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Abstract: The one-loop tension of the domain wall in the 3+1 dimensional ϕ4 double-
well model was derived long ago using dimensional regularization. The methods used
can only be applied to solitons depending on a single dimension. In the past few
months, domain wall tensions have been recalculated using spectral methods with
Born subtractions and also linearized soliton perturbation theory, both of which may
be generalized to arbitrary solitons. It has been shown that the former agrees with the
results of Rebhan et al. In the present work, we argue that, if the same renormalization
scheme is chosen, both new results agree.
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1. Introduction

The one-loop quantum correction to the tension of the kink in the 1+1 dimensional ϕ4 double-well model was
computed half a century ago in Ref. [1]. It was not long before the result was generalized to the domain wall in the
corresponding 3+1 dimensional model, in Ref. [2]. These results were confirmed in later studies [3,4]. However,
some studies found incompatible answers [5,6].

Spurred on by recent interest in cosmology [7,8], the one-loop corrections to the domain wall tension was
recomputed in Ref. [9] using a new method that, unlike the spectra methods above, can be extended to multiple
loops. However, the result could not be directly compared with previous results due to a different renormalization
scheme. Recently, Ref. [10] attempted to fix this shortcoming by repeating the calculation using various schemes
and comparing with the literature. It found agreement with Refs. [2–4] but claimed disagreement with Refs. [5,6,9].

In the present note, we observe that the scheme used by Ref. [10] is not quite that of Ref. [9], and that this
mismatch in scheme is precisely responsible for the disagreement in the results. Choosing the same scheme, we
show that Refs. [9, 10] are consistent. Namely, while both use a scheme in which quantum corrections to the
three-point coupling vanish, the three-point coupling itself is defined in different vacua in the two studies. We
provide a simple, analytical formula for the change in the one-loop tension correction resulting from this change in
scheme, which agrees with the mismatch in the results of these references in all dimensions considered.

We begin in 1+1 dimensions in Section 2, reviewing the one-loop quantum correction to the kink mass
calculated in Ref. [11]. This will be more convenient than the approach of Ref. [1] because it uses a normal-ordered
Hamiltonian, which removes all ultraviolet divergences in 1+1 dimensions and, at one loop, even in 2+1 dimensions.
In Section 3 we consider an arbitrary renormalization scheme, characterized by a renormalization of the meson
mass and coupling. In this context, we define a one-loop mass shift. In Section 4 we calculate the potentially-
divergent contributions to the amputated two-point and three-point functions. Finally, in Section 5, we consider two
renormalization schemes, which tie together the loop diagrams of Section 4 with the arbitrary renormalization of
Section 3. The first scheme leads to the results of Ref. [9] and the second to those of Ref. [10]. We then lift the
argument from 1+1 to 2+1 and 3+1 dimensions, which turns out to be rather trivial and reproduces, analytically, the
differences reported between Refs. [9,10].
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2. Cahill, Comtets and Glauber

Consider the ϕ4 double-well model in 1+1 dimensions. The Hamiltonian is

H =

∫
dx

[
: π2 : + : (∂xϕ)

2
:

2
+

λ0

4
:

(
ϕ2 − m2

0

2λ0

)2

:

]
(1)

where :: is the usual Schrodinger picture normal ordering in terms of a plane wave decomposition, and ϕ(x) and π(x)

are a Schrodinger picture field and its conjugate momentum. λ0 and m0 are the bare coupling and bare meson mass.
Cahill, Comtets and Glauber long ago derived the one-loop (order O(λ0

0)) kink mass in this model [11]

Q = Q0 +Q1 Q0 =
m3

0

3λ0
Q1 =

(
1

4
√
3
− 3

2π

)
m0. (2)

3. Arbitrary Redefinitions

Let us define two parameters λ and m and also the differences

δ
√
λ =

√
λ−

√
λ0 δm2 = m2 −m2

0. (3)

Consider the dimensionless ratio λ/m2 small and positive. Then we may expand in powers of λ/m2

δ
√
λ =

∑
i

δ
√
λi δm2 =

∑
i

δm2
i (4)

where we define δ
√
λi and δm2

i to be the terms in the expansion of order O(λi).
We will demand that the leading terms are δ

√
λ3/2 and δm2

1. To avoid clutter, we will then drop the subscripts.
Then, up to order O(λ0), we may rewrite the kink mass as

Q = Q0 +Q1 +O(λ/m2) Q0 =
m3

0

3λ0
Q1 =

(
1

4
√
3
− 3

2π

)
m. (5)

Here Q1 is the same quantity as appeared in Ref. [1], although the mass renormalization there was different.
We are interested in the quantity

∆Q = Q− m3

3λ
. (6)

Note that while Q is an observable mass, ∆Q depends on our choice of parameters m and λ which later will
depend on our choice of renormalization scheme.

Using our expansion, we find, up to corrections of order O(λ)

∆Q =
m3

0

3λ0
− m3

3λ
+Q1 =

m3

3λ

(
1− δm2

m2

)3/2
(
1− δ

√
λ√
λ

)−2

− m3

3λ
+Q1

=
m3

λ

(
2δ
√
λ

3
√
λ

− δm2

2m2

)
+

(
1

4
√
3
− 3

2π

)
m.

(7)

This is our master formula for ∆Q, valid for any renormalization scheme.

4. Renormalization

4.1. Coupling Constant Renormalization

Following Equation (34) of Ref. [10], the amputed three point function is

Γ3(0, 0) = Γ3a + Γ3b + Γ3c. (8)

Our notation is related that of Ref. [10] by

λ =
λGW

2
m = µGW (9)

where the subscript GW refers to Ref. [10].
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Then the first term is

Γ3a =
9

4

m 23/2λ3/2

4π

∫ 1

0

dα[m2]−1 =
9λ3/2

4
√
2πm

. (10)

The second is

Γ3b = −9im3

2
2
√
2λ3/2

∫
d2l

(2π)2
1

(l2 −m2 + iϵ)3
= −9

√
2im3λ3/2

(
− i

8πm4

)
= − 9λ3/2

4
√
2πm

. (11)

The third arises from the counterterm c1, to be defined below, and is

Γ3c =
c1
2

m√
2λ

. (12)

In Equation (35) of Ref. [10] the renormalization condition Γ3(0, 0) = 0 is imposed and so we find

c1 = 0. (13)

4.2. Mass Renormalization

In Ref. [10] the mass renormalization involves two diagrams, one arising from a single interaction and one
from two interactions. The single interaction diagram vanishes in the case at hand because our Hamiltonian (1) is
normal ordered. The remaining polarization function consists of two terms

Π = Π1 +Π2. (14)

The first arises from a two-vertex loop diagram and is

Π1 =
9m2 2λ

16π

∫ 1

0

dα
1

m2(1− α(1− α))
=

9λ

8π

2π

3
√
3
=

√
3λ

4
. (15)

The second is the counterterm

Π2 =
c2
2

+
m2

4λ
c1. (16)

Using (13), the renormalization condition Π = 0 leads to

c2 = −
√
3

2
λ. (17)

5. The Kink Mass and Domain Wall Tension

We have determined ∆Q as a function of our choices δm2 and δ
√
λ. We also evaluated c1 and c2, which

at this point are simply expressions for loop corrections. The choice of renormalization condition is a choice of
identification of the loop corrections c1 and c2 with the counterterm coefficients δm2 and δ

√
λ. We will now

consider two such choices.

5.1. Scheme A

The classical ground states of H are ϕ = ±m0/
√
2λ0. Let us decompose the Schrodinger picture quantum

field about one of the ground states
ϕ(x) =

m0√
2λ0

+ η(x). (18)

Our Hamiltonian can then be written in terms of η(x)

H =

∫
dx

[
: π2(x) : + : (∂xη)

2
:

2
+

λ0

4
: η2

(
η +m0

√
2

λ0

)2

:

]
. (19)

The cubic interaction corresponds to the term

H3 = m0

√
λ0

2

∫
dx : η3 := m

√
λ

2

(
1− δm2

2m2
− δ

√
λ√
λ

)∫
dx : η3 : . (20)

Equation (12) is the amputated three-point function for η if we define the counterterms using this η decomposition.
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In other words, we will define c1 by

H3 = m

√
λ

2

∫
dx : η3 : −Γ3c

∫
dx : η3 : (21)

so that

c1 = λ

(
δm2

m2
+ 2

δ
√
λ√
λ

)
. (22)

Similarly, the mass term in Equation (19) is

H2 =
m2

0

2

∫
dx : η2 :=

m2

2

∫
dx : η2 : −δm2

2

∫
dx : η2 : . (23)

Identifying

H2 =
m2

2

∫
dx : η2 : −Π2

∫
dx : η2 : (24)

We obtain

c2 +
m2

2λ
c1 = δm2. (25)

Now our results (13) and (17) lead to

δm2

m2
= −

√
3

2

λ

m2

δ
√
λ√
λ

=

√
3

4

λ

m2
. (26)

Substituting these into our master formula (7) we obtain

∆Q =

(√
3

2
− 3

2π

)
m (27)

in agreement with Ref. [9].

5.2. Scheme B

The counterterms corresponding to the parameters c1 and c2 are given in Equation (31) of Ref. [10]

Hct =

∫
dx
[
−c1

8
:
(
ϕ2 − v2

)2
: −c2

2
:
(
ϕ2 − v2

)
:
]
. (28)

We have included normal ordering, which was not used in Ref. [10]. The definition of v is somewhat subtle, as
the expectation value of ϕ on a state depends on the state and the renormalization conditions. However, the fact that
c2 does not appear in the amputated three-point function suggests that

v =
m√
2λ

. (29)

We will assume this. Any other choice does not affect the kink mass, but does affect our renormalization
conditions by changing the definition of the three-point coupling. This is because the three-point coupling is defined
to be the third derivative evaluated at a certain value of the classical field, and so it is necessarily sensitive to this
choice. Therefore a change in v will change our renormalization scheme and so will change δ

√
λ.

With this caveat, we write a Hamiltonian as

H = Hct +

∫
dx

[
: π2 : + : (∂iϕ)

2
:

2
+

λ

4
:

(
ϕ2 − m2

2λ

)2

:

]
. (30)

The potential terms in the classical Hamiltonian density are

U(ϕ) =
λ− c1

2

4

(
ϕ2 − m2

2λ

)2

− c2
2

(
ϕ2 − m2

2λ

)
. (31)
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This of course is equal to the original potential (λ0/4)(ϕ
2 −m2

0/(2λ0))
2 and so

c1 = 4
√
λδ

√
λ c2 = m2

(
δ
√
λ√
λ

− δm2

2m2

)
. (32)

Now the loop corrections (13) and (17) lead to

δ
√
λ = 0 δm2 =

√
3λ (33)

and so

∆Q =

(
−5

√
3

12
− 3

2π

)
m ∼ −1.199153m (34)

consistent with the result of Ref. [10].

5.3. Domain Walls

As shown in Ref. [12], the Cahill, Comtets and Glauber formula applies to the domain wall tension Q in
any dimension

Q = Q0 +Q1 Q0 =
m3

0

3λ0
. (35)

In the case of the ϕ4 double-well model, the formula for the classical tension Q0 is independent of the
dimension. On the other hand, the one-loop correction Q1 does depend on the dimension. However, critically, it is
independent of the scheme. As a result, in any dimension our master formula may still be written

∆Q =
m3

λ

(
2δ
√
λ

3
√
λ

− δm2

2m2

)
+Q1. (36)

Let us use subscripts A and B to respectively denote the schemes in Sections 5.1 and 5.2 respectively. The
general arguments above show that

c1 = λ

(
δAm

2

m2
+ 2

δA
√
λ√

λ

)
= λ

(
4
δB

√
λ√

λ

)
(37)

c2 = m2

(
δAm

2

2m2
− δA

√
λ√

λ

)
= m2

(
−δBm

2

2m2
+

δB
√
λ√

λ

)
. (38)

Therefore the counterterm coefficients are related by

δB
√
λ√

λ
=

δAm
2

4m2
+

δA
√
λ

2
√
λ

δBm
2

m2
= −δAm

2

2m2
+

3δA
√
λ√

λ
. (39)

The resulting difference in the two loop tension corrections is

∆QB −∆QA =
m3

λ

(
2δB

√
λ

3
√
λ

− δBm
2

2m2
− 2δA

√
λ

3
√
λ

+
δAm

2

2m2

)
=

11m3

12λ

(
δAm

2

m2
− 2δA

√
λ√

λ

)
. (40)

In the case of the domain wall string in 2+1 dimensions [9]

δAm
2

m2
= −9ln(3)

8π

λ

m

δA
√
λ√

λ
=

9(ln(3)− 1)

16π

λ

m
(41)

and so
∆QB −∆QA =

33

32π
(1− 2ln(3))m2 ∼ −0.392997m2 (42)

which is indeed the difference between the two results shown on Table IV of Ref. [10].
In the case of 3+1 dimensions [9]
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δAm
2

m2
= − 9λ

2π2

∫ ∞

0

dp
p2

ωp(3m2 + 4p2)

δA
√
λ√

λ
=

9λ

16π2
+

9λ

8π2

∫ ∞

0

dp p2
(
− 1

ω3
p

+
2

ωp(3m2 + 4p2)

) (43)

and so

∆QB −∆QA = −33m3

32π2
− 33m3

4π2

∫ ∞

0

dp p2
(
− 1

4ω3
p

+
1

ωp(3m2 + 4p2)

)
=

(
− 99

32π2
+

11
√
3

32π

)
m3 ∼ −0.123943m3

(44)

which is again consistent with the entries (The caption of Table IV is incorrect, as the renormalization conditions
differ. Equation (44), which we have argued corresponds to the mismatch between the results with the two different
renormalization conventions, is equal to the difference between the last two entries in the bottom row of the table.)
in Table IV of Ref. [10].

6. Remarks

We have shown that the spectral methods, with dimensional regularization, of Refs. [4,10] yield the same
domain wall tension as the Hamiltonian methods of Ref. [9] which employ a hard cutoff.

There were many potential problems with both approaches. For example, a hard cutoff in Ref. [13] yielded
the wrong answer. In fact, the problem with the hard cutoff in Ref. [13] is that the vacuum and kink sectors were
regularized separately and then there was an ad hoc matching between the two sectors, whereas in Ref. [9] the
theory was regularized only once and the two sectors were treated with the same Hamiltonian. Similarly, one might
have worried [14,15] that dimensional regularization would be ill-defined in a configuration that solves the classical
field equations in an integral dimension.

However the agreement that we have found here puts both worries to rest. At least this is true for the present
case, in which the divergences are only logarithmic and the field configuration is trivial along the directions that
are regularized. It remains to be seen whether one method will have a problem in other applications without these
features. Needless to say, we believe that such a comparison between the results of different methods will be
essential for progress towards a treatment of more complicated but interesting solitons, such as the ’t Hooft-Polyakov
monopole or the gravitating kink [16,17].
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