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Abstract: Cosmological standard timers (CSTs) are novel cosmological probes that
aim to measure the cosmic time-redshift relation, which quantifies the size of the
Universe with respect to cosmic time and further constrains cosmic evolution. With
an initial statistical distribution of the dynamical systems as a standard reference, we
can independently measure cosmic time from the time evolution of this statistical
distribution. By combining the measured cosmic time with redshift extracted from
observables, we can construct the cosmic time-redshift relation. Following this
idea, we develop the framework of CSTs and discuss their perspectives in potential
dynamical systems such as dark matter halo mass function, primordial black hole
(PBH) mass function and PBH binaries as illustrative examples to demonstrate their
feasibility in constructing the cosmic time-redshift relation.
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1. Introduction

With decades of development in cosmological probes, the modern cosmology has been expanded to the precise
frontier. Precise measurements on cosmic microwave background (CMB) [1–4], large scale structure (LSS) [5],
Type Ia supernovae (SNe) [6,7] have revealed the energy components of the Universe and led to the establishment
of the concordance cosmology model, the Λ-cold dark matter (ΛCDM) model [8–11]. The success of the ΛCDM
model in describing cosmic evolution encourages us to explore the hidden physics behind these observations.

On top of these achievements, further measurements have uncovered intrinsic inconsistencies among different
observations. The measurement of Hubble parameter, which characterizes cosmology at the background level,
has a 5σ discrepancy between CMB and Type Ia SNe observations, this is well-known Hubble tension [12–14].
The S8 parameter that describes the first-order cosmological evolution shows a 2–3σ tension between CMB and
LSS probes [4,15]. Furthermore, the underlying assumption of the ΛCDM model, the cosmological principle, is
challenged by the measurement of dipole structure in CMB and quasar distributions with a 5σ tension [16,17]. To
address these cosmological crises, various theoretical explanations have been proposed [18–27], indicating that the
ΛCDM model is not the final story. Moreover, the nature of dark matter (DM) and dark energy (DE) remain elusive.
DM properties in the small scale [28] and the dynamical behavior of DE in recently DESI results [29] are waiting
for theoretical interpretation.

To reveal the nature of cosmic tensions and dark sectors, precise cosmological probes are crucial. We have
developed several cosmological probes to trace cosmic evolution from the local Universe to high redshifts. For
example, the absolute magnitude of Type Ia SNe serves as a standard candle to construct the luminosity distance-
redshift relation up to redshift z∼1 [30,31]; the sound scale of baryon acoustic oscillations (BAO) in LSS gives
a standard ruler to determine the angular diameter-redshift relation around z∼2–3 [29,32–36]; and gravitational
waves (GWs) from binary black holes (BBHs) with their electromagnetic (EM) counterparts can work together as
a standard siren to measure the luminosity distance-redshift relation up to redshift z∼10 [37–40]. For a deeper
understanding of cosmic dynamics, it is essential to develop a novel cosmological probe that can not only place an
independent constraint on cosmic evolution but also offer a window into high-redshift Universe.

In this work, we review the framework and perspectives of a novel cosmological probe, cosmological standard
timers (CSTs), which uses the time evolution of dynamical systems in the Universe as an independent measurement
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of cosmic time. By measuring the statistical distribution of such dynamical systems and comparing it with their
identical initial distribution, a cosmic time-redshift relation can be determined. This cosmic time-redshift relation
provides insight into the size of the Universe with respect to the cosmic time, and place an independent constraint
on cosmic evolution. We have studied two dynamical systems in the Universe, primordial black hole (PBH)
clustering [41] and PBH binaries [42], studying their the Hawking radiation [43] and GW emission [44] make them
potential candidates for CSTs. For a detailed understanding of CSTs, we discuss the perspectives of CSTs in DM
halo mass function, PBH mass function and PBH binaries.

This review is organized as follows. In Section 2, we review the current cosmological probes at late Universe,
including standard candles, standard rulers, standard sirens and cosmic chronometers. In Section 3, we review the
framework of the CST on constructing the cosmic time-redshift relation based on its initial state and dynamics. In
Section 4, we focus on potential dynamical systems in the Universe that can be CST candidates and discuss their
perspectives. In Section 5, we summarize the framework and perspective of CSTs.

2. Cosmological Probes

To measure the dynamical evolution of the Universe, the basic idea is to quantify its size as a function of
cosmic time. The size of the Universe can be described by the scale factor a, however, the scale factor is not a
directly measurable quantity in observations. Instead, we measure the cosmic redshift to quantify the relative scale
of the Universe. With the expansion of the Universe, the wavelengths of cosmic signals are stretched, leaving a
redshift signature in their spectrum. Therefore, extracting the redshift from observables can be used to quantify the
scale factor as

1 + z =
a(t0)

a(te)
(1)

where a(t0) is the scale factor at the present Universe that the value is set as a(t0) = 1, and a(te) is the scale factor
when this signal was emitted at cosmic time te. Since there are no CSTs at different redshifts, obtaining cosmic
time te is not straightforward. To quantify this cosmic time te, we can evaluate cosmic time interval ∆t between te
and t0 instead. During the propagation of signals from the source to the observer, the propagation distance depends
on this cosmic time interval ∆t. Thus we can use the cosmic distance between the signal source and the observer to
infer ∆t. Once the cosmic distance-redshift relation is measured, it provides key information about the size of the
Universe at a given cosmic time, while simultaneously place a constraint on how the Universe evolves from a scale
factor a(te) at cosmic time te to a(t0) at the present Universe.

At present, a variety of methods have been well developed and reveal the behavior of the Universe with
respect to the redshift, such as standard candles, standard rulers, standard sirens, and cosmic chronometers. In this
section, we review how these cosmological probes are used to construct the cosmic distance-redshift and cosmic
time-redshift relations.

2.1. Standard Candles

A fundamental observable in cosmic distance measurement is the source luminosity. With the luminosity fixed,
the cosmic distance between the source and observer determines the apparent brightness as

F =
L

4πd2L(z)
(2)

where F denotes observed photon flux and L represents the stellar luminosity. The luminosity distance dL(z) in a
flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) Universe is expressed as,

dL(z) = (1 + z)

∫ z

0

c

H(z′)
dz′ (3)

Here, c represents the speed of light, and H(z) denotes the Hubble expansion rate at redshift z. Under the standard
flat ΛCDM paradigm, the Hubble parameter evolves as H(z) = H0

√
Ωγ(1 + z)4 +Ωm(1 + z)3 +ΩΛ, where H0

is the present-day Hubble constant. The density parameters are defined as ΩX ≡ ρX/ρc, where the subscripts
X = γ, m, Λ correspond to radiation, matter, and dark energy components, respectively, relative to the critical
density ρc. Consequently, measurements of dL(z) constrain the cosmic expansion history from the emission epoch
te to the present t0. Furthermore, the redshift z is determined by identifying spectral shifts in the observed light
relative to the source’s rest-frame spectrum.
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When using the luminosity distance to quantify the cosmic evolution, the Hubble parameter H(z) provides a
model-dependent constraint on cosmological parameters. For instance, the measured value of Hubble parameter
and matter density depends on the assumption of the cosmological models, different cosmological models like
ΛCDM or dynamical DE model produce various Hubble parameters and matter density [29]. Luminosity distance
can also provides constraints on other cosmological models, such as modified gravity. By imposing H(z) from
modified gravity into the luminosity distance, the parameters in modified gravity can be naturally constrained by the
measurement of the luminosity distance [45,46].

It is evident that for a source with a fixed intrinsic luminosity, the apparent brightness is governed by its
luminosity distance. Proximate stars yield a high observed photon flux and appear bright, whereas distant objects
appear faint. In this framework, the luminosity distance is derived by comparing the measured photon flux against the
known stellar luminosity, while the redshift is independently determined from the stellar spectrum. This procedure
allows for the construction of the luminosity distance-redshift relation, a technique widely known as the standard
candles method [47–50].

In astrophysical measurements, the intrinsic luminosity of a celestial object is frequently parameterized by
its absolute magnitude. This quantity corresponds to the apparent magnitude the object would exhibit if placed at
a standard distance of 10 pc. Consequently, the relationship linking the observed apparent magnitude m and the
absolute magnitude M is formulated as,

µ = m−M = 5 log10
dL(z)

Mpc
+ 25 (4)

where µ represents the distance modulus, defined as the difference between the apparent and absolute magnitudes.
This parameter directly quantifies the luminosity distance dL(z) between the distant source and the observer.

The application of the standard candle method relies on identifying celestial tracers with a constant absolute
magnitude. To date, several such indicators have been established, including Cepheid variables [47,48], Type Ia
SNe [50,51], and the tip of the red giant branch [52,53]. This section primarily focuses on Cepheid variables as a
representative example.

Cepheids are variable stars characterized by radial pulsations, maintaining stable periodicities and amplitudes
in both diameter and temperature. The initial observation of a Cepheid is credited to Edward Pigott [54]. Later in
1908, Henrietta Swan Leavitt made the critical breakthrough that established Period-Luminosity relation through
her analysis of 1777 Cepheid variables in the Magellanic clouds [47].

Currently, Cepheids are categorized into four distinct classes: Classical (Type I), Type II [55,56], Anoma-
lous [56], and Double-mode Cepheids [57]. Among these, Classical Cepheids are particularly valuable for distance
measurement duo to their highly regular pulsation cycles. The relationship between their luminosity and pulsation
period is described by [58],

M = −2.76(log10 (P/1 day)− 1.0)− 4.16 (5)

where M denotes the absolute magnitude of the Cepheid and P represents its pulsation period in days.
By observing the pulsation period, Equation (5) determines the absolute magnitude. Combining this with

the apparent magnitude allows Equation (4) to yield the luminosity distance dL. Concurrently, the redshift is
derived from the spectral lines of the host galaxies. Consequently, the luminosity distance-redshift relation for
Cepheids is established, which is then applied in Equation (3) to constrain the Hubble parameter and cosmological
parameters. Historically, Hubble employed this relation in 1929 to demonstrate the expansion of the Universe,
initially estimating the Hubble parameter at approximately 500 km s−1 Mpc−1 [59]. With the advent of precision
measurement, Cepheid variables now offer high-precision distance measurement, resulting in a refined Hubble
constant H0 = 74.03± 1.42 km s−1 Mpc−1 [60].

2.2. Standard Rulers

As the standard candles, imaging we have a standard size on the sky, it could also provide a measurement on the
size of the Universe at different cosmic time. For a fixed size r on the sky, we can have an observed angular size θ as

θ =
r

dA(z)
(6)

where dA(z) is physical angular diameter distance that also characterize the cosmic distance between the source
and the observer. In a flat FLRW cosmology, it can be calculated in following form
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dA(z) =
c

1 + z

∫ z

0

1

H(z′)
dz′ (7)

There is a clear relation between dL and dA in Equations (3) and (7) as dL(z) = (1+ z)2dA(z). Consequently,
the angular diameter distance encodes the same cosmic expansion history as the luminosity distance.

In the context of angular size measurements, for an object with a fixed intrinsic linear dimension, the observed
angular scales are inversely proportional to the angular diameter distance. Naturally, nearby structures gives a
larger measurable angle, whereas distant ones appear smaller. By comparing the observed angular size against
the known physical length via Equation (6), one can derive the angular diameter distance. When combined with
redshift measurements from spectral analysis, this process yields the angular diameter distance-redshift relation,
which serves as a powerful probe for constraining cosmic evolution. This method is referred to as standard rulers.

In practice, employing the standard ruler method requires identifying a candidate with a fixed physical
dimension on the sky. While several candidates exist, such as ultra-compact radio [61,62] and double-lobed radio
sources [63], the BAO scale [64] serves as the quintessential standard ruler for cosmological distance measurements.
Physically, the BAO scale represents the maximum distance sound waves propagated prior to recombination-a
length that becomes frozen once photons decouple from the baryon-photon plasma. This characteristic scale leaves
a distinct imprint on the distribution of galaxy clusters. By analyzing the two-point correlation function in the
LSS, this feature can be extracted at redshifts around z∼2–3. Furthermore, the BAO signature is not limited to the
LSS but is also encoded in the angular power specturm of the CMB temperature perturbation at redshift z = 1089.
Consequently, BAO measurements provide a robust probe of cosmic evolution from the early universe to the present.

The theoretical prediction for the BAO scale within the angular power spectrum of the CMB temperature
perturbation CTT

ℓ , is formulated as follows,

CTT
ℓ =

2

π

∫
dk k2P (k)∆2

Tℓ(k) (8)

where P (k) denotes the scale-invariant primordial power spectrum and ∆Tℓ(k) represents the transfer function
calculated via Boltzmann codes. In the context of the CMB anisotropy power spectrum, the BAO peak originates
from the baryonic oscillations driven by the interplay between the gravitational pull of dark matter and the
counteracting photon pressure. Initially, within overdense regions, intense photon pressure drives the baryons
outward at the sound speed. This expansion continues until photon decoupling occurs, at which point the baryonic
distribution freezes, imprinting the characteristic BAO scale. Analyses of the CMB angular power specturm
constrain the sound horizon at the drag epoch to be [4], rd = 147.09± 0.26Mpc.

In LSS surveys, the BAO scale is derived from the galaxy two-point correlation function as described by [65],

ξ(r) =
1

2π2

∫
dk k2P (k)

sin(kr)

kr
(9)

where P (k) represents the power spectrum of the galaxy distribution. The Sloan Digital Sky Survey (SDSS)
reported the first detection of the BAO signal in 2005, which manifested as a distinct peak in the galaxy two-point
correlation function, yielding a sound horizon of rd = 100 h−1 Mpc [66]. When combined with the Planck 2018
Hubble parameter, this corresponds to a sound horizon of rd = 148.37± 1.10Mpc.

With the release of subsequent galaxy survey datasets [29,67–70], the precision of BAO measurements has
significantly improved. By combining these observations with Big Bang Nucleosynthesis (BBN) constraints, the
Hubble parameter is determined with high accuracy, as illustrated in Table 1 [71], thereby establishing a precise
standard ruler.

Table 1. The measured Hubble parameter from the galaxy survey SDSS DR11, DR12, DR14, DESI DR2 and CMB
power spectrum Planck 2018.

Datasets Ωm rd [Mpc] H0 [km s−1 Mpc−1]

DESI DR2 BAO + BBN 0.2977± 0.0086 148.21± 1.65 68.51± 0.58

DR14 BAO + BBN 0.302+0.017
−0.020 149.0± 3.2 67.6± 1.1

DR14 BAO + BBN 0.300± 0.018 148.0± 3.1 68.1± 1.1

DR12 BAO + BBN 0.290± 0.018 150.0± 3.5 67.5± 1.2

DR11 BAO + BBN 0.289+0.016
−0.021 150.3+3.7

−3.3 67.4± 1.2

Planck 2018 0.3153± 0.0073 147.09± 0.26 67.4± 0.5
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2.3. Standard Sirens

Since the detection of the first GW event (GW150914) in 2015 [72] by LIGO [73], standard sirens have
emerged as a viable tool for cosmology. This approach utilizes GW signals from compact binaries, often combined
with EM counterparts, to measure the luminosity distance-redshift relation. The basic framework, proposed by
Bernard Schutz in 1986 [37], and named as “standard sirens” in Ref. [38]. It works as follows.

Assuming a binary system with component masses m1 and m2, the strain amplitude of the two GW polariza-
tions h+ and h× are expressed as [38],

h+ =
2(GMz)

5/3(πf)2/3

c4dL(z)
[1 + (L̂ · n̂)2] cos[Φ(t)] , h× =

4(GMz)
5/3(πf)2/3

c4dL(z)
(L̂ · n̂) sin[Φ(t)] . (10)

Here, Mz ≡ (1 + z)(m1m2)
3/5/(m1 +m2)

1/5 represents the redshifted chirp mass and f denotes the observed
GW frequency. The unit vector n̂ aligns with the line of sight from the observer to the source, while L̂ represents
the unit vector parallel to the binary’s orbital angular momentum. G is the gravitational constant. The GW phase
evolution Φ(t) is determined by the system’s intrinsic properties, including mass and spin [74], related to the
frequency via f(t) = (1/2π)dΦ/dt. Consequencely, by analyzing Φ(t), f(t), and the frequency derivative ḟ , the
redshifted chirp mass can be derived as [75,76],

Mz =

(
5

96

)3/5
c3

Gπ8/5

ḟ3/5

f11/5
(11)

Upon deriving the redshifted chirp mass, the luminosity distance can be inferred from the GW waveform
amplitude via Equations (10) and (11). However, due to the inherent degeneracy between mass and redshift, GW
signals alone-specifically from binary black holes, cannot independently constrain the redshift, rendering them dark
siren. To utilize these sources for Hubble parameter measurements, statistical methods relying on the intrinsic mass
function of compact objects have been proposed [77,78].

To break this degeneracy and acquire redshift information, two primary strategies exist. The first involves
identifying an EM counterpart. By analyzing the spectral shift of the EM emission relative to its intrinsic spectrum,
the redshift can be precisely determined. A landmark application of this method was the detection of GW170817
in 2017 [39] by aLIGO and aVirgo. This event, originating from a binary neutron star inspiral, was followed by
EM wave detected by Fermi-GBM 1.7 s [79]. This coincident detection yielded a Hubble constant measurement of
H0 = 70+12

−8 km s−1 Mpc−1, leading us to a new era of multi-messenger astronomy. Notably, the inclusion of an
EM counterpart not only yields the redshift but also improves the precision of the luminosity distance measurement
to δdL/dL ∼ 0.1% [38].

The second approach involves statistically identifying the host galaxy of the GW source [80,81], from which
the redshift can be spectroscopically derived. With the development of GW detectors in low frequency and high
sensitivity frontier, such as DECIGO [82] and LISA [83], will be capable of observing the inspiral phase with
sufficient precision to localize source accurately. This will facilitate the identification of host galaxies and the
construction of the luminosity distance-redshift relation, thereby enabling detailed studies of cosmic evolution.

2.4. Cosmic Chronometers

Above cosmological probes are trying to measure the cosmic dynamics via constructing a distance-redshift
relation. The cosmic chronometer aims to build the cosmic time-redshift relation, which can measure the Hubble
parameter at different redshifts as follows

H(z) =
ȧ

a
= − 1

(1 + z)

dz

dt
(12)

Hence, if we can obtain cosmic time interval independent of cosmic redshift z, and the resulting dz/dt relation can
directly produce a Hubble parameter at the observed redshift.

The idea of cosmic chronometers is proposed in Ref. [84], and the astrophysical system that they choose as a
candidate of cosmic chronometers is passively–evolving galaxies. Such a kind of galaxies has already experienced a
rapid star formation rate at high redshifts. This rapid star formation causes the lacking of gas and further suppresses
star formation rate. Since almost stars in the passively-evolving galaxies formed at early time, a measurement on the
age of stars can be an independent measurement on cosmic time. To estimate the differential cosmic time-redshift
relation dz/dt, we should pick two passively-evolving galaxies at two closing redshifts z1 and z2. This gives a redshift
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interval ∆z = z1 − z2. There are several kinds of methods like 4000 Å break and full spectrum fitting, can be used in
determining the age of stars. We use 4000 Å break as an example [85], the age of stars can be estimated as

D4000 = A(Z, SFH) tage +B (13)

where D4000 is a discontinuity in the spectrum of passively-evolving galaxies appearing at 4000 Å restframe
wavelength, A(Z, SFH) is a parameter depends on the metallicity of the population Z and star formation history
(SFH), and B is another fitting parameter. Then we can obtain the cosmic time interval by deriving Equation (13),
which produces ∆t = ∆D4000/A(Z, SFH), the Hubble parameter is further obtained via

H(z̄) ≃ −A(Z, SFH)

(1 + z̄)

z1 − z2
∆D4000

(14)

Here, z̄ = (z1 + z2)/2 is the mean redshift between two passively-evolving galaxies. With above discussion steps,
the cosmic chronometer provides a determination of the Hubble parameter with an accuracy of around 5% at z∼0.5

up to O(10%) at z∼2 [85].

3. The Framework of Cosmological Standard Timers

A cosmological probe targets a recording of the size of the Universe with respect to cosmic time. Previous
probes mainly focus constructing the cosmic distance-redshift relation to constrain cosmic evolution. On top of
them, we would like to build a CST based on the cosmic time-redshift relation which directly track the size of the
Universe as a function of cosmic time.

The fundamental principle of the CST framework is described as follows. The Universe host numerous dynamical
systems that evolve according to their intrinsic mechanisms. Over a long time, this dynamical evolution significantly
alters their physical states. By modeling these intrinsic mechanism, one can derive the elapsed physical time between
an initial state and a later state. Since this internal evolution is decoupled from the cosmic evolution, their physical
evolution time serves as an independent cosmic time measurement. During this evolution, the systems emit signals,
such as EM waves and GWs, which are redshifted by the cosmic expansion. Consequencely, observations yield two
measurements: cosmic redshift and the physical evolution time. As a result, we can construct a cosmic time-redshift
relation, which directly constrains the cosmic expansion history H(z) through the following equation

t =

∫ ∞

z

1

(1 + z′)

dz′

H(z′)
(15)

Within this framework, dynamical systems work as CSTs in the Universe, which records the state of the Universe
across different physical time.

The construction of CSTs has three requirements,

1. There exists an identical initial state as a standard reference for cosmic time measurement.
2. The relation between the observables and time evolution of the dynamical systems is explicit.
3. The redshift is measurable in the redshifted observables.

Based on these requirements, the cosmic chronometer satisfies all of them. The stars in passively-evolving
galaxies have almost the identical formation time as a standard reference for cosmic time measurement. The
observable D4000 depends on the age of stars in passively-evolving galaxies. The redshift of the passively-evolving
galaxies can be extracted from their spectrum. Hence, cosmic chronometers can be viewed as a model of the CST.

However, cosmic chronometers as CSTs are not enough to understand the Hubble tension. Because the
passively evolving galaxies can only provide Hubble parameter measurement within a narrow redshift band
z < 2 [85], while Hubble tension is a measurement inconsistency between CMB measurement at redshift z ≃ 1100

and local cosmic probe measurement within redshift z < 1. To probe the underlying physics behind the Hubble
tension, we should develop a cosmic probe at cosmic epoch within redshift 1 < z < 1100 to study the evolution of
Hubble parameter. CSTs provides a framework to build cosmic probes on the dynamical systems at high redshifts,
including, DM halos and PBHs, which we will introduce in Section 4. Follow the fundamental principle of CSTs,
we extend the CST to a general framework in dynamical systems. In this section, we discuss on the framework of
CSTs in constructing the cosmic time-redshift relation.
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3.1. The Cosmological Standard Timer from Single-Parameter Dynamical Systems

To implement CSTs effectively, a specific reference condition must be defined. Just as standard candles utilize
the consistent brightness of Type Ia SNe and standard rulers depend on the fixed BAO scale, CSTs require a similar
anchor. Although the initial condition of dynamical system are subject to Gaussian fluctuations, the ensemble’s
statistical distribution is determined by the underlying physical mechanism and thus remains unique. By adopting
this statistical distribution as the standard reference, it becomes possible to derive the evolution time and redshift
from observational data, which is essential for calibrating the cosmic time function z(t).

For simplicity, we start with a single-parameter dynamical system, whose time evolution follows

dM

dt
= −f(M)T (t) (16)

Here M denotes the observable physical parameter characterizing the dynamical systems. Its time evolution
is governed by the derivative −f(M)T (t), where f(M) and T (t) are only physical parameter-dependent and
time-dependent, respectively. Consequently, the statistical distribution of single-parameter dynamical systems
S(M ; t) at cosmic time t can be expressed as

S(M ; t) =
dN

dMt
(17)

where Mt ≡ M(t) denotes the value of physical parameter M at cosmic time t, while N represents the statistic of
the dynamical system distribution. For example, N is the number density in DM halo mass function. To reconstruct
the historical evolution of these dynamical systems, establishing a standard initial distribution is essential. Therefore,
Equation (17) can be further expressed relative to its initial state as,

S(M ; t) =
dN

dMi

dMi

dMt
(18)

Here, dN/dMi represents the initial statistical distribution S(M ; ti). The term dMi/dMt characterizes the dy-
namical evolution of the system, which is governed by its time evolution dM/dt = −f(M)T (t), which leads
to ∫ Mt

Mi

dM

f(M)
= g(Mt)− g(Mi) = −

∫ t

ti

T (t)dt = T (ti)− T (t) (19)

Here, we introduce g(M) as the integral of 1/f(M) and T (t) as the integral of T (t). Based on these definitions,
the evolution of dynamical systems can be expressed as

dMi

dMt
=

g′(Mt)

g′(Mi)
=

g′(Mt)

g′(g−1(g(Mt) + ∆T (t)))
(20)

Here, g′(M) ≡ dg(M)/dM and g−1 denotes the inverse function of g(M). ∆T (t) ≡ T (t)− T (ti). Hence, we
can write Equation (18) as

S(M ; t) =
dN

dMi

g′(Mt)

g′(g−1(g(Mt) + ∆T (t)))
(21)

The physical evolution interval ∆T (t) can be derived by specifying the initial statistical distribution dN/dMi in
Equation (21).

From an observational aspect, the statistical distribution of the system appears deformed because the physical
parameter M is redshifted by cosmic expansion. This results in the observational distribution So(Mz; t) (subscript
o denotes the observational quantity) as

So(Mz; t) =
dN

dMi(z)

dMi(z)

dMz
=

dN

dMi(z)

g′(Mz)

g′(g−1(g(Mz) + ∆T (tz)))
(22)

Here, Mz denotes the redshifted physical parameter, exemplified by redshifted photon energy Ez = E/(1 + z) or
the redshifted chirp mass in BBH systems Mz = (1 + z)M. The term dN/dMi(z) characterizes the influence
of cosmic redshift on the initial statistical distribution. Consistent with Equation (19), the relation is given by
g(Mi(z)) = g(Mz) + ∆T (tz).
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To derive the cosmic time-redshift relation, we analyze Equation (22) under two distinct regimes. In the first
regime, where g(Mz) ≫ ∆T (tz), the intrinsic time evolution is negligible. Consequently, the redshift can be
determined by directly comparing the redshifted physical parameter Mz with the initial physical parameter Mi

in the initial statistical distribution. The second regime is g(Mz) ≪ ∆T (tz), where the physical evolution term
∆T (tz) dominates, leading to the approximation g(Mi(z)) ≃ ∆T (tz). Then ∆T (tz) can be extracted in following
expression, which independently measures cosmic time t.

So(Mz; t) ≃


dN

dMi(z)
, g(Mz) ≫ ∆T (tz)

dN

dg−1(∆T (tz))

g′(Mz)

g′(g−1(∆T (tz)))
, g(Mz) ≪ ∆T (tz)

(23)

Consequently, the cosmic time-redshift relation can be calibrated at two parameter regimes in this single-
parameter CST.

3.2. The Cosmological Standard Timer from Multi-Parameter Dynamical Systems

For a general consideration, we study multi-parameter dynamical systems as CST, their statistical distributions
are described as

S(M; t) =
dN

dnMt
(24)

where M denotes a n-dimensional physical parameter vector which describes the dynamical system state. By introducing
the initial statistical distribution as a standard reference, we can write Equation (24) as

S(M; t) =
dN

dnMi
detJ(M,∆t) (25)

Here, the Jacobian of dynamical systems is defined as Jij ≡ ∂Mi(ti)/∂Mj(t). With an initial statistical distribution
as a standard reference, we can extract the physical evolution time ∆t from the determinant of the Jacobian
detJ(M,∆t). To calculate the Jacobian, we study the time evolution of this multi-parameter dynamical system as

dM

dt
= −f(M)T (t) (26)

where −f(M)T (t) is its time derivative function and f(M) and T (t) are only physical parameter-dependent and
time-dependent, respectively. Because, multiple physical parameters are strongly coupled with each other in its time
evolution, it is difficult to obtain a general analytical expression of the Jacobian element ∂Mi(ti)/∂Mj(t), which
pushes us to find the numerical solution of detJ(M,∆t) in extracting the physical evolution time ∆t.

From observational aspects, the redshift term induced by the cosmic expansion also appears in the statistical
distribution of multi-parameter dynamical systems as following

So(Mz; t) =
dN

dnMi(z)
detJ(Mz,∆tz) (27)

where Mz represents the redshifted n-dimensional physical parameter vector, while dN/dnMi(z) describes the
redshifted initial statistical distribution.

Consistent with the framework in Section 3.1, we consider two distinct limiting cases for establishing the
cosmic time-redshift relation. In the region of the parameter space where intrinsic time evolution is negligible relative
to the inital values, the Jacobian determinant satisfies detJ(Mz,∆tz) ≃ 1. Then redshift z can be determined by
matching the observed statistical distribution So(Mz; t) ≃ dN/dnMi(z) with the initial one. The other regime is
that in the parameter space where the time evolution of parameters becomes significant in statistical distributions,
where physical evolution time ∆t is extracted by numerically solving the equation of detJ(Mz,∆tz). Moreover,
the statistical distribution of CSTs may not be an observable, which requires us to obtain it by solving an inverse
problem from the observables. We discuss this scenario in Appendix A.

3.3. Uncertainties in Cosmological Standard Timers

The uncertainty is a crucial part in applying CSTs to constrain cosmic evolution. There are two main kinds of
uncertainties appearing in CSTs, one is the uncertainty in the initial statistical distribution and the other one is the
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measurement uncertainty in the late statistical distribution. These uncertainties would be reflected as an error in the
determination of the cosmic time.

To study the impact of uncertainties on the cosmic time, we consider a single-parameter dynamical system as
an example and study its statistical distribution in rapid evolved region, which follows Equation (23)

S(M ; t) =
S(g−1(∆T (t)); ti)

g′(g−1(∆T (t)))
g′(M) (28)

where as defined in above discussion S(M ; t) is a statistical distribution of dynamical systems at a late time t that
can be inferred from observed distribution. S(M ; ti) is the initial statistical distribution of dynamical systems that
is uncertain. If we give a wrong initial distribution of SX(M ; ti) in analyzing the cosmic time, Equation (28) can be
written as

S(M ; t) =
SX(g−1(∆T (t)); ti)

g′(g−1(∆T (t)))

S(g−1(∆T (t)); ti)

SX(g−1(∆T (t)); ti)
g′(M) = α(t)

SX(g−1(∆T (t)); ti)

g′(g−1(∆T (t)))
g′(M) (29)

where we define a ratio factor α(t) ≡ S(g−1(∆T (t)); ti)/SX(g−1(∆T (t)); ti) to quantify the ratio difference
between the true initial distribution and our modeled initial distribution. To clearly demonstrate how uncertainty in
the initial distribution affects the uncertainty of cosmic time, we define a factor function F as

F (t) =
SX(g−1(∆T (t)); ti)

g′(g−1(∆T (t)))
(30)

From Equation (28), we can obtain a cosmic time-dependent factor S(g−1(∆T (t)); ti)/g
′(g−1(∆T (t))).

Because we don’t know the true initial distribution S(M ; ti), it would introduce a cosmic time error ∆t in the factor
function F , which satisfies

F (t+∆t) = α(t)F (t) (31)

Assuming ∆t ≪ t, we can expand F (t) to the linear order as F (t+∆t) ≃ F (t) +F ′(t)∆t with F ′ ≡ dF/dt, this
gives an estimation of cosmic time error as

∆t = (α(t)− 1)
F (t)

F ′(t)
(32)

Meanwhile, the other uncertainty would appear in late statistical distribution due to the measurement uncertainty as

S(M ; t) = Sp(M ; t)(1 + δ(M)) (33)

where δ(M) is the uncertainty in a late statistical distribution and Sp(M ; t) is the true physical distribution. Combine
with two uncertainties and apply them in Equation (28), we can obtain

Sp(M ; t) =
α(t)

1 + δ(M)
F (t)g′(M) (34)

The factor α(t)F (t)/1 + δ(M) at a given mass M would determine a mass-dependent cosmic time error ∆t(M) in
function F , which satisfies

F (t+∆t(M)) =
α(t)

1 + δ(M)
F (t) (35)

Consider the linear order approximation, we have F (t+∆t) ≃ F (t) + F ′(t)∆t, which results in a cosmic time
error as

∆t(M) =

(
α(t)

1 + δ(M)
− 1

)
F (t)

F ′(t)
(36)

If we consider δ(M) ≪ 1, this approximation can be imposed as α(t)/1 + δ(M) ≃ α(t)(1 − δ(M)). Then we
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pick up a number of masses to calculate its mean value as

⟨∆t⟩ = 1

N

N∑
i=1

(
α(t)

1 + δ(Mi)
− 1

)
F (t)

F ′(t)
≃

(
α(t)− 1− α(t)

∑
δ(Mi)

N

)
F (t)

F ′(t)
(37)

4. The Perspective of Cosmological Standard Timers in Dynamical Systems

To develop CSTs in dynamical systems, they should satisfy three requirements: identical initial states, explicit
time evolution and a redshift-dependent observable. This ensures a construction of the cosmic time-redshift relation
in above discussed framework. Moreover, we expect such dynamical systems could record the historical evolution of
the Universe to high redshifts where current cosmological probes can hardly measure. Based on this consideration,
we consider three typical dynamical systems, DM halo mass function, PBH mass function and PBH binaries. In
following parts, we discuss their perspectives on constructing CSTs.

4.1. Dark Matter Halo Mass Function

The DM halo is a promising candidate of CSTs. They were formed from the gravitational collapse of DMs at
redshift z∼10. The DM halo mass function provides an initial standard state as a standard reference in CSTs. The
DM halo mass function is defined as the comoving number density of DM halos in the mass range (M,M + dM).
It can be calculated as

S(M ; ti) =
dn

dMi
= f(σM )

ρm
Mi

d log(σ−1
M )

dMi
(38)

where ρm(z) = ρm,0(1 + z)3 is the cosmic matter density with the present matter density ρm,0 = 39.7M⊙ kpc−3.
σM is the linear root-mean-square fluctuation of the density field on the scale of M . f(σM ) accounts for the
geometry of the collapse overdense region and can be estimated as

f(σM ) = A

(
1 +

(σM

b

)−a
)
exp

(
− c

σ2
M

)
(39)

For a spherical collapse, the parameter (A, a, b, c) = (0.213, 1.8, 1.85, 1.57) [86].
With an initial DM halo mass function, we can study its time evolution to extract the encoded cosmic time.

The halo mass growth rate is fitted in Ref. [87] as

dM

dt
= 46.1M⊙ yr−1

(
M

1012 M⊙

)1.1

(1 + 1.11z)
√
Ωm(1 + z)3 +ΩΛ (40)

We should notice that Equation (40) is obtained from the DM halo mass growth with respect to redshift dM/dz, and
multiply dM/dz with dz/dt relation, which includes an assumption of the cosmic time-redshift relation. In order
to independently measure cosmic time from the time evolution of DM halo mass function, a redshift-independent
halo mass growth rate is required in future study. In this work, we use Equation (40) as an example to show the
perspective of DM halos as a candidate of CSTs. Although the DM halo mass growth law strongly depends on the
background cosmology model, we can still combine it with other cosmological probes to test various cosmological
models. For instance, we have cosmic chronometers to independently measure the cosmic time at z < 2, meanwhile
a cosmic time measurement can also be obtained in studying the DM halo mass evolution under the assumption of a
cosmic time-redshift relation in a cosmological model. Only when the cosmic time-redshift relation that we impose
in DM halo mass evolution is correct, it produces the same cosmic time as that from cosmic chronometers.

The time evolution of DM halo mass can be simply written as dM/dt = β(t)M1.1, this gives a DM halo mass
at cosmic time t as

1

M0.1
t

− 1

M0.1
i

= − 1

10

∫ t

ti

β(t′)dt′ = h(ti)− h(t) (41)

where function h(t) is an antiderivative of function β(t)/10. Then the time evolution of DM halo mass function can
be described as

S(M ; t) =
dn

dMt
=

dn

dMi

dMi

dMt
= S

(
Mt

[1 +M0.1
t (h(t)− h(ti))]10

; ti

)
1

[1 +M0.1
t (h(t)− h(ti))]11

(42)
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Consider a large mass limit where 1/M0.1
t ≪ h(t)− h(ti), the DM halo mass function can be approximated as

S(M ; t) ≃
S
(
[h(t)− h(ti)]

−10; ti
)

[h(t)− h(ti)]11
1

M1.1
t

(43)

This equation shows that DM halo mass function scales as M−1.1 in large mass limit, and its factor depends on the
initial DM halo mass function S(M ; ti) and time evolution term of DM halo mass h(t)− h(ti). Hence apply an
initial DM halo mass function into Equation (43), we can obtain cosmic time t from h(t)− h(ti).

The detection of DM halo is around z < 10, where CSTs in DM halo mass function is applicable. The mea-
surement of its mass function can be achieved via various channels, such as X-ray [88], SZ cluster abundance [89],
weak lensing [90], etc. The direct mass measurement for DM halo is the weak lensing, it uses the lensing signals
to obtain the density profile of DM halos, which infers the DM halo mass [91]. The X-ray method is to measure
the luminosity of the intracluster medium in DM halo and use the relation between the DM halo mass and this
luminosity to determine the DM halo mass [88]. The SZ method is based on the temperature fluctuation induced by
the interaction between CMB photon and hot electron in the galaxy, where we can obtain the DM halo mass [92].
Since each DM halo locates at a specific redshift, which can be obtained from the spectrum of the galaxies in DM
halos. Then we can obtain the cosmic time-redshift relation from DM halos. By studying the time evolution of DM
halo mass function with a future precise measurements on DM halo mass function, a CST can be well developed in
DM halos to study the evolution of the Universe.

4.2. Primordial Black Hole Mass Function

PBHs are hypothetical objects that were born from primordial perturbation in highly overdense regions
by gravitational collapse. When these overdense fluctuations re-enter the Hubble horizon, PBHs form in the
radiation-dominated era with a mass of

M ∼ c3t

G
∼ 5.03× 104

(
t

1 s

)
M⊙ (44)

where t represents cosmic time after the hot big bang. For a stellar mass PBH, corresponding cosmic time is around
∼O(10−4 s). Due to Hawking radiation effects, the mass of PBHs is not a constant and keeps evaporating. For
PBHs with an initial mass less than 1015 g, they have already evaporated by the present. Therefore, PBHs with mass
larger than 1015 g can exist from the early Universe to the present Universe. This ensures PBHs as a candidate of
the CST, can record cosmic evolution for the almost cosmic history.

As a candidate of the CST, PBHs need an initial statistical state as a standard reference for measuring cosmic
time. Their primordial origin provides an identical initial state, the initial PBH mass function. In inflationary
scenario, an initial PBH mass function S(M ; ti) characterizes the comoving number density of PBH within a mass
range (M,M + dM). It can be described as a log-normal type mass function as

S(M ; ti) =
dn

dMi
=

1√
2πσMi

exp

(
− log2(Mi/Mc)

2σ2

)
(45)

where dn is the comoving number density of PBHs in the mass range (M,M + dM), σ is the mass width of the
log-normal distribution, and Mc is the characteristic PBH mass in the log-normal distribution. This unique PBH
mass distribution can serve as a standard reference of cosmic time.

The next step is to study the time evolution of the PBH mass distribution, which provides an independent
measurement on cosmic time. The PBH mass can evolve via two mechanisms, Hawking radiation and matter
accretion. The mass change rate via Hawking radiation and matter accretion can be described as follows

dMHW

dt
= − ℏc4

15360πG2

1

M2
,

dMacc

dt
= 4πλρm

G2M2

v3eff
(46)

Here, ℏ is the reduced Planck constant. ρm is the surrounding matter density of PBHs, veff is the effective velocity
of PBHs in surrounding environments. λ is the accretion parameter that depends on the density ρm. For two mass
change mechanism, Hawking radiation effect is proportional to M−2 and matter accretion effect is proportional to
M2. Therefore, Hawking radiation effect governs the evolution of small PBH mass, while matter accretion effect
controls the large PBH mass evolution. In this section, we mainly discuss how the Hawking radiation influences the
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evolution of PBH mass function. Then the PBH mass evolves as

M3
t = M3

i − δ3(∆t) (47)

where δ3(∆t) ≡ ℏc4∆t/5120πG2, and ∆t is the cosmic time interval between cosmic time t and PBH formation
time ti. Since ti ≪ t, ∆t ≃ t. The PBH mass function at cosmic time t follows

S(M ; t) =
dn

dMt
=

dn

dMi

dMi

dMt
= S((M3

t + δ3(∆t))1/3; ti)
M2

t

(M3
t + δ3(∆t))2/3

(48)

Consider a small mass limit where Mt ≪ δ(∆t), PBH mass function at cosmic time t can be approximated as

S(M ; t) ≃ S(δ(∆t); ti)

δ2(∆t)
M2

t (49)

This equation shows that the PBH mass function scales as M2 in small mass limit, and the its factor depends on the
initial PBH mass function S(M ; ti) and cosmic time interval ∆t. Hence apply the initial PBH mass function into
Equation (49), we can obtain cosmic time t ≃ ∆t.

The last one requirement for this PBH CST is a measurable redshift from observables. Since efficient Hawking
radiation occurs on small mass PBHs, and the luminosity of Hawking radiation for a single PBH is not large
enough to be detected. However, a PBH clustering changes the story, the luminosity of Hawking radiation would be
enhanced by a large number of PBHs in the clustering. In Ref. [43], we show that O(1023) PBHs with mass around
1015 g can be detected by Fermi LAT up to redshift z∼100. This ensures the detectability of PBHs via Hawking
radiation, and the redshift information is encoded in the Hawking radiation spectrum as

F (E; z) =
L(E(1 + z); z)

4πd2L(z)
(50)

Here, L(E; z) is the intrinsic luminosity emitted from PBH clustering at redshift z, and F (E; z) is the observed
photon flux from a PBH clustering located at redshift z. By imposing the PBH mass function at redshift z, we can
obtain their intrinsic luminosity, and comparing with the F (E; z), it would determine the redshift z (see [41,43] for
more details). Combine redshift with previously obtained cosmic time t, we can construct the cosmic time-redshift
relation. This would place a constraint on cosmic evolution.

4.3. Primordial Black Hole Binaries

In PBH scenarios, not only PBH mass function provides an identical initial state, but also PBH binaries have an
standard initial state. That is the probability distribution of orbital parameters of PBH binary. For stellar mass PBHs,
they would form PBH binaries around the matter-radiation equality [93,94] with an initial probability distribution
on orbital parameter, semimajor axis a and eccentricity e as,

S(a, e; ti) =
dP

dade
=

3

4
f
3/2
PBH

a1/2

x̄3/2

e

(1− e2)3/2
(51)

where fPBH is the energy density fraction of PBHs in the DM at present Universe and x̄ is the mean physical
separation of PBHs at the matter-radiation equality. Therefore, this unique initial probability distribution of orbital
parameters in PBH binaries can serve as a standard reference for a later evolving distribution to extract cosmic time.
This is a two-dimension probability distribution. For a simple and clear demonstration of its feasibility as a CST,
we only consider a circular orbit PBH binary with an single-parameter initial state S(a; ti) in following discussion.
This choice is reasonable, because the circularization of PBH binaries could be achieved via various mechanism
before entering the GW detection frequency band [95]. For a discussion of a multi-parameter PBH binaries, see
Ref. [42] for more details.

In order to study the dynamical evolution of this single-parameter PBH binary, GWs become very important
that determines the intrinsic dynamics of PBH binary and its detectability. As a candidate of CSTs, it requires
a construction of the cosmic time-redshift relation, which means we need to study the evolution of probability
distribution of PBH binaries from its initial state to a later state and this later state should come from the same
redshift. However, as what we introduced in standard sirens, redshift cannot be determined from GW itself, due to
the mass-redshift degeneracy in GWs. This difficulty can be resolved by an assumption of a monochromatic mass
function. From GW waves, we can extract its redshifted mass Mz , which is a combination of the cosmic redshift
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and the intrinsic mass of PBHs Mz = (1 + z)MPBH. If all the PBHs have the same intrinsic mass MPBH, the
PBHs from the same redshift z should have the same redshifted mass Mz . Therefore, we can distinguish whether a
number of PBHs comes from the same redshift based on their redshifted mass.

The GW emission drives the shrinkage of PBH binaries and decreasing the semimajor axis, its dynamics can
be described as [96]

da

dt
= −128

5

G3M3
PBH

c5a3
(52)

where MPBH is the monochromatic mass of PBHs. We can integrate Equation (52) from the initial cosmic time ti
to later cosmic time t to obtain the evolution of the semimajor axis a at cosmic time t as

a4i = a4t + δ4(∆t) , δ4(∆t) ≡ 512G3

5c5
M3

PBH∆t (53)

Here, we define the symbol δ4 for a later simplified expression. ∆t is the physical evolution time between two
cosmic time ti and t as ∆t = t − ti. Based on Equation (53), we can study the evolution of the probability
distribution of orbital parameters in PBH binaries as

S(a; t) =
dP

dat
=

dP

dai

dai
dat

= S(a; ti)
a3t

(a4t + δ4(∆t))3/4
= S((a4t + δ4(∆t))1/4; ti)

a3t
(a4t + δ4(∆t))3/4

(54)

This equation shows that the physical evolution time ∆t can be determined, once we compare a later probability
distribution S(a; t) with an initial probability distribution S(a; ti). Since this physical evolution time ∆t only
depends on the intrinsic mechanism of PBH binaries, it can be viewed as an independent measurement of the cosmic
time interval.

After determining the cosmic time, we need to extract the redshift from the observed quantity. With the cosmic
expansion, the observed semimajor axis az is redshifted by az = (1 + z)a, which can be found in the Kepler’s third
law az ∼ (GMz)

1/3f
−2/3
z ∼ (1+ z)(GM)1/3f−2/3, where Mz and fz are the redshifted mass and GW frequency

of binary systems, respectively. Therefore, the observed probability distribution follows

So(az; t) =
dP

dai(z)

a3z
(a4z + δ4(∆tz))3/4

(55)

As Equation (53), we have the relation a4i (z) = a4z + δ4(∆tz), where ∆tz depends on the redshift of PBHs
binaries. In order to obtain the physical evolution time ∆t from ∆tz , we should first obtain the correct redshift from
observed probability distribution. We consider the parameter regime a4z ≫ δ4(∆tz), which indicates ai(z) ≃ az . In
this large semimajor axis limit, the time evolution of semimajor axis is negligible compared with its initial value.
Therefore, the observed distribution of the semimajor axis will only change with the expansion of the Universe. It
gives an observed probability distribution in large semimajor axis limit regime as,

So(az; t) ≃ So(ai(1 + z); t) =
dP

dai(z)
=

1

1 + z

dP

dai
=

1

1 + z
S(a; ti) (56)

In Equation (56), we can obtained an equation on the redshift. Consider a specific semimajor axis aL at the
limit of large semimajor axis, we have

(1 + z)So(aL(1 + z); t) = S(aL; ti) (57)

Here, So(az; t) in known from the observations and the initial probability distribution S(a; ti) have been well
studied in theoretical work [93,94]. Then, cosmic redshift can be numerically solved in Equation (57). With the
determination of the redshift, intrinsic probability distributions can be found from the redshifted ones via S(a; t) =

(1 + z)So(a(1 + z); t) and the mass of PBHs can be solved from the redshifted mass as MPBH = Mz/(1 + z).
Then, we can obtain the physical evolution time in the parameter regime a4t ≪ δ4(∆t), which infers ai ≃ δ(∆t). In
this small semimajor axis limit, we have the probability distribution from Equation (54) as

S(a; t) ≃ S(δ(∆t); ti)

δ3(∆t)
a3t (58)

It shows that the probability distribution is proportional to a3t in the small semimajor axis regime, and the
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factor of a3t only depends on the initial probability distribution and time evolution term δ(∆t), where δ(∆t) can be
extracted. Since δ(∆t) depends on the mass of PBHs MPBH and physical evolution time ∆t. In above calculation,
the mass of PBHs has been obtained after deriving redshift in Equation (57). Then, we can obtain the physical
evolution time ∆t from obtained δ(∆t). With the redshift and physical evolution time, the calibration between
redshift and cosmic time can be constructed in this single-parameter PBH binary systems.

Above discussion is based on the detection of PBH binaries in future GW observations, which is uncertain
at present. With the construction of the next-generation GW detectors, LISA is able to detect BBH events up to
redshift z∼1000 [44], which ensures the application of CSTs in PBH binaries to probe cosmic evolution up to CMB
epoch that helps us understand the Hubble parameter evolution from CMB epoch to Type Ia SNe epoch. Meanwhile
the high sensitivity of low-frequency GW detectors decreases the measurement uncertainty in BBH parameters that
enhances the precision of CSTs in PBH binaries.

In this section, we mainly discuss the perspectives of CSTs in three typical dynamical systems as examples.
In general, once a dynamical system owns an identical initial state and a intrinsic dynamics, it can naturally be a
candidate of CSTs. For instance, Population III (Pop III) stars have an unique initial mass function (IMF) and a star
formation rate (SFR), once we can measure IMF and SFR accurately, Pop III stars can also be a potential CST. With
a further study on astrophysical systems, more special dynamical systems would be found to help us understand the
historical evolution of the Universe.

Meanwhile, some additional physical effects would cause uncertainties in this independent measurement of
cosmic time, such as baryonic effects in DM halos [97], different PBH formation models [98], and dynamical
friction in binary evolution [99,100]. These effects either contribute a modification on initial statistical distribution
or dynamical mechanism, which would lead to an error in cosmic time determination as what we discuss in
Section 3.3. For example, baryonic and dynamical effects changes the time evolution of DM halo mass and PBH
orbital parameters, various PBH formation models produce distinct initial PBH mass functions. These uncertainties
cause a cosmic time meansurement error and lead to a misinterpretation on cosmic evolution. To distinguish the
origin of measured cosmic time-redshift relation is from measurement uncertainties or background cosmology, we
should perform a consistent test on the cosmic time measurements on CSTs from high redshifts to the present.

5. Summary

To summarize, we propose a novel cosmological probe, cosmological standard timer (CST). By studying
the time evolution of dynamical systems in the Universe, we can have an independent measurement on cosmic
time, while the redshift can be obtained from the observables of dynamical systems. Once the cosmic time-redshift
relation is determined within a dynamical system, we can infer the size of the Universe with respect to cosmic
time, thereby placing constraints on cosmic evolution and the corresponding cosmological parameters. As a result,
dynamical systems in the Universe can work as cosmological probes to measure the Universe as other cosmological
probes [101].

To build a CST, we first propose a general framework of the CST that presents a dynamical evolution of a
statistical distribution from an initial state of the dynamical system can provide an independent measurement of
cosmic time. By combining the measured cosmic time with the redshift encoded in observables, a CST can be
constructed. We then discuss the perspectives of three potential candidates of CSTs: DM halo mass function, PBH
mass function and PBH binaries. The dynamical evolution of their mass function and orbital parameters could
enable them as CSTs. For a more detailed understanding of the CST, see Refs. [41,42].

The framework of CSTs is based on the statistical distribution of dynamical systems, which provides an
identical initial state as a standard reference for cosmic time. However, constructing a statistical distribution requires
a large number of observational events as samples, this causes the difficulty in obtaining a precise measurement on
the cosmic time-redshift relation. To improve the feasibility of CSTs, the detection capabilities of multi-messenger
detectors should be enhanced to extend astrophysical observations to the high-sensitivity frontier. Moreover, the
intrinsic mechanisms of dynamical systems cannot be simply described by differential equations, which introduces
uncertainties in extracting cosmic time from observables and reduces the precision of the obtained cosmic time-
redshift relation. For further development of CSTs, an improvement on detecting dynamical systems and analyzing
their intrinsic mechanisms are essential.

With the development of astrophysical observations, constructing CSTs becomes feasible. For instance, James
Webb Space Telescope improves the detectability of high-redshift galaxies [102], the LIGO-Virgo-KAGRA network
[73,103,104] and next-generation GW detectors Einstein Telescope [105] enable the detection of PBH populations
in GW channels. By combining CSTs with other cosmological probes, we can provide a strong constraint on cosmic
evolution and shed light on current cosmic tensions.
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Appendix A. The Cosmological Standard Timer with Indirect Observables

In the main text, we focus on the CST with a direct-observed statistical distribution S(M ; t). However, this
framework does not apply to the case that M is not an observable of dynamical systems. In this case, the observable of
dynamical systems, e.g., EM waves and GWs, is related with the physical parameter M via following integral equation,

P (E; t) =

∫ ∞

0

K(E,M)S(M ; t) dM (A1)

Here, K(E,M) is the kernel function which transfers an unobservable distribution S(M ; t) to an observable
distribution P (E; t). For example, GW background is an integration of BBH merger rate distribution over a redshift
range [106]. S(M ; t) can be inferred by an inverse integral equation

S(M ; t) =

∫ ∞

0

K−1(E,M)P (E; t) dE (A2)

where K−1(E,M) denotes the inverse of the kernel function of K(E,M). As a consequence of cosmic expansion,
the physical parameter E is redshifted to Ez . Consequently, the observable quantity is expressed as

Po(Ez; t) =

∫ ∞

0

Ko(Z1(Ez),M)S(M ; t) dM (A3)

where the function Z1 describes the influence of redshift on the observable Ez . To construct the cosmic time-
redshift relation, a redshift term need to appear in S(M ; t), which requires the interchange of the redshift scaling
factor between E and M in the kernel function. For example, the primary Hawking radiation kernel follows
H(E(1 + z),M) = H(E,M(1 + z)) [41]. Therefore, we assume the kernel function follows

Ko(Z1(Ez),M) = Ko(Ez,Z2(M)) (A4)

Here, the functions Z1 and Z2 characterize how the redshift term is mapped from Ez to M in kernel function.
Accordingly, Equation (A3) can be expressed as

Po(Ez; t) =

∫ ∞

0

Ko(Ez,Z2(M))So(Z2(M); t) dZ2(M) (A5)

As a result, So(Z2(M); t) is given by an inverse integral equation as

So(Z2(M); t) =

∫ ∞

0

K−1
o (Ez,Z2(M))Po(Ez; t) dEz (A6)

As we discuss in Equation (23), So(Z2(M); t) can be approximately expressed in two regimes in Equation (A7),
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which further gives the cosmic time-redshift relation.

So(Z2(M); t) ≃


dN

dZ2(Mi)
, g(Z2(M)) ≫ ∆T (tz)

dN

dg−1(∆T (tz))

g′(Z2(M))

g′(g−1(∆T (tz)))
, g(Z2(M)) ≪ ∆T (tz)

(A7)
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