beings and nature [4]. 

However, the acceleration of the urbanization process leads to the continuous agglomeration and proliferation 
of population, economy, and industry in cities, which triggers the increase of urban density and the tension of land 
resources, and the contradiction with the ecological environment and the sustainable development of cities is 
becoming increasingly prominent. Urban density, as an important indicator of urban construction and 
development, is also a key factor affecting the low-carbon development of cities [5]. According to data released 
by China’s National Bureau of Statistics, the urbanization rate of China’s resident population reached 66.16% at 
the end of 2023, an increase of 55.52 percentage points from the end of 1949, and an average annual increase of 
0.75 percentage points. This increase indicates that China has experienced the largest and fastest urbanization 
process in world history. Along with the increase in urban population, the built-up urban area has expanded 
significantly, from 7438 square kilometers in 1981 to 62,038 square kilometers in 2023, an increase of 7.3 times. 
This rapid urban expansion induced problems such as the strain on land resources, the disorderly spread of urban 
built-up land, the pollution of resources and the environment, and the trend of urban transformation from low 
density to high density is inevitable. Therefore, under the dual-carbon goal, analyzing the associations and 
indicative thresholds of urban density on carbon performance, rationally optimizing the urban spatial structure and 
land use, and guiding cities to shift from rough development to compact and intensive development are important 
means of achieving sustainable development between the economy and the environment. 

At present, urban density is defined on a relatively solid theoretical basis and is typically measured using a 
variety of indicators such as population density, economic density, residential density, and so on [6–8]. In the 
process of exploring the development of low-carbon cities, studies have confirmed that the low-density urban 
development model is not conducive to energy conservation and emission reduction, and excessive high-density 
development will also bring a series of heat island effects [5,9]. In recent years, there have been studies discussing 
urban density from different perspectives around carbon emission intensity, for example, Hong et al. analyzed the 
relationship between carbon emissions and urban population size and density by using multiple carbon sources, 
found that there is a left-low-right-high W-shape between urban size and total carbon emissions, and a U-shape 
with residential carbon emissions [10]. Yang and Takase found that a road network with lower density and 
abundant branch streets may not necessarily promote the reduction of carbon dioxide emissions [11]. Zheng et al. 
used residential density as a proxy variable for urban spatial pattern to confirm that an increase in residential density 
can play a population agglomeration effect and effectively reduce carbon emissions in cities and towns [12]. 

Performance is a means used by enterprises to evaluate production efficiency employee productivity, and 
development benefits. With the on-going development, performance is also used to evaluate the spatial 
development benefits of cities. Most of the research on carbon performance focuses on the fields of urban 
construction, enterprise management and public energy-saving buildings. For example, Wang et al. found that 
assembled buildings have a positive impact on carbon performance by improving labor productivity, optimizing 
resource allocation and improving material utilization using the double-difference method [13]. Yuan et al. found 
that the level of science and technology, regional economic scale and carbon performance were significantly 
positively correlated, and government intervention in the economy was negatively correlated with carbon 
performance [14]. Feng and Zhou explored the main spatial structure and influence weights affecting carbon 
performance, which were mainly associated with urban density, functional structure, land use, and transportation 
structure [15]. 

Previous research has primarily explored the relationship between urban density and carbon emissions from 
social and economic perspectives, or the relationship between spatial compactness, management policies, and 
carbon performance from the perspective of spatial layout and management. Additionally, the impact of urban 
density on carbon performance has primarily been examined from the perspectives of building density, population 
density, and economic density. Although population density, economic density, and building density are the 
primary focus of research on the relationship between urban density and carbon performance, there is still an 
opportunity for improvement in the understanding of how urban density affects carbon performance [16]. Regions, 
such as the Yangtze River Delta, Yangtze River Economic Belt, and Beijing-Tianjin-Hebei urban agglomeration, 
have a high level of urban development, and urban density tends to stabilize. The Chengdu-Chongqing urban 
agglomeration, as one of the most dynamic and development-potential economic regions in western China, shows 
diversified characteristics of urban density, with obvious differences between different cities, and there is still 
room for improvement in the selection of typical research areas. In summary, this study takes the Chengdu-
Chongqing urban agglomeration in central and western China as a case example. Adopting a dynamic perspective 
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spanning 2012 to 2021, it constructs a joint analysis of urban density indicators and carbon performance based on 
three dimensions: building density, population density, and road density. This research provides scientific evidence 
for urban development and carbon reduction policies in the Chengdu-Chongqing economic circle and other similar 
regions, thereby promoting sustainable urban development and advancing the achievement of carbon neutrality goals. 

2. Materials and Methods 

2.1. Study Area 

The study area is the 16 cities involved in the Chengdu-Chongqing urban agglomeration (Figure 1), including 
the 15 cities of Chengdu, Deyang, Mianyang, Nanchong, Suining, Ziyang, Neijiang, Zigong, Yibin, Luzhou, 
Leshan, Ya’an, Meishan, Guang’an and Dazhou in Sichuan Province, as well as Chongqing Municipality, without 
distinguishing whether or not the cities are fully included in the planning scope of the city cluster. 

 

Figure 1. Scope of research (Chengdu-Chongqing urban agglomeration, China). (The map is based on the standard 
map No. GS (2024) 0650 downloaded from the website of the Standard Map Service of the Ministry of Natural 
Resources, with no modifications to the base map). 

2.2. Research Process 

This study aims to analyze the impact of the evolution of urban density and spatial correlation characteristics 
of the Chengdu-Chongqing urban agglomeration on carbon performance, and puts forward the following research 
content: (1) Constructing a database of the study area from 2012 to 2021, and analyzing the status quo of the 
evolution characteristics of urban density and carbon performance in terms of spatio-temporal evolution, 
respectively. (2) Identifying the correlation between urban density and carbon performance through the change 
characteristics, and exploring the spatial aggregation or spatial anomalies of the elements of the research object, 
and identify the spatial correlation between urban density and carbon performance in the whole domain. (3) Based 
on the analysis results, propose the spatial planning strategy of a low-carbon city based on urban density. The 
research approach, which can be applied to any city, is illustrated in Figure 2. 
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Figure 2. Flow chart of research approach. 

2.3. Data Sources 

Carbon emissions data and, capital stock data were obtained from China Statistical Yearbook, statistical 
yearbooks at all levels [17] and the Guidelines for National Greenhouse Gas Emission Inventories published by 
the IPCC [18], GDP per capita from Sichuan Statistical Yearbook [19], and Chongqing Statistical Yearbook [20]. 
Data on construction land area, urban population, road length, urban area, greening coverage rate of built-up areas, etc. 
were derived from the Statistical Yearbook of Urban Construction [21]. 

2.4. Research Method 

2.4.1. Methods for Calculating Carbon Performance 

Based on the ecological and economic perspective, carbon performance measures the relationship between 
resource inputs and outputs from the social, economic, environmental, and spatial levels as a whole, and 
demonstrates the impact of carbon emission intensity generated by resource factor inputs on the environment. Data 
Envelopment Analysis (DEA) is a nonparametric assessment method, that is used to evaluate the relative 
effectiveness of complex decision units with multiple input and output indicators [22]. However, when the decision 
unit is over-input or under-output, the traditional DEA model overestimates the efficiency value of the decision 
unit, which makes the calculation results inconsistent with the objective reality. The Slack-Based Measure (SBM) 
model is a good solution to the above problems. The non-radial SBM model under output orientation focuses on 
maximizing desired outputs while minimizing undesired outputs (CO2 emissions) without increasing inputs, 
aligning more closely with cities’ pursuit of low-carbon development goals. To more accurately assess the input-
output efficiency of decision-making units, assuming variable returns to scale better aligns with the reality that 
cities within a city cluster are at different stages of development and exhibit varying economies of scale. The Slack-
Based Measure-Data Envelopment Analysis (SBM-DEA) based on the data envelopment analysis method is: 
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where 𝑥𝑥𝑘𝑘𝑘𝑘𝑡𝑡 , 𝑦𝑦𝑘𝑘𝑘𝑘𝑡𝑡 , 𝑏𝑏𝑘𝑘𝑘𝑘𝑡𝑡  are input and output values in period t, 𝑠𝑠𝑛𝑛𝑥𝑥, 𝑠𝑠𝑚𝑚
𝑦𝑦 , 𝑠𝑠𝑖𝑖𝑏𝑏 are slack variable of input-output. 𝜌𝜌∗ 

denotes carbon performance, The higher the value, the better the carbon performance, and the higher the degree 
of achievement of the city’s low-carbon goal. The 16 cities in the Chengdu-Chongqing urban agglomeration are 
the decision-making units, and the input indicators are urban construction area, labor population, capital stock and 
energy consumption, the output indicators are per capita gross domestic product (GDP), green coverage of built-
up areas, and carbon emission is the undesirable output [23,24] (Table 1). Carbon emissions calculations employ 
the internationally recognized “scope” verification methodology, comprehensively covering emissions from 
transportation and buildings, industrial production processes, agriculture, forestry, and land-use changes, waste 
management activities, purchased electricity, heating and cooling, as well as other indirect emissions [25]. 

Table 1. Carbon performance input-output index system. 

First Index Second Index Variable Declaration 

Input 

Land Urban construction land area (km2) 
Manpower Urban employment at the end of the year (million people) 

Capital Urban capital stock (ton) 

Energy Source Total consumption of electricity, coal, natural gas and Liquefied 
Petroleum (million tons of standard coal) 

Expected Output Economic Benefit Per capita GDP (yuan) 
Ecological Benefit Green coverage rate of built district 

Undesirable Output Carbon Emission CO2 emissions (million tons) 

2.4.2. Urban Density Index Calculation Method 

Building density reflects the degree of intensive urban land use, and increasing building density can optimize 
living space and shorten commuting distance, which indirectly reduces carbon emissions. Population density is an 
indicator of the sparseness of urban population distribution, and areas with high population density tend to imply 
a more compact urban form, which may affect traffic patterns, energy consumption, and the level of carbon 
emissions. Road density, as a key component of urban infrastructure, is directly influenced by urban traffic flow, 
traffic patterns, travel efficiency, and urban planning. High-density urban areas with reasonable road density will 
help to realize the efficient use and sharing of resources and reduce the overall level of carbon emissions. 
Therefore, we use building density, population density and road density to construct an urban density index, and 
the specific calculation method is as follows: 
(1) Building Density (BD) = (Built-up area/Urban area) × 100% (%) 
(2) Population Density (PD) = (Urban population + urban temporary population)/Urban area (Thousands of 

people/100 km2) 
(3) Road Density (RD) = Road length/built-up area (km/km2) 

2.4.3. Spatio-Temporal Characteristics 

The standard deviation ellipse can reflect the spatial distribution pattern and temporal and spatial evolution 
characteristics of the elements. The gravity center migration, distribution direction and range change of urban 
density and carbon performance in space are described by gravity center coordinates, long and short axes and other 
parameters [26]. 

The calculation formula of ellipse barycenter coordinate is: 

𝑍𝑍𝑍𝑍𝑍𝑍(𝑋𝑋,𝑌𝑌) = (
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where 𝑛𝑛 is the city number of Chengdu-Chongqing urban agglomeration, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the central coordinates 
of each city, and 𝑤𝑤𝑖𝑖 is the weight value of each city factor. 
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where 𝛼𝛼 refers to the angle formed by the clockwise rotation of the north to the long axis of the ellipse 𝑥𝑥𝑖𝑖
2 and 

is the deviation between the coordinates of the first city and the coordinates of the center of gravity. 
The calculation formula of x-axis and y-axis length is: 
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2.4.4. Quantitative Correlation 

There are many linear possibilities in the correlation between urban density and carbon performance. In order 
to accurately verify the functional relationship characteristics, a polynomial function relationship model is 
established. The spatial density is included in the regression model as an independent variable, and the curve fitting 
is performed. Compared to the log-linear model, the general polynomial function model demonstrates superior 
fitting performance, effectively capturing the relationship between data distribution and class thresholds [27]: 

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏1𝑋𝑋 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋3 + ⋯+ 𝛽𝛽 (5) 

where 𝑌𝑌 is carbon performance, 𝑋𝑋 is urban density factor index (building density, population density, road 
density), 𝑎𝑎 is a constant term. 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 represent the coefficients of the first, second and third terms of x, 
respectively, and 𝛽𝛽 is the random error term. 

To avoid the problem of multicollinearity among building density, population density and road density, PLS 
is used for comprehensive regression analysis. The multivariate linear regression analysis, canonical correlation 
analysis between variables, and principal component analysis are combined, and the fitting effect is good. 

𝜌𝜌∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐𝑐𝑐 + ɛ (6) 

where 𝜌𝜌∗ represents carbon performance, BD is the building density, PD is the population density, RD is the road 
density, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are the regression coefficients, ɛ is the constant. 

2.4.5. Spatial Correlation 

The bivariate Moran’s I index is used as an indicator of spatial autocorrelation analysis to study the spatial 
relationship between urban density elements and urban carbon performance. The bivariate global Moran index can 
directly reflect the overall similarity of the spatial adjacent unit area. The local Moran index explores the specific 
correlation characteristics of the space from the regional scale and identifies the spatial aggregation or spatial 
anomalies of the research object elements [28]. In this study, a contiguity-based spatial weight matrix (Queen’s 
case, considering both shared edges and vertices) was employed. The raw binary contiguity matrix was row-
standardized so that the weights for each city’s neighbors sum to 1. This approach gives equal aggregate weight 
to all cities regardless of their number of neighbors, facilitating the interpretation of spatial lag coefficients. Its 
calculation formula is: 
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 (7) 

𝐼𝐼𝑖𝑖 =
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥)𝑛𝑛

𝑗𝑗=1

𝑠𝑠2
 (8) 

where 𝐼𝐼 is the global Moran’s I index, 𝐼𝐼𝑖𝑖  is the local Moran’s I index. In this study, the urban density factor is 
used as the independent variable and the carbon performance is the dependent variable. 𝑛𝑛 is the number of 
samples, 𝑥𝑥 is the average value of the attribute value, 𝑤𝑤𝑖𝑖𝑖𝑖 is the spatial weight matrix, 𝑠𝑠2 is variance. The global 
Moran’s I index is in the range of [−1,1]. If 𝐼𝐼 < 0, it indicates that there is a negative spatial correlation, that is, 
the change trend of urban density and carbon performance of neighboring cities is opposite. If 𝐼𝐼 > 0, it indicates 
that there is a positive spatial correlation, that is, urban density has the same change trend as its neighboring cities’ 
carbon performance. If I = 0, then no spatial correlation exists. The local spatial correlation is represented by the 
LISA clustering diagram, which is divided into high-high aggregation, high-low aggregation, low-high 
aggregation and low-low aggregation according to the spatial distribution relationship. 
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3. Results 

3.1. Spatial and Temporal Evolution of Urban Density and Carbon Performance 

3.1.1. Spatial Evolution of Urban Density and Carbon Performance 

The center of gravity-standard deviation ellipse method is used to analyze the spatial migration trajectory of 
the center of gravity of urban density and carbon performance in the Chengdu-Chongqing urban agglomeration, 
with four cross-sectional data points in 2012, 2015, 2018 and 2021 as the research samples (Figure 3). The center 
of gravity of building density and population density both migrated first towards Chengdu and then gradually 
towards Chongqing in 2012–2021, indicating that the rapid development of Chengdu’s economy attracted more 
population and industries to gather in the early period, and with the construction of the Chengdu-Chongqing twin-
city economic circle, it promoted the development of cities around Chengdu-Chongqing, which in turn affected 
the migration direction of the center of gravity of urban density. The migration of the center of gravity of road 
density from the southwest to the northeast in 2012–2021 indicates that the road systems of Chengdu and 
Chongqing have been relatively perfect, mainly radiating and driving the construction of roads in the surrounding 
cities. Cities in the southwest direction are located in the Sichuan Basin and the mountainous excesses of southwest 
China, and are subject to the influence of topography, which makes it difficult to build roads, while emerging 
industries and technology enterprises gather in the northeast, and the increase of economic activities drives the 
construction of transport and other infrastructures, which results in the movement of the center of gravity in the 
northeast direction of road density. The center of gravity moves to the northeast. The center of gravity of carbon 
performance gradually migrates to the southwest in 2012–2021, mainly because Chongqing municipality invests 
less in land and labor capital factors, and more non-desired output factors in the jurisdiction, resulting in lower 
carbon performance in Chongqing municipality, and the northeastern Chengdu-Chongqing urban agglomeration 
is the eastern Sichuan economic zone, with high energy consuming machinery, energy, natural gas, and 
petrochemical industry related supporting industries, which have a low level of carbon performance enhancement. 
Meishan, Leshan, Yibin and other cities in the southwestern region, with tourism and ecological agriculture as 
their pillars, are rich in ecological resources and have strong carbon sinks, so their carbon performance improves 
faster, which makes the carbon performance of the Chengdu-Chongqing urban agglomeration show a pattern of 
“high in the southwest and low in the northeast”. 

From the perspective of ellipse azimuth, building density and population density have the same trend of 
evolution, with the long axis becoming shorter and the short axis becoming longer, and there is a trend of balanced 
development in the region, with the angle of building density varying from 76.587° to 82.005° and the angle of 
population density varying from 77.098° to 80.956°, which is gradually close to Chongqing municipality and 
consistent with the direction of the center of gravity migration. The standard deviation of the long axis of the road 
density ellipse increases from 1.885 km to 2.003 km, the standard deviation of the short axis decreases from 1.267 km 
to 1.209 km, and the difference between the short and long axes becomes larger, and the angle changes to the northeast, 
and it tends to strengthen the development of the spatial pattern to the southwest-northeast. The short axis of carbon 
performance becomes longer, the long axis becomes shorter, the spatial distribution area increases, the difference 
between the carbon performance level of marginal cities and core cities decreases, and the difference in the regional 
carbon performance level gradually narrows (Table 2). 

Table 2. Standard deviation ellipse parameters. 

Time 
Areal Coordinates Standard Deviation 

along the X-Axis/km 
Standard Deviation 
along the Y-Axis/km 

Rotation Angle of the 
Ellipse Relative to 

the X-Axis (°) °E °N 

Building 
Density 

2012 105.123 30.436 1.955 1.277 76.587 
2015 105.123 30.359 1.571 1.282 94.185 
2018 105.123 30.261 1.653 1.303 88.398 
2021 105.123 30.256 1.701 1.339 82.005 

Population 
Density 

2012 105.123 30.304 1.891 1.25 77.098 
2015 105.123 30.291 1.725 1.264 83.353 
2018 105.123 30.225 1.744 1.27 80.957 
2021 105.123 30.246 1.763 1.298 80.946 

Road 
Density 

2012 105.123 30.066 1.885 1.267 75.315 
2015 105.123 30.042 1.867 1.237 76.037 
2018 105.123 30.089 1.946 1.258 73.006 
2021 105.123 30.118 2.003 1.209 73.901 



Li et al.   Urban Build. Sci. 2026, 2(1), 1 

https://doi.org/10.53941/ubs.2026.100001  8 of 15  

Table 2. Cont. 

Time 
Areal Coordinates Standard Deviation 

along the X-Axis/km 
Standard Deviation 
along the Y-Axis/km 

Rotation Angle of the 
Ellipse Relative to 

the X-Axis (°) °E °N 

Carbon 
Performance 

2012 105.123 30.097 1.884 1.124 75.917 
2015 105.123 30.054 1.889 1.066 75.339 
2018 105.123 30.024 1.812 1.266 73.609 
2021 105.123 30.052 1.806 1.200 71.546 

 

Figure 3. Spatial evolution characteristics of urban density and carbon performance. 

3.1.2. Temporal Evolution of Urban Density and Carbon Performance 

Although there are distinct patterns, Chengdu-Chongqing urban agglomeration urban density variables and 
carbon performance evolution characteristics are significantly different (Figure 4). Between 2012 and 2021, as 
urbanization progressed and the urban area and population grew at a synchronized rate, there was no discernible change 
in population density. Road density grew at a faster rate after 2016, rising from 6 km/ km2 in 2016 to 8.23 km/km2 in 
2021. Both building density and road density generally exhibit an upward trend. Carbon performance decreased 
from 0.598 in 2012 to 0.427 in 2016, indicating that while traditional industries and heavily polluting industries 
promote the economic growth of Chengdu-Chongqing urban agglomeration, due to the inadequacy of technology 
and management, land, inputs of production factors such as labor and capital have led to the waste of resources 
and the decline of production efficiency, and have not reached the optimal state. From 2016, the regional economy 
gradually shifted to a high-tech and green economy, and this transformation of the economic structure effectively 
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reduced carbon emissions. Carbon performance increased from 0.427 in 2016 to 0.665 in 2020. Fluctuations in 
carbon performance were observed in 2021, mainly due to the larger decreases in carbon performance in Chengdu 
City, Meishan City, and Nanchong City. In Chengdu City, the land input increases, the green coverage of output 
decreases instead, the increase in output GDP per capita is not disproportionate to the increase in capital input, and 
the marginal benefit decreases, while the CO2 non-desired output increases by 23.46%, and the energy efficiency 
decreases. In Meishan City, mainly due to the efforts to build a comprehensive transport system, led to a sudden 
increase in energy input in 2021, possibly because the city was undergoing industrial restructuring and energy 
structure optimization, which lowered energy conversion efficiency. Nanchong City has greater capital and energy 
inputs, yet its greening output rate is declining, and there is idleness of resources, causing a disproportionate 
relationship where outputs do not increase in line with inputs. 

 

Figure 4. Temporal evolution characteristics of urban density and carbon performance. 

3.2. Correlation Analysis between Urban Density and Carbon Performance 

A polynomial function was used to regress the building, population and road densities of the Chengdu-
Chongqing urban agglomeration on carbon performance from 2012 to 2021, to explore the trends of urban density 
and carbon performance over time, and the results showed three different regression curves (Figure 5). The R2 
values for the three regression models of building density, population density, and road density were 0.714, 0.310, 
and 0.681, respectively, with adjusted R2 values of 0.702, 0.285, and 0.669. This indicates that urban density and 
carbon performance exhibit a certain degree of nonlinear trends, but the correlations are not strong. This aligns 
with the complexity of urban systems, where carbon performance is influenced by numerous socioeconomic, 
technological, and policy factors. 

In the relationship between building density and carbon performance, the R2 (0.681) of a quadratic equation 
is lower than that of the cubic equation R2 (0.714), and the expression of the cubic equation, p = 0.045 ≤ 0.05, and 
the model is valid by F-test. The relationship between building density and carbon performance in the cubic curve 
shows a slow increase followed by a rapid increase (Figure 4a). At the stage of low building density, the rough 
utilization of land leads to the increase of building density faster than the increase of carbon performance. 
However, after the building density reaches 6.14%, with the emphasis on the construction of low-carbon cities, 
the land utilization efficiency is significantly improved, while the technical and management levels also achieve 
substantial improvements, and these changes effectively contribute to the significant increase in carbon 
performance from 0.527 to 0.665. 

In the relationship between population density and carbon performance, the cubic function did not pass the 
significance test, and the quadratic function R2 = 0.310 was used for fitting, and the result showed an “N” curve 
relationship (Figure 5), with inflection point 1 corresponding to a population density of 90,800 people/100 km2 
and inflection point 2 corresponding to a population density of 93,200 people/100 km2. When the population 
density is between inflection point 1 and inflection point 2, the crowd activities and urban traffic are increasing, 
which is negatively correlated with carbon performance. 

In the relationship between road density and carbon performance, R2 = 0.681 in the cubic equation, the fit is 
good, the result shows an inverted “N” curve relationship (Figure 5), and conforms to the time series changes, 
there are two inflection points, inflection point 1 corresponds to the road density of 6.09 km/km2 and inflection 
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point 2 corresponds to the road density of 8.02 km/km2. When the road density does not reach the inflection point 1, 
the newly built roads lead to the increase of traffic volume and the traffic smoothness is limited, which leads to 
the increase of carbon emission; when the road density is between the inflection point 1 and the inflection point 2, 
the road network and the public transportation system are gradually improved, which leads to the reduction of the 
overall carbon emission; when the road density reaches the inflection point 2, the high road density may lead to 
the increase of the traffic conflict, which then affects the carbon performance. 

 

Figure 5. The regression curve of urban density and carbon performance. 

3.3. The Comprehensive Weight Effect of Urban Density on Carbon Performance 

To explore the differences in the influence of urban density elements on carbon performance, a 
comprehensive regression analysis was conducted using PLS. To estimate the feasibility of direct regression using 
PLS, the Pearson correlation test was conducted first (Table 3). The results indicate that the correlation coefficient 
between carbon performance and building density is 0.8, exhibiting statistical significance at the 0.01 level. The 
correlation coefficient between carbon performance and road density is 0.717, demonstrating statistical 
significance at the 0.05 level. Conversely, no significant correlation exists between carbon performance and 
population density. In the PLS regression results (Table 3), the optimal number of principal components is 3, which 
is valid for cross-section and satisfies the corresponding extraction criterion, and R2 = 0.728, which explains 72.8% 
of the evolution in the relationship. 

Building density, population density, and road density all exhibit positive effects on carbon performance, 
with road density demonstrating the most significant relative influence. The weights of the influence of the 
respective variables on the dependent variable explained by the value of the projected importance index is: building 
density (1.231) > road density (1.108) > population density (0.508) (Table 4). It should be clarified that these 
coefficients primarily reflect the relative importance of the variables rather than exact elasticity relationships. 

Table 3. Pearson correlation analysis. 

 Carbon Performance (Correlation Coefficient) Carbon Performance (p-Value) 
Building Density 0.800 ** 0.006 

Population Density 0.287 0.421 
Road Density 0.717 * 0.020 

* p < 0.05 ** p < 0.01. 

Table 4. Projection importance index summary (VIP). 

 One Principal 
Component 

Two Principal 
Component Three Principal Component 

Building Density 1.246 1.232 1.231 
Population Density 0.447 0.511 0.508 

Road Density 1.117 1.105 1.108 
R2 0.700 0.717 0.728 
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3.4. Spatial Autocorrelation Analysis 

Based on the global Moran’s I index formula, the Rook neighbor space weight matrix was established by the 
Geoda 1.18.0 spatial analysis tool to calculate the bivariate local autocorrelation LISA was plotted based on a 
confidence level of 95%, and the results are obtained as shown in Figure 4. According to the analysis of the LISA 
clustering diagram (Figure 6), the local spatial aggregation status of urban density and carbon performance has 
changed significantly in the past ten years. (1) The “high-high” agglomeration of urban density and carbon 
performance is mainly in Chengdu, indicating that the neighboring areas of Chengdu have formed the 
agglomeration of “high urban density-high carbon performance”, while Ya’an has been in the state of “low urban 
density-high carbon performance”. The city of Ya’an has been in the state of “low building density-high carbon 
performance”, and the city of Mianyang will change from a “low building density-low carbon performance” 
agglomeration to a “high building density-low carbon performance” agglomeration from 2018 to 2021. (2) The 
“high-high” agglomeration in terms of population density and carbon performance is mainly in Chengdu, and the 
scope of the “low-low” agglomeration gradually increases from 2012 to 2021, with the northeastern cities 
dominating, and the western cities in urban space. The urban space in the western part of the city is unstable and 
changes greatly, from “low-high” to “high-low” and then to “low-high”. (3) The high-high agglomeration area of 
road density and carbon performance is dominated by Ya’an. Chengdu has changed from a low-high agglomeration 
area to a high-high agglomeration area from 2015 to 2021, and the low-low agglomeration area has been increasing 
and decreasing year by year, accounting for 40% of the Chengdu-Chongqing urban agglomeration. The 
southwestern cities don’t have significant spatial differences in road density and carbon performance. 

 

Figure 6. Urban Density and Carbon Performance LISA cluster diagram. 

At present, the spatial correlation between urban density and carbon performance is mainly characterized by 
the following: (1) Chengdu as the core city has gradually entered the stage of high-quality coordination, and the-
high-urban density area is surrounded by the high-carbon performance area, and the cities around Chengdu can 
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further improve their carbon performance by strengthening regional cooperation. (2) Cities with Chongqing as 
their core are characterized by low urban density and low carbon-performance, which indicates that these cities 
have a weak industrial base and low technological level, and are unable to be radiated by the neighboring cities, 
and need to strengthen their own development of their own resource advantages, and at the same time, Chongqing, 
as the core city of the “Double Carbon” project, has the following characteristics. Moreover, Chongqing as a core 
city should take more responsibility in the task of “double carbon”, improve green technology innovation, change 
the industrial development mode, and drive the neighboring cities to improve carbon performance. (3) The spatial 
correlation between urban density and carbon performance in the southwest is not significant, and the carbon 
performance can be improved by its own development factors. 

4. Discussion 

The study utilizes panel data from 2012 to 2021, employing the SBM model to calculate a carbon 
performance index as the benchmark for urban low-carbon development. Standard deviation ellipses, polynomial 
function regression models, and spatial autocorrelation models to analyze the trends, spatial distribution patterns, 
and associated impact effects of building density, population density, road density, and carbon performance. Based 
on the findings (statistical relationships within specific policy and economic contexts, not strictly identified causal 
effects), the study explores feasible planning strategies to promote sustainable urban development in the Chengdu-
Chongqing metropolitan area. 
(1) Reasonably control building density, population density and road density. Adopt compact and intensive 

development to improve land use efficiency, and improve building density by optimizing and adjusting 
building heights and floor area ratios. For specific areas, such as Chengdu and Chongqing, vertical greening 
and multi-functional buildings can be explored to improve space use efficiency. Conducting reasonable urban 
planning and housing policies to guide population distribution and avoid over-concentration, controlling the 
population density in urban areas at 91,000 people/100 km2 and 93,000 people/100 km2, giving full play to 
the population agglomeration effect, which improves the utilization rate of public transportation and 
infrastructure, and enhances to the allocation of urban resources and the intensive use of land. Encourage the 
population to move to the urban periphery, while improving the road network and public transportation 
system, reducing the commuting distance and intensifying the allocation of resources. The road density is 
controlled at 6 km/km2 and 8 km/km2 to reduce reliance on private vehicles, thereby reducing carbon 
emissions and maximizing resource inputs and outputs. 

(2) In the preparation of low-carbon planning for the Chengdu-Chongqing urban agglomeration, the importance 
of building density > road density > population density should be followed. Firstly, optimize the land use rate 
and reduce urban sprawl to reduce carbon emissions. Secondly, control the road density to reduce traffic 
congestion to improve traffic efficiency, thus reducing carbon emissions, and then control the population 
density to balance the urban development and environmental protection to reduce the commuting distance 
and energy consumption. 

(3) Implementing differentiated urban development strategies to suit their respective geographic, economic and 
environmental conditions. Gradually transform the high-energy-consuming machinery, energy, natural gas, 
and petrochemical industries of the northeastern Chengdu-Chongqing cities into high-tech and green 
economies, develop low-carbon industries, and reduce the proportion of high-carbon-emitting industries. 
Chengdu, as a center of high building density and high carbon performance, should play its role as a radiation 
driver, share resources, and collaborate on emission reduction through regional cooperation mechanisms to 
form a synergy of regional development and promote the neighboring cities to improve carbon performance. 
Chongqing should take its core responsibility to strengthen green technological innovation, transform the 
mode of industrial development, and improve the Ya’an, as a region with “low building density and high 
carbon performance”, should further optimize its urban planning to increase building density while 
maintaining its high carbon performance. Mianyang has changed from “low building density-low carbon 
performance” to “high building density-low carbon performance”, which indicates that its urban planning 
and industrial development have achieved some success. For areas with high road density and carbon 
performance, such as Ya’an City, we should continue to optimize the transportation network and increase 
road density, while paying attention to maintaining and improving carbon performance. Some cities in the 
southwest do not have significant spatial differences in road density and carbon performance and should 
improve carbon efficiency from the perspective of their own development factors. 
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5. Conclusions 

In this paper, we use a variety of analytical methods to explore the associations and indicative thresholds of 
urban density on carbon performance and put forward a feasible development strategy for city clusters to optimize 
urban density and improve the carbon performance of city clusters to promote sustainable urban development. 
(1) Urban density has generally followed an upward trajectory, with carbon performance rising from 0.55 in 

2012 to 0.68 in 2021, in which the changes and fluctuations of the growth rate are subject to the macro impact 
and regulation of policies. In 2016, the Chengdu-Chongqing urban agglomeration was officially given a 
national positioning, providing strong policy support for the growing demand for housing, transportation and 
other infrastructure, and the growth of road density and building density increased significantly. At the same 
time, the “Chengdu-Chongqing Urban Agglomeration Development Plan” clearly puts forward the priority 
construction of intercity transportation network, resulting in a faster growth rate of road density compared to 
building density. The 13th Five-Year Plan for Ecological Environmental Protection and the Chengdu-
Chongqing Twin Cities Economic Circle Construction Plan guide the transformation of industrial energy 
structure, so that the center of gravity of carbon performance is shifted to the southwest direction, which has 
the advantages of ecological resources and strong carbon sinks, and this spatial differentiation highlights the 
double constraints of topographic resource conditions and industrial structure on low-carbon development. 

(2) The polynomial regression model reveals a non-linear relationship between urban density and carbon 
performance. In the relationship between building density and carbon performance, when the building density 
exceeds the 6.14%, the carbon performance is significantly increased, which verifies the effectiveness of the 
compact city theory in low-carbon development. The “N-shaped” relationship between population density 
and carbon performance reflects the duality of population aggregation effects, which is consistent with the 
results of Chen et al. [27] study on the carbon performance of population density. The inverted N-shaped 
relationship between road density and carbon performance indicates that enhancing carbon performance can 
be effectively achieved by increasing road density to between 6 and 8 km per square kilometre. National and 
regional policies should priorities low-carbon urban development according to the following order of 
importance: building density > road density > population density. 

(3) Utilizing spatial auto-correlation analysis to identify the spatial correlation and spatial heterogeneity among 
cities, which to determine the key direction of spatial planning in each city. For example, Mianyang city’s 
“high building density-low carbon performance” status shows that simply increasing building density does 
not necessarily improve carbon performance, but needs to be combined with industrial structure optimization 
and green technology application. Chengdu, as the core of the “high-density-high-carbon performance”, has 
effectively driven the low-carbon transformation of neighboring cities through its technological spillovers 
and regional collaboration mechanisms. In contrast, Chongqing’s “low-density-low-carbon performance” is 
closely related to its heavy-industry-dominated industrial structure, and it needs to break through the path of 
dependence through green technological innovation. 
In the paper, the influence of urban density on carbon performance in the Chengdu-Chongqing urban 

agglomeration is investigated using a variety of methods, revealing the complex nonlinear characteristics of the 
density effect. The identified threshold relationships and spatially dependent patterns hold significant reference 
value for similar metropolitan areas in central and western China. However, the unique “dual-core” structure, 
mountainous terrain, and industrial foundation of the Chengdu-Chongqing region dictate that its strategies should 
not be directly applied to coastal metropolitan areas. 

The study also has limitations. The sample size is relatively small. Some early data may have quality issues. 
Additionally, the relatively complex model may affect the stability of threshold estimates and related relationships. 
The use of administrative divisions in calculations may introduce boundary effects, where actual urban 
development and carbon emissions activities extend beyond administrative borders. Since these borders may not 
align with functional urban zones, this discrepancy could compromise the accuracy of findings. Future research 
could employ grid-based segmentation to create finer spatial units, enhancing precision and resolution to more 
accurately capture internal spatial heterogeneity within cities. 
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