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1. Introduction

In the fields of machine learning and pattern recognition, Support Vector Machines (SVMs) are among the
most widely used classification methods. The success of SVMs largely depends on the representation of the
data and the distance metric used. In the traditional approach, data is represented as vectors in Euclidean space,
and the separation between classes is achieved through hyperplanes. However, in some applications, particularly
those involving biomedical signals, image recognition, and statistical correlation-based features, data is naturally
defined on non-Euclidean (Riemannian) manifolds. In such cases, Symmetric Positive Definite (SPD) matrices or
covariance-based features are considered on Riemannian manifolds, and Riemannian distances or log-maps for
tangent space reduction are employed instead of classical Euclidean metrics.

In the machine learning literature, Support Vector Machines (SVMs) stand out as an effective method for
classifying high-dimensional data [1,2]. However, much real-world data is naturally structured in non-Euclidean
forms, particularly when represented by Symmetric Positive Definite (SPD) matrices. To process such data,
Riemannian geometry-based approaches have been developed [3—6]. In recent years, Riemannian geometry-based
methods have been successfully applied in brain-computer interface (BCI) and EEG signal classification, yielding
superior results compared to classical methods [7,8]. Additionally, statistical analyses performed on SPD matrices
have been reported to make significant contributions in biomedical fields such as diffusion tensor imaging (DTTI) [9].
These studies demonstrate that methods aligned with the natural geometric structure of the data are both theoretically
robust and practically successful.

Recently, Riemannian geometry-based methods have gained significant attention in machine learning tasks that
involve structured data such as covariance matrices. Particularly in brain—computer interface (BCI) applications, sym-
metric positive definite (SPD) matrices defined on Riemannian manifolds have been shown to yield state-of-the-art
classification performance by capturing the intrinsic geometry of the data [7,10]. Beyond BCI, manifold-aware repre-
sentations have also been successfully employed in image classification through region covariance descriptors [11], as
well as in visual tracking problems using geometry-preserving dimensionality reduction techniques [12]. Moreover,
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applications in signal processing further highlight the broad utility and robustness of Riemannian learning frameworks
in handling non-Euclidean data distributions [13]. Collectively, these studies undetrline the potential of SPD manifold
learning as a principled and effective alternative to classical Euclidean methods for structured data analysis.

In this study, the performance of the SVM classifier on the same dataset is compared using Euclidean represen-
tations and Riemannian-based non-Euclidean representations. Thus, the advantages offered by different geometric
representations in terms of classification accuracy, computational cost, and interpretability are systematically
examined. The paper is organized as follows: the second section provides the theoretical background of Euclidean
and Riemannian data representations, the third section presents the methods used, the fourth section includes
experimental results and comparisons, and the final section discusses general evaluations and future work.

2. Definition and Properties of SPD Manifold

In this section, the definition and properties of the SPD manifold will be presented, along with a discussion on
how data is represented on SPD manifolds.

The set of symmetric positive definite matrices, denoted as S; , is a subset of symmetric matrices in RP*? and
is defined by the following equivalent expressions:

Sf={CeR?|C=C", 2"Cz>0Vz R}

or
SF={CeR”|C=C", Aun(C) > 0}.

This structure is a Riemannian manifold in the differential geometric sense and is referred to as the SPD
manifold [14,15]. Each point on this manifold, i.e., each C' € S; , can be considered along with its tangent space
TCS; . The tangent space is isomorphic to the space of symmetric matrices, S,. One of the most commonly used
metrics on the SPD manifold is the Affine-Invariant Riemannian Metric (AIRM). The distance between two SPD
matrices C'1, Cz € §) is defined as:

dR(Clv CQ) =

)
F

_1 _1
log <C’1 20,0, 2)

where log(-) denotes the matrix logarithm and || - || 7 is the Frobenius norm. Additionally, the inner product defined
by AIRM is given by:
<W1, W2>C =Tr (071W1071W2) .

From this, the projection of an SPD matrix {2 onto the tangent space at a reference point C' (logarithm map) is
defined as (Figure 1):
loge:(Q) = €12 log (0—1/290-1/2) o2,

TeM

Figure 1. Projection of a point €2 on an SPD manifold onto the tangent space at reference point C' using the logarithm map.

The natural Riemannian metric on the SPD manifold provides the foundation for geodesics and derivative
calculations. In many applications, data is represented through covariance structures. For example, the covariance
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matrix for a data matrix X € R?*7 containing d features and 7" time samples is calculated as:

1

T
1
_ _ AT _ ,
C= _1(X wW(X —p)', p= iE:1x1.

N

This matrix C' is symmetric and positive definite, thus it lies on the S;f manifold. In this context, the covariance
matrices of the data can be considered as points on the SPD manifold.

The classical arithmetic mean is not valid on the SPD manifold because the Riemannian distance is used
instead of the Euclidean distance. Therefore, the mean of data points is defined as the point that minimizes the
sum of distances on the manifold. This is called the Fréchet mean. For a set {C;}Y, C 87, the Fréchet mean is
expressed as:

N

. 2

C =arg &EE, ZdR(C7 Cy),
P =1

where dg(+,-) is the Riemannian distance (Figure 2). The Fréchet mean is generally not found in closed form but is

computed using iterative methods. This point can be considered the most suitable center representing the data on

the manifold and serves as a reference point in applications such as classification.

Figure 2. Fréchet mean C of points C'y, C2, C's on the SPD manifold based on Riemannian distances.

Each SPD matrix C; can be mapped to the tangent space around the Fréchet mean C' using the logarithm map:

_1 1 1 1
loge(Cy) = C2 log <C2CZ-C2> c2.

Thus, the data is reduced to Euclidean space and can be used with classical classifiers (e.g., SVM).

There are different classification methods developed based on the manifold’s own geometry. One such method
is the Minimum Distance to Mean (MDM) method. MDM is a non-parametric classifier that operates on symmetric
positive definite (SPD) manifolds. The core idea of MDM is to determine a center for each class on the manifold
and classify test samples based on their Riemannian distance to these centers. The Fréchet mean is computed for
each class on the manifold. A test sample X is compared to the class means u. and assigned to the nearest center:

§ = argmin dag(X, ),
c

where d (-, -) denotes the Riemannian distance and p,. is the Fréchet mean for class ¢ [16].

Figure 3 represents the Fréchet means (i1, po, p13) of three different classes on the SPD manifold and the
position of a test point X to be classified. When comparing the geodesic distances between each mean and X, the
shortest distance is to po. Therefore, X is assigned to class 2.

This approach, unlike classical learning algorithms:

*  Does not require model training,
*  Operates directly on the manifold geometry,
e Can make more reliable decisions in high-dimensional and low-sample data scenarios.

The MDM method is a classification technique that respects the geometric structure and is intuitively easy
to understand. It stands out as a robust and interpretable alternative, especially in fields such as signal process-
ing, brain-computer interfaces, and statistical learning where symmetric positive definite (SPD) matrices are
encountered [8, 13].
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2 SPD Manifold

Figure 3. X is assigned to p2 by the shortest distance (green curve).

3. Materials and Methods

In this study, the dataset used is the UCI Wine dataset, which is widely preferred in the fields of machine
learning and pattern recognition [17]. The dataset contains a total of 178 samples, each defined by 13 numerical
features representing different chemical properties. The samples belong to three distinct classes (different types
of wine). The aim of the study is to compare classification performances by representing the same data both in
Euclidean space using classical methods and on a non-Euclidean manifold. Therefore, the data has been represented
in two different forms: Euclidean vectors and correlation matrices on the SPD manifold.

In the Euclidean approach, each observation is treated as a vector in R'3 space and directly fed into the SVM
algorithm. At this stage, both linear and RBF kernel SVM models were applied to test the discriminative power
between classes. However, in some data types, especially when statistical dependencies and covariance relationships
are strong, this representation may be insufficient. Therefore, the same dataset was also represented on the SPD
manifold using correlation matrices.

For the SPD representation, correlation matrices were first created from the scaled data while maintaining class
consistency. Sliding windows were used for this purpose, with each window defined to contain 10 observations and
consisting only of samples from the same class. A correlation matrix was calculated for each window, and a small
positive constant (10~37) was added to each matrix to enhance numerical stability. Thus, the resulting matrices, due
to their symmetric and positive definite properties, were considered as points on the S SPD manifold. This process
resulted in a new dataset defined on the manifold, labeled, and preserving class information.

To better understand the structural properties of SPD matrices, one of the samples was visualized using a
heatmap (Figure 4). The heatmap intuitively reveals the symmetric structure and positive definiteness of the matrix,
while also allowing positive and negative correlations between features to be distinguished by color tones.

For the application of manifold-based learning methods, it is not sufficient to use SPD matrices directly.
Therefore, the data was transformed into the tangent space using the Fréchet mean as a reference on the manifold.

In the final stage, both Euclidean vector representations and SPD manifold-based tangent space representations
were used in the SVM classifier. The performances of both approaches were compared in terms of accuracy,
computation time, and discriminative power between classes. For performance evaluation, the k-fold cross-
validation method (mostly £ = 10) was applied. This systematic comparison revealed the relationship between
geometric data representation and classification performance in detail.

The high-dimensional vector representations projected onto the tangent space were reduced to two dimensions
using Principal Component Analysis (PCA) and visualized (Figure 5). This visualization allowed samples separated
by class labels to be shown in different colors, thus visually examining how well the manifold-based representation
preserved class separation. The distribution of points obtained in the PCA plane provides an intuitive interpretation
of the discriminative power between classes.

After projection, the obtained vector representations were divided into training and test sets, and classification was
performed using an RBF kernel SVM model. The training/test ratio was generally set to 70/30. Model parameters were
learned using the training data, and the accuracy of predictions made on the test data was calculated. This stage provides
a critical evaluation to measure the contribution of SPD manifold-based representations to classification performance
compared to classical Euclidean representations.
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Figure 4. Heatmap visualization of the first SPD matrix.
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Figure 5. 2D projection in the tangent space using PCA. Colors represent classes.

Classification performance was analyzed not only by accuracy but also using the confusion matrix (Figure 6). The
confusion matrix reveals the number of correctly and incorrectly classified samples for each class at the cellular level,
clearly showing which classes the model performs well on and which classes it tends to misclassify. Thus, the overall
performance of the SVM classifier, as well as its discriminative power on a per-class basis, was evaluated in detail.

In this study, in addition to Euclidean-based classifiers, the non-parametric Minimum Distance to Mean
(MDM) method, which operates directly on the manifold, was also applied. The implementation of the method was
carried out in the following steps:

(1) Calculation of Class Centers: For each class in the training data, the Fréchet mean of the relevant SPD matrices
was calculated based on the Riemannian distance. This mean was used as the center of the class on the manifold.
(2) Test Phase: Each SPD matrix in the test data was compared to all class centers based on the Riemannian distance.
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(3) Decision Rule: The test sample was assigned to the class with the shortest geodesic distance:
§ = argmin da (X, i)

(4) Performance Evaluation: Accuracy, confusion matrix, and class-based metrics (precision, recall, f1-score)
were calculated.

True label

Predicted label

Figure 6. Confusion matrix of classification results.

In this approach, no model training was performed; only the calculation of class centers was sufficient. Thus,

MDM offers a fast classification opportunity with low computational cost while being a method that directly respects
the manifold structure.

4. Comparative Analysis of Classical and Riemannian Classifiers

In this section, three different classifier approaches were tested on the same dataset: Euclidean SVM, Rieman-
nian SVM, and Riemannian MDM. The aim is to compare classical methods with manifold-based approaches in
terms of both accuracy and interpretability.

Upon examining Table 1, it is observed that the highest accuracy of 99.30% is achieved by Riemannian SVM.
Euclidean SVM demonstrated a highly successful performance with 98.15% accuracy on raw data, but considering
the manifold geometry provided an additional contribution. Although the Riemannian MDM method yielded
a slightly lower result of 96.62% compared to other methods, it offers a strong alternative with its simple and
fast structure that does not require model training. This comparison shows that geometric representations play a
significant role in improving classification success.

Table 1. Comparison of accuracy for classical (Euclidean) and Riemannian classifiers.

Method Accuracy (%)
Euclidean SVM (Raw Data) 98.15
Riemannian SVM (Tangent Space) 99.30
Riemannian MDM (Manifold) 96.62

Euclidean SVM was directly applied to normalized raw data. The class-based metrics obtained are presented
in Table 2, and the confusion matrix is shown in Figure 7.

As seen in Table 2, Euclidean SVM classification generally shows high success. Class 0 was correctly classified in
all instances, while Class 1 had minor errors but maintained a recall value of 1.00. For Class 2, the recall value dropped
to 0.93, indicating some samples were confused with other classes. When examining the average values, the precision,
recall, and F1-score metrics are at 0.98, indicating that SVM performs very strongly with Euclidean representation.
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Table 2. Euclidean SVM classification report.

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 19
1 0.95 1.00 0.98 21
2 1.00 0.93 0.96 14
Average 0.98 0.98 0.98 54

20.0

17.5

15.0

125

True label

0 1 2
Predicted label

Figure 7. Confusion matrix for Euclidean SVM.

Riemannian SVM was applied after embedding the data into the SPD manifold and projecting it onto the
tangent space using the logarithm map. The results are presented in Table 3 and Figure 8.

Table 3. Riemannian SVM classification report.

Class Precision Recall F1-Score Support
0 0.98 1.00 0.99 51
1 1.00 0.98 0.99 54
2 1.00 1.00 1.00 37
Average 0.99 0.99 0.99 142

a0

True label

0 1 2
Predicted label

Figure 8. Confusion matrix for Riemannian SVM.
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Upon examining Table 3, it is observed that Riemannian SVM achieves very high success across all classes.
For Class 2, precision, recall, and F1-score values are 1.00, indicating error-free classification. Although there are
minor differences in Class 0 and Class 1, the metrics are above 0.98. When looking at the average values, precision,
recall, and F1-score are at 0.99, indicating that Riemannian representations significantly improve SVM performance.

Riemannian MDM is a method that operates directly on the manifold and does not require model training.
Class-based metrics are presented in Table 4, and the confusion matrix is shown in Figure 9.

Table 4. Riemannian MDM classification report.

Class Precision Recall F1-Score Support
0 0.98 0.94 0.96 51
1 0.98 0.94 0.96 54
2 0.90 1.00 0.95 37
Average 0.96 0.96 0.96 142

True label

Predicted label

Figure 9. Confusion matrix for Riemannian MDM.

According to the results in Table 4, the Riemannian MDM classifier generally achieves high accuracy. For Class
0 and Class 1, precision values are 0.98, while recall values are 0.94, indicating some samples were misclassified.
For Class 2, the recall value is 1.00, meaning all samples were correctly predicted, but the precision value of
0.90 indicates a tendency to confuse with other classes.

The average metrics (precision, recall, F1-score) are at 0.96. These results show that the MDM method, despite
its simplicity and lack of training, offers a strong alternative (Table 5).

Table 5. Theoretical comparison table.

Feature Euclidean SVM Riemannian SVM Riemannian MDM
Data Space R™ Tangent Space Manifold
Model Training Required Required None
Speed High Medium High
Interpretability Medium Medium High

Table 6 presents a comparative overview of the overall experimental performance of the three methods.
Riemannian SVM achieved the highest success with 99.30% accuracy and an F1-score of 0.99. Although Euclidean
SVM achieved a very strong result with 98.15% accuracy on raw data, it lagged behind the Riemannian approach,
which considers geometric structure. Riemannian MDM, despite its lower performance with 96.62% accuracy and
an F1-score of 0.96, stands out with its untrained and fast structure.
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Table 6. Experimental performance table.

Method Accuracy (%) F1-Score (Average)
Euclidean SVM 98.15 0.98
Riemannian SVM 99.30 0.99
Riemannian MDM 96.62 0.96

Table 7 shows the approximate computation times of the three methods. Euclidean SVM has the lowest training
and testing times, making it the fastest method. Riemannian SVM incurs higher costs during the training phase due
to the logarithm map and tangent space transformations, and requires a moderate amount of time during the testing
phase. Riemannian MDM has no training time since there is no model training, but the test time is slightly longer
than Euclidean SVM due to the calculation of the Fréchet mean. These results indicate that computational costs are
also an important factor in method selection, alongside accuracy performance.

Table 7. Computation times (approximate).

Stage Euclidean SVM Riemannian SVM Riemannian MDM
Training ~10 ms ~60 ms None
Test ~1 ms ~5 ms ~8 ms

These comparisons show that while Riemannian SVM provides the best performance in terms of accuracy,
MDM stands out with its untrained and fast structure, and Euclidean SVM offers a practical solution with high
performance even on raw data.

All Riemannian operations on the SPD manifold—including geodesic computations, logarithmic and exponen-
tial maps, and Fréchet mean estimation—were implemented using the geomstats Python library [18]. This library
provides a modular and extensible framework for differential geometric computations and statistical learning on
manifolds.

In particular, the affine-invariant metric on the space of d x d symmetric positive definite (SPD) matrices was
used throughout the experiments. Geodesic distances and mappings were computed using the built-in SPD manifold
class provided in geomstats.geometry.spd_matrices. All experiments were performed using version 2.3 of the library
in a Python 3.10 environment.

5. Results and Discussion

In this study, Euclidean SVM, Riemannian SVM, and Riemannian MDM methods were applied to the UCI
Wine dataset, and their performances were compared. The findings reveal that embedding data into the SPD
manifold in a manner suitable to its geometric structure enhances classification success.

As a result of the experimental analyses:

*  Although Euclidean SVM achieves high accuracy (98.1%), it disregards geometric structure.
*  Riemannian SVM, with tangent space transformation, achieved the highest success with 99.3% accuracy.
*  Riemannian MDM, despite being an untrained and fast method, offered a strong alternative with 96.6% accuracy.

The confusion matrices and class-based metrics show that Riemannian SVM best preserves inter-class
discrimination. In terms of computation times, Euclidean SVM is the fastest, MDM is practical with its untrained
structure, and Riemannian SVM, although more costly, is the method that provides the best performance.

In conclusion, this study demonstrates that manifold-based classification methods provide more accurate and
meaningful results compared to classical methods, especially for covariance or correlation-based data. In the future,
testing these approaches on different datasets, improving computational efficiency, and integrating them with deep
learning architectures stand out as potential research areas.
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