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Abstract: Efficient uranium recovery from radioactive wastewater is a pressing 
challenge in sustainable nuclear energy development. Here, we present an 
innovative AI-driven framework that integrates large language models with 
machine learning to optimize uranium adsorption by acid-modified biochar. By 
automatically extracting and structuring literature data, we compiled a high-quality 
dataset comprising 589 experimental data points. Among four tree-based ensemble 
models, CatBoost delivered the best performance (test R2 = 0.98, RMSE = 24.78). 
Feature importance indicates that adsorption conditions (71.51%) as the most 
influential factors, significantly outweighing biochar preparation conditions 
(15.27%) and physicochemical properties (13.22%). SHapley Additive 
exPlanations (SHAP) analysis further provided insights into how key features 
influence uranium adsorption, identifying important variables and their impact 
patterns. Finally, we developed a user-friendly graphical user interface that enables 
rapid, intelligent prediction of uranium adsorption capacity, supporting data-driven 
experimental design. This study provides a referenceable, AI-powered solution for 
radioactive wastewater treatment and offers a transferable framework for the 
intelligent remediation of other environmental pollutants. 

 Keywords: uranium adsorption; acid-modified biochar; large language models; 
machine learning; intelligent prediction 

1. Introduction 

The rapid expansion of nuclear energy necessitates effective management of its inevitable byproducts, 
particularly uranium (U), which poses significant environmental risks due to its long-lived radioactivity and 
persistent toxicity [1–3]. Efficient removal of uranium from contaminated wastewater is crucial to mitigate its 
impact on ecosystems and human health, and to ensure the sustainable development of nuclear energy. Among 
existing technologies, adsorption is a mainstream approach for uranium-contaminated water remediation due to its 
operational simplicity, low cost, and high efficiency [4–6]. However, the selection of suitable adsorbents—capable 
of high-efficiency uranium removal at low cost—remains a critical challenge [7–9]. 

Biochar, a carbon-rich material produced by pyrolyzing biomass under oxygen-limited or anaerobic 
conditions, has gained considerable attention as a potential adsorbent due to its high surface area, porous structure, 
and environmental sustainability [10–12]. Its adsorption performance is enhanced by multiple mechanisms, such 
as surface complexation, chemical reduction, and ion exchange, all of which facilitate the uptake of uranium ions 
[13,14]. In particular, acid modification has proven effective in improving biochar’s adsorption capacity by 
introducing oxygen-containing functional groups like carboxyl, hydroxyl, and carbonyl, which enhance surface 
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hydrophilicity and expand the porous structure [15–17]. Despite these advances, achieving optimal uranium 
adsorption performance remains a challenge, as it requires a deep understanding of the complex interactions 
between material properties, preparation conditions, and adsorption factors. 

Traditional optimization methods, relying on repeated experimental trials, are labor-intensive and time-
consuming. Furthermore, these methods struggle to account for the complex, nonlinear interactions between the 
various factors influencing adsorption performance [18–20]. In recent years, artificial intelligence (AI) has 
emerged as a powerful tool to address these challenges [21,22]. Specifically, large language models (LLMs) offer 
a promising solution for automating the extraction of material properties from scientific literature, thereby 
accelerating data collection and facilitating the creation of high-quality datasets [23]. For instance, Polak and 
Morgan [24] proposed the ChatExtract method that can fully automate highly accurate data extraction using an 
advanced conversational LLM, with precision and recall both close to 90% from the best conversational LLMs 
like GPT-4. In parallel, machine learning (ML) algorithms excel at identifying hidden patterns in complex data, 
making them well-suited for predicting the behavior of multi-variable systems, such as uranium adsorption [25,26]. 
The application of AI in pollutant adsorption modeling has been successfully demonstrated for heavy metals, 
pharmaceuticals, and per- and polyfluoroalkyl substances (PFAS), showcasing its potential for optimizing 
environmental remediation processes [27–29]. For example, Fabregat-Palau et al. [29] developed a novel ML tool, 
PFASorptionML. By leveraging PFAS-specific and soil-dependent input parameters, this tool has wide 
applicability and can predict the Kd of 47 types of PFAS. 

However, significant limitations persist in current research. First, the application of LLMs for automated 
material data extraction remains nascent. While promising, these tools still suffer from limited semantic parsing 
of numerical data and high computational costs for training, necessitating a more generalizable and efficient 
framework [30]. Furthermore, existing studies exhibit a “binary disconnect” that limits the understanding of 
adsorption mechanisms: one stream emphasizes preparation parameters but neglects how they shape 
physicochemical properties and their link to adsorption performance [31]; the other prioritizes physicochemical 
properties while treating them as static, failing to integrate dynamic preparation logic and clarify their role in 
adsorption mechanisms [32–34]. Most importantly, the integration of LLMs and ML techniques—key for 
constructing high-quality datasets and reliable predictive models—remains largely unexplored, leaving a critical 
gap in bridging data-driven discovery with mechanistic understanding. 

To address these challenges, we propose an integrated AI-driven workflow that combines LLM-based data 
acquisition with interpretable ML modeling for the optimization of uranium adsorption by acid-modified biochar. 
This framework introduces several key innovations: (1) a novel, automated method for extracting high-precision 
material data from the literature, utilizing LLMs and advanced prompt engineering techniques; (2) a comparison 
of four mainstream ensemble ML models (Random Forest, XGBoost, CatBoost, and LightGBM) for predicting 
uranium adsorption capacity (Qe), with hyperparameter optimization to improve prediction accuracy; (3) a data-
driven analysis of the key features affecting adsorption performance, including SHapley Additive exPlanations 
(SHAP) analysis and partial dependence plots (PDPs), to provide insights into the underlying adsorption 
mechanisms; and (4) the development of a user-friendly graphical user interface (GUI) that enables researchers to 
rapidly assess the uranium adsorption performance of various acid-modified biochar materials. 

This study represents a novel approach by combining the power of LLMs and ML techniques to optimize the 
uranium adsorption capacity of acid-modified biochar. It breaks through traditional research bottlenecks by 
automating data extraction, enhancing model interpretability, and seamlessly integrating data-driven insights with 
predictive capabilities in a unified workflow. Beyond uranium removal, the framework we present offers a 
referenceable solution for the development of other environmentally functional materials, demonstrating the broad 
potential of AI-driven strategies in addressing global pollution challenges. 

2. Methodologies 

2.1. Data Collection and Preprocessing 

A targeted literature search was first conducted in the Web of Science database using the keyword 
combination “Biochar” + “Uranium adsorption” for the period 2015–2025, which yielded 261 potentially relevant 
publications. Subsequently, a two-stage screening process was implemented to identify eligible studies. In the first 
stage, an automated screening was performed using DeepSeek-R1 to exclude irrelevant publications according to 
predefined criteria (Text S1). In the second stage, expert validation was conducted, wherein publications retained 
from the initial screening were manually reviewed by domain experts to confirm relevance and assess data quality. 

Following the screening process, a structured data extraction framework integrating multiple LLMs with 
rule-based validation and expert supervision was developed. Specifically, three LLMs were employed to extract 
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structured information from the selected articles, namely: DeepSeek-R1, GPT-4o and Doubao (Beta). To ensure 
consistency across models, a standardized prompt template was designed (Text S2). A two-tier verification 
mechanism was then applied to enhance data reliability: (1) Cross-model consistency checking, where each data 
point required agreement from at least two of the three LLMs to be considered preliminarily consistent; conflicting 
cases were flagged for further review. A quantitative scoring system (0–100 points) was also established to evaluate 
consistency and reliability (Table S1). (2) Expert supervision was used to resolve discrepancies among model outputs 
and to manually verify critical parameters. For data presented graphically (e.g., adsorption isotherms and kinetics), 
numerical values were extracted using WebPlotDigitizer to minimize human reading error and improve quantitative 
accuracy. All extracted parameters were converted into standardized units to facilitate dataset integration. 

Categorical variables were encoded accordingly: acid type was ordinally encoded based on descending acid 
strength as follows: HCl (6), HNO3 (5), PA (4), H3PO4 (3), CH3COOH (2), and HA (1). The sequence of pyrolysis 
and modification (Seq_P_M) was represented as a binary variable, with “0” indicating modification before 
pyrolysis and “1” indicating pyrolysis before modification. To handle missing data, four imputation methods 
(multiple imputation by chained equations (MICE) [36], mean imputation, median imputation, and mode 
imputation) were systematically evaluated. The optimal method was selected based on minimal disturbance to the 
original data distribution for missing value filling. Additionally, Spearman correlation analysis was conducted to 
assess linear relationships between numerical variables. To mitigate multicollinearity in subsequent machine 
learning modeling, at least one of any pair of strongly correlated variables (|r| > 0.9) was removed, thereby 
enhancing model accuracy and interpretability. All data preprocessing, analytical procedures, ML model 
development, and interpretation were conducted in PyCharm (version 2025.1). A schematic summary of the 
integrated methodology is provided in Figure 1. 

 

Figure 1. A schematic overview of the study workflow for predicting the adsorption capacity of acid-modified 
biochar for uranium using AI technology. 
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2.2. Machine Learning Modeling 

To predict the uranium adsorption capacity of acid-modified biochar, four ensemble tree-based machine 
learning models (Random Forest, XGBoost, CatBoost, and LightGBM) were selected for performance evaluation. 
Ensemble tree-based approaches were adopted as the modeling framework due to their established advantages in 
capturing complex nonlinear relationships and enhancing prediction robustness [35,36]. Specifically, compared to 
conventional single-model or non-ensemble techniques, tree-based ensemble methods combine predictions from 
multiple decision trees through bagging (e.g., Random Forest) or boosting (e.g., XGBoost, CatBoost, LightGBM) 
strategies [37]. This integration effectively reduces both bias and variance, improves generalization performance 
on unseen data, and has consistently achieved superior predictive accuracy across a wide range of applications 
[33]. This modeling choice is further supported by previous studies in which ensemble tree-based models have 
proven effective in predicting adsorption-related properties in biochar systems, aligning closely with the objectives 
of the present work [25,32,34]. 

The dataset was partitioned into training and test sets using three different split ratios (70:30, 80:20, and 
85:15) to identify the optimal partitioning strategy. Based on preliminary evaluations, the 85:15 ratio was found 
to yield the best performance (Table S2). Therefore, this ratio was adopted for the final model training. 
Hyperparameter optimization for all models was performed using the Optuna framework with the Tree-structured 
Parzen Estimator Sampler (TPESampler), which enhances prediction accuracy and model stability [38,39]. The 
hyperparameters and their corresponding tuning ranges are provided in Table S3. To mitigate overfitting during 
model training, a 5-fold cross-validation procedure was applied across all ensemble models. 

2.3. Model Performance Evaluation 

Predictive performance was rigorously assessed using the coefficient of determination (R2) and root mean 
square error (RMSE), calculated according to Equations (1) and (2), respectively: 

R2 = 1-
∑ (yi െ yi

pred)
2n

i=1

∑ (yi െ y)2n
i=1

 (1) 

RMSE = ඨ
∑ (yi െ yi

pred)
2n

i=1

n  (2) 

Here, yi denotes the actual value, yi
pred represents the predicted value, and y is the mean of the actual 

values. Higher R2 and lower RMSE values indicate better model performance [35]. Therefore, priority should be 
given to those with a higher R2 and a lower RMSE based on the model’s performance on the test set. 

To evaluate model stability, a repeated 5-fold cross-validation approach was employed. The entire dataset 
was randomly split 50 times, and for each split, a 5-fold cross-validation was conducted. The R2 and RMSE values 
for both training and test folds were recorded, generating a distribution of performance metrics for each model. 
This process allowed for the assessment of model robustness against data sampling variability. The model 
exhibiting the smallest variance in performance metrics across the 50 iterations was considered the most stable. 

In addition, we performed a random-seed sensitivity analysis to ensure that the reported performance is not 
dependent on a single stochastic initialization. Specifically, we re-trained the optimized CatBoost model under 
multiple random seeds while keeping the train/test split strategy unchanged, and summarized the distribution of 
R2 and RMSE across seeds (Table S5). 

Finally, residual analysis was conducted to diagnose model behavior and identify potential biases. Residuals 
(defined as the differences between experimentally observed values and model-predicted values) were computed 
for test set predictions. The distribution of residuals was visually examined using scatter plots of residuals versus 
predicted values. A well-performing model is expected to display residuals randomly dispersed around zero, 
without observable patterns or systematic deviations. 

2.4. Model Behavior Interpretation 

To elucidate the underlying mechanisms governing uranium adsorption, the relationships between input 
features (preparation conditions, physicochemical properties and adsorption conditions) and the target variable 
(Qe) were systematically analyzed. This analysis aimed to quantify the influence of individual factors on adsorption 
performance. Initially, feature importance analysis was performed to evaluate the relative contribution of each 
input variable to Qₑ. Furthermore, SHAP analysis was employed to quantify the specific impact of individual 
features on Qₑ predictions, thereby identifying key variables governing adsorption capacity and elucidating the 
direction of their effects [31]. To provide a comprehensive interpretation of feature contributions, SHAP 
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dependence plots and PDPs were utilized, illustrating how individual input variables influence model outputs 
across their value ranges. The integration of these interpretability techniques systematically deciphered the 
mechanisms by which preparation conditions, biochar characteristics, and adsorption parameters collectively 
affected uranium adsorption. 

3. Results and Discussion 

3.1. Automated Literature Screening and Data Extraction 

Conventional data acquisition in scientific research is often constrained by its time-consuming and labor-
intensive nature. The recent emergence of LLM-based intelligent extraction techniques offers a promising 
alternative to mitigate these limitations [40]. Through structured human-computer interaction, LLMs can 
automatically process batches of unstructured documents to extract targeted information [41]. However, existing 
studies indicate that LLMs may still encounter challenges in accurately interpreting unstructured text, and their 
extraction efficiency can be suboptimal. These limitations can be partially alleviated through prompt engineering 
and model fine-tuning [42,43]. Moreover, multi-LLM cross-validation has been proposed as a means to enhance 
extraction accuracy and reliability, though expert supervision remains indispensable throughout the process. 

To address these considerations, we developed a collaborative LLM-expert framework for efficient dataset 
construction. For literature screening, DeepSeek-R1 was employed to filter publications based on four predefined 
criteria (e.g., biochar focus and acid modification), as mentioned in Text S1. Subsequent expert validation 
confirmed near-perfect accuracy, with only one misclassification, demonstrating the model’s strong screening 
capability. Given this high performance, multi-LLM cross-validation was deemed unnecessary at this stage to 
conserve computational resources. 

For data extraction, three LLMs (DeepSeek-R1, GPT-4o, and Doubao (Beta)), were deployed using a pre-
validated structured prompt template. Results indicated that multi-LLM cross-validation significantly improved 
extraction accuracy compared to single-LLM approaches (Figure 2a). Although this method increased processing 
time (Figure 2b) and computational cost, it remained substantially more efficient than manual extraction. The 
average extraction scores of biochar preparation conditions and biochar physicochemical properties under multi-
LLM cross-validation are summarized in Figure 2c,d, respectively. Notably, the method performed well on textual 
data but was less effective for graphical content (e.g., pHpzc), reflecting a known limitation of current LLMs in 
accurately interpreting visual information. Consequently, these feature values and adsorption parameters were all 
extracted using WebPlotDigitizer to prevent data loss and ensure accuracy. 

 

Figure 2. Comparison of extraction performance under the LLM-expert collaboration framework. (a) Average 
scores of different literature extraction strategies; (b) Processing time of different literature extraction strategies; 
(c) Average scores of biochar preparation conditions extraction; (d) Average scores of biochar physicochemical 
properties extraction. 
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The multi-stage quality control procedure we implemented specifically targets the known failure modes of 
LLMs, such as unit confusion, context drift across tables/figures, and omission of conditional qualifiers, in order 
to mitigate potential errors introduced by LLM-assisted extraction. Under the multi-LLM cross-validation strategy, 
the same paper was independently parsed by different LLMs, and the extracted fields were compared to identify 
disagreements and suspicious values. In addition, rule-based validation was applied to all extracted records, 
including standardized unit normalization, range/logic checks (e.g., non-negative constraints and physically 
plausible bounds for adsorption capacity and operating conditions), and consistency checks across related 
variables. Manual verification was conducted on records of inconsistent or rule-based check markers across LLMs, 
and spot checks were carried out on randomly sampled subsets of papers. These are crucial steps to confirm 
extraction accuracy. 

This integrated closed-loop workflow, which encompasses automated literature screening, intelligent data 
extraction, and expert validation, overcame the accuracy limitations of single-LLM approaches for complex 
scientific data and established a reusable framework. Within this structure, LLMs handled standardized data 
processing, while experts provided critical validation and knowledge structuring. This collaborative effort yielded 
a high-quality dataset on biochar uranium adsorption, comprising 589 rigorously validated records, which provides 
a robust foundation for subsequent model development and mechanistic analysis. 

3.2. Dataset Characteristics and Preprocessing 

The constructed dataset incorporates three key components: biochar preparation conditions, physicochemical 
properties, and adsorption conditions. As summarized in Table 1, the initial dataset comprises 24 input features 
and 1 target variable. Pyrolysis temperature is one of the key parameters for regulating the uranium adsorption 
performance of biochar. In the dataset, the pyrolysis temperatures are mainly distributed between 500 and 700℃. 
Within this temperature range, the organic matter in biomass can be fully decomposed, forming abundant 
microporous and mesoporous structures. 

Table 1. Descriptive statistics of parameters in the original dataset. 

Variable Name Type Mean Std Min Max Data Missing 
Pyrolysis temperature (℃) Numerical 543.5 185.02 180 850 0% 

Hold duration (h) Numerical 2.04 1.41 0.5 8 0% 
Heating rate (℃/min) Numerical 4.42 4.54 0 10 0% 

Acid_Type Categorical 4.15 1.19 1 6 0% 
Acid concentration (mol/L) Numerical 3.83 3.50 0.16 14.6 4% 

Acid treatment time (h) Numerical 13.82 9.74 0.5 24 4% 
Acid treatment temperature (℃) Numerical 46.15 25.66 25 90 0% 

Sequence of pyrolysis and modification Categorical 0.65 0.49 0 1 0% 
SSA (m2/g) Numerical 573.81 483.77 17.05 1521.38 4% 
APS (nm) Numerical 5.22 2.38 2.2 9.6 54% 

TPV (cm3/g) Numerical 0.56 0.45 0.089 1.71 12% 
C (%) Numerical 70.49 22.76 1.21 91.74 23% 
O (%) Numerical 16.17 7.63 2.45 41.3 23% 
N (%) Numerical 3.56 1.79 2.4 7.5 69% 
H (%) Numerical 2.1 0.85 1.5 2.7 92% 
C/N Numerical 18.95 7.84 10.3 28.4 69% 
O/C Numerical 0.34 0.44 0.08 2.02 27% 
H/C Numerical 0.67 0.05 0.63 0.7 92% 

(O + N)/C Numerical 0.31 0.11 0.12 0.51 69% 
pHpzc Numerical 2.79 1.43 1 7 35% 
pH Numerical 4.86 1.53 1 12 0% 

T (K) Numerical 303.54 13.32 278 338 0% 
C0 (mg/L) Numerical 67.65 68.82 0.5 500 0% 
SLR (g/L) Numerical 0.63 1.92 0.02 20 0% 
Qe (mg/g) Numerical 146.18 175.99 0.8 1030 0% 

Furthermore, a high specific surface area (SSA) combined with sufficient surface micropores provides high-
density adsorption sites, which are essential for effective uranium uptake. Following acid modification, the SSA 
of biochar was significantly enhanced, with an average value of 553.81 m2/g and a maximum of 1521.38 m2/g. 
The oxygen-to-carbon (O/C) ratio, which directly reflects the abundance of oxygen-containing functional groups, 
influences the surface charge distribution and adsorption selectivity of biochar. The O/C ratios in the dataset are 
centered around 0.34, indicating a richer presence of surface functional groups compared to unmodified biochar, 
as supported by a previous study [34]. Notably, the uranium adsorption capacity of acid-modified biochar 
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demonstrated considerable potential, with an average Qe of 146.18 mg/g and a maximum value reaching 1030 mg/g. 
These results underscore the efficacy of acid-modified biochar as a promising adsorbent for uranium removal. 

To address missing values in the dataset, we systematically compared four imputation strategies (Figure 3). 
For variables with <50% missingness, MICE provided the best overall balance between information retention and 
distributional fidelity, producing imputed values that were most consistent with the observed data. By contrast, 
when missingness exceeded 50%, none of the tested methods reproduced the original distribution satisfactorily 
(Figure S1), and these variables were therefore removed to avoid introducing substantial imputation-driven bias 
and to preserve dataset reliability. On the one hand, H and N-related descriptors are not consistently reported across 
studies, which limits cross-study comparability. On the other hand, compared with pH-dependent surface charge 
and the availability of reactive binding sites governed by oxygen-containing functional groups and structural 
properties, derived ratios such as H/C and C/N mainly act as rough representatives for aromaticness/condensation 
or N content and cannot directly quantify uranium binding capacity, which is relatively consistent with the current 
understanding in this field [46,47,58]. Therefore, we excluded these variables and prioritized better-covered, 
mechanistically interpretable descriptors to improve dataset consistency and model robustness. The distributions 
of the retained variables without missing values are provided in Figure S2. 

 

Figure 3. Performance comparison of different missing-value handling strategies (MICE: multiple imputation by 
chained equations; Mean: mean imputation; Median: median imputation; Mode: mode imputation). (a) Acid 
concentration (Acid_C); (b) Acid treatment time (Acid_T); (c) SSA; (d) TPV; (e) C%; (f) O%; (g) O/C; (h) pHpzc. 

Notably, feature scaling was intentionally omitted in the preprocessing pipeline, as tree-based ensemble 
algorithms are inherently robust to features with varying scales. To assess inter-feature relationships, Spearman 
correlation analysis was conducted. Given the relative insensitivity of ensemble tree models to moderate 
multicollinearity, a conservative threshold of |r| > 0.9 was adopted for feature selection. As shown in Figure 4, a 
strong correlation was observed between SSA and TPV (r = 0.91). Based on its documented greater influence on 
active site availability and adsorption performance [35], SSA was retained while TPV was removed. Similarly, 
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elemental composition metrics (C% and O%) were excluded while O/C ratio was retained, as it more directly 
reflects the relative abundance of oxygen-containing functional groups that govern biochar adsorption 
mechanisms. This feature refinement process yielded a final set of 16 variables for subsequent model development. 

 

Figure 4. Spearman correlation coefficient matrix between input features and target variable. 

3.3. Predictive Modeling of Uranium Adsorption 

3.3.1. Model Performance and Evaluation 

The predictive performance of four machine learning models for uranium adsorption capacity was 
systematically evaluated. As shown in Figure 5, the close alignment between predicted and observed values, 
together with the comparable distributions of training and test predictions, indicates that all models learned stable 
relationships from the dataset rather than memorizing the training samples. Consistently high test performance (R2 
> 0.95 for all models) further suggests that the models generalize well to test data under the same data-generation 
conditions. In particular, CatBoost achieved the best accuracy (R2 = 0.98, RMSE = 24.78), meaning it explains 
most of the variance in adsorption capacity while maintaining a relatively small absolute prediction error in the 
same physical units as Qe. Importantly, the absence of an obvious train-test performance gap in Figure 5 provides 
a qualitative but direct indication that overfitting is limited, supporting the reliability of these metrics within the 
data-supported domain. The superior performance of CatBoost is consistent with its ordered boosting strategy and 
its ability to reduce prediction shift, which can improve robustness compared with conventional gradient-boosting 
approaches [44]. Although XGBoost, Random Forest, and LightGBM also yielded high prediction accuracy, initial 
evaluations indicated that CatBoost possessed greater predictive accuracy and robustness. 
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Figure 5. The model performance and residual analysis of (a) RF, (b) XGBoost, (c) CatBoost and (d) LightGBM. 
The density plots on the upper and right sides of the model performance plots respectively represent the distribution 
of the predicted values and actual values. 

To further assess model stability, a repeated 5-fold cross-validation was conducted over 50 independent data 
splits (Figure 6). CatBoost again demonstrated the most consistent and reliable performance, showing the lowest 
variability across evaluation metrics, which confirms its strong generalization capacity under varying data 
sampling conditions. Random-seed sensitivity analysis indicated that the model performance remains stable across 
different seeds (Table S5), supporting the robustness of our conclusions. Residual analysis provided additional 
insights into model behavior (Figure 5). The residuals of the CatBoost model were distributed randomly around 
zero with negligible systematic bias, whereas the other models displayed more pronounced deviation patterns. This 
observation further supports that CatBoost produces well-calibrated predictions, which is an essential 
characteristic for credible adsorption performance estimation in real-world scenarios. 
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Figure 6. Stability evaluation results of different machine learning models (a: training R2, b: training RMSE, c: test 
R2, d: test RMSE). 

Based on its exceptional accuracy, robustness, and minimal prediction bias, CatBoost was selected as the 
final model. Overall, these model evaluation and optimization efforts significantly improved prediction reliability, 
enabling more efficient assessment of uranium adsorption by biochar and supporting more cost-effective 
applications in adsorption-related research. 

3.3.2. Mechanism Interpretation 

This study integrated feature importance and SHAP analysis to systematically identify the key factors 
regulating uranium adsorption by acid-modified biochar. As shown in Figure 7a, feature importance analysis 
quantified the relative contribution of each input feature to CatBoost model’s predictions, revealing that initial 
uranium concentration (C0) was the most dominant factor, accounting for 54.7% of the total importance of all input 
features. This proportion far exceeds other parameters in the same category, confirming its leading role even 
among adsorption conditions. Specifically, C0 directly enhances total adsorption capacity by increasing the contact 
probability between UO2

2+ and active adsorption sites on the biochar surface. Higher C0 creates a stronger mass 
transfer driving force for UO2

2+, promoting the occupation of available adsorption sites [45]. 
Quantitative analysis showed that adsorption conditions accounted for the largest proportion of contributions 

to uranium adsorption capacity (71.51%), followed by biochar preparation conditions (15.27%) and 
physicochemical properties (13.22%). The dominant role of adsorption conditions is attributed to their direct 
regulation of two critical processes: (1) the accessibility of active adsorption sites for UO2

2+ , and (2) the 
thermodynamic and kinetic behaviors of uranium. Both processes are influenced by key factors such as solid-to-
liquid ratio (SLR) and solution pH [46,47]. 

Furthermore, SHAP analysis was used to quantify the importance and influence direction of each feature by 
evaluating its marginal contribution to model predictions (Figure 7b,c). In the plots, each point corresponds to a 
feature value of a sample, with red for high values and blue for low values. The size of the SHAP values reflects 
their impact strength: larger values represent stronger positive contributions to adsorption capacity, while smaller 
values indicate stronger negative effects. For example, higher values of C0 and SSA were associated with larger 
SHAP values, corresponding to greater adsorption, whereas lower values of the pyrolysis and modification 
sequence led to smaller SHAP values and reduced adsorption. The y-axis arranges the features in order of their 
relative importance, from high to low, which is roughly consistent with the built-in feature importance ranking of 
the CatBoost model. However, some features like Acid_C and pH showed SHAP values that did not vary 
consistently with their own feature values, indicating non-linear relationships that require further investigation. 

SHAP dependence plots and PDPs were used to explore the relationships between input features and Qe, 
revealing how individual features influence the target variable. Figure 7d–i showed the SHAP dependence plots 
for the six most important features identified by SHAP method, and the SHAP dependence plots for the remaining 
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features were shown in Figure S3. For these key features, the trends observed in both the SHAP dependence and 
PDPs plots (Figure S4) are highly consistent. This consistency highlighted the internal coherence of the model’s 
feature interpretation and indicated robust relationships between these features and Qe. 

 

Figure 7. Global feature importance and SHAP-based interpretation of input variables in the CatBoost model. (a) 
feature importance ranking and grouped contribution; (b) SHAP beeswarm plot; (c) Mean |SHAP| values and 
grouped contribution; (d–i) SHAP dependence plots for the six most important features. 

Among adsorption conditions, Qe showed a clear positive correlation with the C0 and a clear negative 
correlation with SLR, while exhibiting a non-linear relationship with pH. Figure 7d demonstrated that as C0 
increases, Qe first rises rapidly, then slows down and gradually plateaus, following a three-stage pattern: rapid 
increase, deceleration and saturation [48,61]. It is widely accepted that under the same initial adsorption conditions, 
increasing C0 significantly boosts Qe [49,50,62]. Additionally, Figure 7i showed that as SLR increases, Qe 
gradually decreases. This occurs because SLR reflects the amount of biochar added per unit volume of solution, 
while Qe measures the adsorption capacity per unit mass of biochar. When SLR rises, the relative amount of 
uranium contacting each unit mass of biochar declines, leading to lower Qe [51]. However, the uranium removal 
rate actually increases in this case. Generally, adding more adsorbent improves adsorption performance, but the 
cost of practical water treatment must be considered. The non-linear SHAP patterns observed for pH reflect the 
coupled effects of surface charge regulation and uranium speciation. Specifically, pH significantly influences 
uranium adsorption by altering the surface charge of the adsorbent and the speciation of the adsorbate through 
electrostatic interactions [52]. Figure 7e shows that: when pH < 5, adsorption capacity increases with rising pH, 
likely due to electrostatic attraction between positively charged UO2

2+ species and oxygen-containing functional 
groups on the biochar surface [53]; when pH is in the range of 5–7, uranium removal efficiency is optimal; further 
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increasing pH reduces removal efficiency, as U(VI) transforms into negatively charged ions (e.g., ሺUOଶሻଷሺOHሻ଻ି 
and ሺUOଶሻሺOHሻଷି) that generate electrostatic repulsion with the biochar surface, inhibiting adsorption [54]. 

The physicochemical properties of biochar also play a key role in uranium adsorption. A higher SSA and a 
lower pHpzc facilitate uranium adsorption on the biochar surface (Figure 7f,h). A larger SSA provides more active 
sites for adsorption, enhancing interfacial interactions [55]. For example, Li et al. [56] synthesized phosphorus-
doped biochar from pomelo peel, achieving a maximum SSA of 1521 m2/g and a uranium adsorption capacity of 
603 mg/g. Additionally, pHpzc helps determine the optimal environmental pH for uranium adsorption by biochar: 
when pH is below pHpzc, the biochar surface carries a positive charge; when pH is above pHpzc, it carries a negative 
charge. Typically, the pHpzc of biochar is generally below 7 [57]. Therefore, within the optimal pH range 
(approximately 5–7), a lower pHpzc makes the biochar surface more likely to carry a negative charge, enhancing 
electrostatic interactions with uranium and improving adsorption performance [58]. 

Appropriately increasing the acid concentration during the modification process helps improve the adsorption 
performance of biochar (Figure 7g). Additionally, Figure S3h suggested that phosphoric acid is a suitable 
modifier—phosphoric acid modification not only increases the specific surface area and porosity of biochar 
(providing more adsorption sites), but also introduces abundant oxygen-containing functional groups (e.g., -
COOH, -OH). These groups can coordinate and complex with UO2

2+, enhancing adsorption [59]. Meanwhile, 
phosphoric acid modification reduces the pHpzc of biochar, making its surface more negatively charged across a 
wider pH range and strengthening electrostatic adsorption of uranium. This study also suggests that the order of 
pyrolysis and modification is associated with adsorption performance: biochar produced by modification before 
pyrolysis tends to show higher uranium adsorption in the compiled dataset (Figure S3i). A plausible explanation 
is that pre-activation can optimize surface properties prior to carbonization through targeted functional-group 
introduction and pore development [60]. The sample count of each sequence is reported in Table S4, and the 
balance of the data further supports this claim. 

It should be emphasized that SHAP does not establish causal relationships; rather, it explains how the trained 
model attributes prediction changes to variations in input features based on patterns learned from the dataset. 
Therefore, the observed SHAP trends are interpreted as data-driven associations that are evaluated for their physical 
and chemical plausibility by comparison with established adsorption mechanisms reported in the literature. 

3.3.3. GUI for Predictive Application 

To bridge the gap between predictive modeling and practical implementation, we developed a user-friendly 
GUI application using Python, which integrates the optimized CatBoost model (Figure 8). This interactive platform 
allows users to input 15 key feature parameters to predict the uranium adsorption capacity of acid-modified 
biochar. The interface is organized into three dedicated input modules, logically structured to reflect the 
experimental workflow. Users can enter values within suggested ranges (which are basically consistent with the 
span of the dataset in this study) and obtain instant predictions by clicking the “Predict” button. Although the GUI 
does not enforce strict bounds to permit limited extrapolation, which can be useful for exploratory experimental 
design, users are cautioned against extensive extrapolation as it may notably reduce prediction reliability. 

The resulting adsorption capacity is shown along with a confidence interval reported using quantile 
regression. Quantile regression provides a more robust way to estimate the uncertainty compared to the method 
based on the predictive variance of the CatBoost model. This approach gives a better indication of the range within 
which the true adsorption capacity is likely to lie, especially when dealing with data points that are far from the 
training data domain. This design strikes a balance between flexibility and a safeguard against unreliable 
extrapolation. Moreover, it eliminates the need for programming knowledge, making the tool accessible to a wide 
range of researchers and practitioners. 

By providing an efficient and user-friendly pathway to leverage machine learning predictions, this GUI serves 
as a practical bridge between data-driven modeling and real-world uranium adsorption studies. It significantly 
accelerates experimental design and optimization, contributing to more intelligent and resource-efficient research 
in radioactive wastewater treatment. 
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Figure 8. A user-friendly GUI application for the rapid prediction of uranium adsorption capacity on acid-modified 
biochar using the optimized CatBoost model. https://github.com/stephanieee528/Biochar_Adsorption_Predictor 
(accessed on 17 December 2025). 

4. Conclusions 

This study presents an integrated AI-driven framework that combines large language models for automated 
data extraction with interpretable machine learning to predict uranium adsorption performance on acid-modified 
biochar, addressing a key challenge in radioactive wastewater management. Among the tested models, CatBoost 
achieved the best overall performance and was selected as the primary predictor. While adsorption conditions 
dominate the prediction, feature importance and SHAP analyses consistently identify pHpzc, SSA, and acid 
treatment-related variables, underscoring the coupled effects of surface charge regulation and reactive site 
availability. These patterns provide practical guidance for the rational design of adsorbents and for prioritizing 
experimental data collection toward high-impact variables. 

Several limitations should be noted. Using only tree-based ensemble models is difficult to integrate physical 
constraints and is limited in handling high-dimensional data. Future research may consider neural networks and 
hybrid physics-informed ML approaches, which will be explored after the database is expanded. In addition, while 
the workflow is pollutant-agnostic in principle, its application to new pollutants requires building dedicated 
datasets and retraining due to uranium-specific features and learned relationships. 

Supplementary Materials 

The additional data and information can be downloaded at: https://media.sciltp.com/articles/others/2601061 
550370171/EMT-25120049-Supplementary-Materials.pdf. Text S1: Predefined criteria for literature screening. 
Text S2: System Prompt. Table S1: Quantitative scoring rule for data extraction using LLMs. Table S2: Four tree-
based ensemble ML model prediction results under different division ratios. Table S3: The hyperparameters and 
their ranges of the model used in this study. Table S4: Sample counts for the two preparation sequences used to 
define Seq_P_M in the compiled dataset. Table S5: Seed sensitivity analysis of the CatBoost model performance. 
Figure S1: Performance comparison of MICE, Mean, Median and Mode in feature missing value imputation with 
missing ratios exceeding 50%. Figure S2: The distribution of the remaining features. The histogram represents the 
distribution of category features. Figure S3: The SHAP dependence plots of the remaining features. Figure S4: 
Model interpretation based on partial dependence plots of uranium adsorption capacity on input features. 
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