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Abstract: Catalytic pyrolysis has emerged as a pivotal technology for converting renewable diverse feedstocks
(i.e., lignocellulosic biomass, algal biomass, and plastic wastes) into biofuels and chemicals. This review
comprehensively examines the reaction kinetics in catalytic pyrolysis, addressing the fundamental gap between
lab-scale research and industrial applications. The mechanisms of conventional (i.e., electrical heating) and
microwave-assisted catalytic pyrolysis are detailed, highlighting the role of catalysts in altering reaction rates,
reaction pathways, and decreasing activation energies. This paper delves into kinetic analysis techniques by
comparing the model-free and model-fitting approaches and exploring the emerging role of machine learning in
predicting kinetic parameters. In addition, it extensively explores the feedstock specific kinetic models,
highlighting the behavior of pseudo-components of lignocellulosic feedstocks, plastic wastes, and their mixtures
with a specific focus on synergistic effect during co-pyrolysis. Further, an essential framework to integrate
molecular-scale phenomena with reactor-scale process performance was presented by exploring the advanced
modelling techniques such as microkinetic modelling using density functional theory (DFT), lumped system
analysis using process simulations, and catalyst deactivation kinetics. Despite its promise, challenges such as
catalyst deactivation, heat and mass transfer limitations, and feedstock variability remain critical hurdles. This
review concludes by identifying future research directions, emphasizing the in-situ characterization, integration of
machine learning and artificial intelligence for process optimization, and kinetics of emerging catalyst systems to
facilitate the commercial deployment of predictive models for catalytic pyrolysis technologies.
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1. Introduction

Increasing global waste crisis demands sustainable and innovative management strategies, as traditional
methods are insufficient for waste disposal [1,2]. The global waste crisis is determined by generation of massive
mounting bulks of municipal, domestic, agricultural and industrial wastes. The larger part of these wastes is
generated through rapid industrialization and population growth, resulting into enhanced municipal solid waste
(MSW) generation through consumption of goods and materials [3,4]. This trend also drives greater exploitation
of fossil fuels, accelerating climate change through greenhouse gas emissions [5]. At the same time, waste plastics
have also created severe environmental pollutions, posing threats to ecosystem [6]. It presents a critical challenge
for sustainable environment and indicates towards growing need of recycling and upcycling of wastes [7].
However, the sustainable carbon materials produced from renewable and waste resources have shown a good
potential in environmental remediation and energy conversion systems [8]. In addition, the conversion of waste to
useful energy forms has emerged as a promising solution to produce renewable energy [9].

Diverse biomass feedstocks are recognized for their renewability, accessibility, and carbon-neutrality [10,11].
In the present times, 80% of the energy demands are fulfilled with the help of fossil fuels, but the biomass which
has abundancy (100 billion tons per annum) can be used in energy mix to reduce over-dependence over fossil
fuels. The biomass utilization has been directed and accelerated in current times after the EU’s Renewable Energy
Directive and U.S. Bioeconomy Initiative with biomass to fulfil around 20-30% of total renewable energy
production by 2030 [12,13]. Also, as per study and predictions of International Energy Agency (IEA), around 27%
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of global transportation energy demands are expected to be fulfilled using biomass by 2050 [14]. According to
feedstocks, the biofuels are classified as first-generation (derived from edible feedstocks), second-generation
(derived from lignocellulosic materials), third-generation (acquired from algal biomass feedstocks), and fourth-
generation biofuels (microalgal feedstocks developed via genetic modification) [15,16]. The global biomass
availability, particularly in form of lignocellulosic materials, plays an important role in reducing fossil fuel
dependence by serving as a renewable feedstock for bioenergy production. Lignocellulosic biomass is the most
abundant form of plant materials on earth, accounting for approximately 57% of planet’s biogenic carbon [17].
This biomass is primarily sourced from agricultural residues (e.g., corn stover, wheat straw), forestry by-products
(e.g., wood chips, sawdust), and dedicated energy crops (e.g., switchgrass, miscanthus). Globally, agricultural
residues alone are estimated to be available at a technical potential of 1.44 billion tons annually, which could
replace approximately 4.5% of global fossil fuel energy use [18,19]. Further, utilization of biomass offers several
advantages such as biofuel production, energy generation, and waste valorization in the transition from fossil fuels.
For instance, cellulosic ethanol is an advanced biofuel that can reduce greenhouse gas emissions by up to 85%
compared to conventional gasoline, offering a more sustainable alternative for transportation [20].

In addition, numerous thermochemical and biochemical approaches are employed for generation of biofuels and
biochemicals. Amongst them, pyrolysis which uses an inert environment is mostly adopted to produce bio-oil,
biochar, and syngas [21,22]. However, the conventional pyrolysis requires high energy input, which impacts the overall
energy efficiency of the process. Consequently, pyrolysis has evolved from conventional ways to catalytic pathways.
The introduction of catalysts not only enhances reaction rates, lowers the activation energy and reduces operational
energy demand [23], but also facilitates deoxygenation of bio-oil through cracking, aromatization, and hydrogenation
reactions. It also produces high quality biochar and syngas, indicating improved product selectivity [24]. Therefore,
exploring reaction kinetics during catalytic pyrolysis is essential, as it plays a critical role in reactor design, process
optimization, understanding reaction mechanism, and scaling up to industry applications. Kinetic analysis
fundamentally aims to determine the kinetic triplet (i.e., activation energy, pre-exponential factor, and reaction
mechanism), which quantitatively describes the rate of the process.

Although the catalytic pyrolysis field is a broad area to explore. This review provides a focused critical analysis
of the reaction kinetic principles for catalytic pyrolysis of diverse waste feedstocks such as lignocellulosic biomass,
algal biomass, and plastic wastes. Primary objectives are to evaluate the widespread kinetic models, evaluate the
applicability of model-free, model-fitting, and machine learning methodologies by highlighting their corresponding
limitations, strengths, and applications. In addition, this review will also explore the systematic interaction between
catalyst properties and kinetic parameters for various feedstocks. The review will also address the prevailing
challenges and issues in catalytic pyrolysis kinetics. Lastly, this review will outline the future research directions to
bridge knowledge gaps and advance the development of practical and sustainable energy solutions.

2. Fundamentals of Catalytic Pyrolysis
2.1. Process Overview

Generally, conventional pyrolysis processes which involve catalytic materials are referred to catalytic
pyrolysis [25]. Catalytic pyrolysis is the prominent technique for transforming the variety of feedstocks into bio-
oil and chemicals. The catalytic pyrolysis thermal behavior and energy distribution is obtained through kinetic
models [26]. It requires lower operating temperatures and shows great potential for enhanced hydrogen generation
from waste plastic materials [27-29]. A typical catalytic pyrolysis process set up is capable of converting solid
wastes into value-added products such as bio-oil, biochar, and syngas. The process flow generally comprises
feeding mechanism for biomass feedstock, reactor, electronic heating filament, and temperature control system
connected to condensing unit for bio-oil generation, while non-condensable gases and biochar are collected
separately [30]. Typically, fixed-bed, fluidized-bed, or circulating fluidized-bed reactors are used for conventional
catalytic pyrolysis [31,32]. The catalysts are generally used via in-situ and ex-situ modes as illustrated in Figure 1. It
involves biomass thermal decomposition using catalyst in the temperature ranges of 400-600 °C with normally
using N> as working medium [33]. The study of catalytic mechanism for pyrolysis yields during terephthalate
(PET) and hibiscus rosa-sinensis (HRS) co-pyrolysis revealed that inclusion of HRS increased oxygenated
compounds and reduced hydrocarbons [34]. Catalytic cracking transforms the large oxygenated molecules and
organic compounds into smaller ones by promoting the formation of aromatic compounds and olefins [35]. Also,
interaction between varying composition of feedstocks and activity of catalysts also affects the products. For
instance, Kim et al. [36] explored the catalytic pyrolysis of fungal biomass feedstocks and observed that the bio-
oil derived from aspergillus contains sugar-alcohol rich chemicals, while fatty-acid rich chemicals were noted for
trichoderma and penicillium bio-oils. Meanwhile, introduction of Ni-based catalyst in ex-situ form further
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converted the heavy volatiles into lighter molecules, resulting into enhanced syngas generation. A significant
decline in polycyclic aromatic hydrocarbon (PAH) production was observed by Tahir et al. [37] during ZnO/ZSM-
5 assisted catalytic co-pyrolysis of waste cabbage and low-density polyethylene (LDPE). In-situ and ex-situ
catalytic pyrolysis of lignocellulosic feedstocks was conducted to evaluate pyrolysis oil characteristics and
observed that the ex-situ process demonstrated improved selectivity (98.56%), decreased oxygenated compounds
(72.3%), and reduced acid contents [38].
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Figure 1. Process flow diagram of conventional catalytic pyrolysis processes [38].

Meanwhile, microwave-assisted catalytic pyrolysis has also emerged as an advanced substitute to
conventional electronic heating for catalytic pyrolysis [39]. A schematic understanding of microwave assisted
catalytic pyrolysis framework is illustrated via Figure 2. Unlike conventional catalytic pyrolysis systems,
microwave heating utilizes electromagnetic radiation to internally heat biomass and catalysts using dielectric loss
mechanisms [40]. It also improves the interaction between biomass and catalyst active sites resulting into higher
reaction rates [41]. Additionally, microwaves encourage specific catalytic effects by activating catalysts in a
different manner as opposed to external heating, resulting into improved product selectivity, bio-oil quality, and
lower energy consumption [42]. Furthermore, microwave-assisted pyrolysis enables synergistic effects that can
significantly influence reaction kinetics. Tiwari and Vinu [43] explored the microwave-assisted in-situ and ex-situ
catalytic pyrolysis of biomass in powder and pellet forms and revealed that pellet with in-situ catalytic pyrolysis
produced the highest H, yield, with an increased gas yield (2—-10%) with palletization only. Yang et al. [44]
proposed an integrated approach of reductive catalytic fractionization combined with microwave pyrolysis to
improve biomass conversion as well as avoiding catalyst separation requirements and yielded 46.40 wt.% of
monophenols by enhanced depolymerization of birch lignin, while syngas yields increased 1.8 times using
microwave for pyrolysis. The study of synergistic effects of microwave and char-based catalysts during catalytic
pyrolysis of bamboo showed that the synergy between microwave and biochar activates the catalytic active sites
by promoting decarboxylation and water-gas shift reactions, resulting into diffusion of heavy components to
produce higher syngas yields [45]. Similarly, enhanced H»-rich syngas (50.22%) and lower liquid yields were
observed during microwave-assisted catalytic pyrolysis of rice straw with biochar materials [46].
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Figure 2. Schematic illustration of microwave-assisted catalytic pyrolysis process [38].
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2.2. Waste Feedstocks and Their Characteristics

The selection of a suitable feedstock is primary element for the pyrolysis process. So, a fundamental
understanding of feedstock characteristics is important for the catalyst selection as well as process design. The
waste feedstocks generally aquatic wastes (i.e., algal biomass), agricultural and forestry wastes (i.e., lignocellulosic
biomass), plastic wastes, municipal solid wastes (MSW), tires, medical waste, sewage sludge, and industrial
sludge. Each waste feedstock is characterized by their unique characteristics. A summary of variety of waste
feedstocks and their physicochemical characteristics is provided in Table 1. Generally, lignocellulosic biomass
contains cellulose (37-50%), hemicellulose (22-32%), and lignin (15-26%), while algal feedstocks comprise of
carbohydrates (3—30%), proteins (14—65%), and lipids (1-51%) [47,48]. The schematics of their respective
chemical structure are illustrated in Figure 3. However, the higher oxygen present in lignocellulosic and algal
biomass feedstocks tends to produce oxygenated, acidic, and low stability bio-oils, indicating for catalytic
treatments for product upgradation [49].

Besides, plastic wastes containing hydrocarbons are also excellent feedstocks for chemicals and fuel
recovery. Typical plastic wastes include polyethylene (PE), polypropylene (PP), polystyrene (PS), and
polyethylene terephthalate (PET) [50]. The cracking of saturated hydrocarbon (H-C) polymer chains in PE and PP
produces alkanes and alkenes at relatively low temperatures, while their higher volatile contents have attracted
them as a suitable pyrolysis feedstock [51]. In addition, cracking of H-C chains in PS takes place through chain-
end scission, producing monomers and styrene. The presence of oxygen in polymer chain of PET results into
generation of significant benzoic acid and oxygenated compounds from pyrolysis [52]. MSW, which is a
heterogeneous mixture of biomass, plastics, and other materials require a careful pretreatment and sorting, because
presence of materials such polyvinylchloride (PVC) may result in corrosion and poisoning since it contains
chlorine [53,54]. Also, composite materials of rubber, additives, and black carbon present in tires produces oil
yield enriched in limonene and aromatics, high-quality char, and high calorific value gas. In addition, high ash and
moisture contents in industrial and sewage sludges are the primary and major challenges towards adulteration of
catalyst [55].

Table 1. Summary of physicochemical characteristics of diverse waste feedstocks.

Feedstock MC VM Ash FC ¢ C H N S 04 Reference
Waste tea @ 8.20 19.80 1.00 71.0 79.30 1.70 3.40 0.20 15.20 [56]
Polystyrene * 0.20 98.80 0.30 0.70 90.40 8.60 0.40 - 0.60 [56]
HDPE ® - 98.62 1.10 0.28 75.79 11.25 0.001 0.001 11.86 [57]
LDPP @ - 100 - - 85.32 14.14 - 0.54 - [58]
Rice straw ? 5.00 72.00 10.90 12.10 40.00 5.60 0.70 0.10 53.60 [59]
MSW @ 0.30 57.27 34.57 7.86 43.15¢ 4.10¢ 1.56¢ 0.11°¢ 51.08 [54]
Greywater algae °© 7.50 68.20 12.60 11.70 45302 6.50* 4.80* 0.40°2 43.00 [60]
PET ¢ - - - - 62.57 4.52 0.05 0.07 32.79 [61]
Wheat straw © 11.24 65.75 6.67 16.34 47942 6.01* 0232 0.05°? 45.77 [62]
Maplewood © 7.27 71.03 1.80 19.90 52.26° 6.35° 0.52b 0.16° 40.71 [63]
Chicken bone waste ? - - - 40.32 23.14 6.04 3.71 0.00 26.79 [64]
Pinewood © 4.11 81.24 0.25 14.40 47.41% 6.19° 0.17° 0.65° 45.58 [65]

Note: ? dry basis; ® dry and ash free basis, © as-received basis; and ¢ calculated by difference.
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Figure 3. Schematics for chemical structures of lignocellulosic and algal feedstocks [47,48].
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2.3. Catalysts and Their Functions

Catalysts play an important role in deciding the reaction pathways and distribution of final product yields.
The catalysts provide active sites for specific reactions to reduce the activation energy [66,67]. Figure 4 shows the
important catalyst properties which influence pyrolysis kinetics and mechanisms. Generally, catalysts are
classified as acid, basic, mesoporous, and transition metal catalysts [68,69]. The acidic catalysts such as zeolites
are widely employed during catalytic pyrolysis due to cracking and shape-selective reactions. Specifically, zeolites
in different forms (i.e., HZSM-5, HY, Beta) have proven their effectiveness towards cracking of large hydrocarbon
and oxygenated molecules, since they possess a microporous structure and have strong Brensted acid sites [70].
Particularly, hydrogenated form of zeolites (HZSM-5) is popular for shape selectivity, aromatic hydrocarbon
promotion, and enhanced production of olefins from the oxygenated compounds through oligomerization,
decarboxylation, and dehydration reactions [71]. Besides, Y-zeolite based industrial catalysts such as fluid
catalytic cracking (FCC) catalysts are not only effective with cracking of large molecules from waste feedstocks
to gasoline type H-Cs, but are also very robust and cost effective [72].
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Figure 4. Key catalyst properties and their reaction pathways influencing pyrolysis kinetics and mechanisms [70,72].

In addition, basic catalysts viz. MgO, CaO, etc. are particularly used for deoxygenation, since they encourage
ketonization and aldol condensation reactions to remove oxygen in form of CO, and H,O [73,74]. Also, these
catalysts favor carboxylation and dehydration reactions, resulting into enhanced carbon conversion efficiency as
opposed to acidic catalysts. The basic catalysts work as efficient pursuer for acid components to apprehend them
as stable salts. On the other hand, mesoporous catalysts have greater pore sizes in the range of 2-50 nm in
comparison to zeolites. Primarily, they help to handle the bulky components derived from pyrolysis and diffuse
them into small pores of zeolites [75]. Also, they help to initiate the formation of smaller intermediates from large
and bulky molecules, which can be processed using microporous catalysts. Furthermore, the transition metal
catalysts famous for their hydrotreating functionality are formulated from the metals (i.e., Ni, Co, etc.) supported
on oxides (ALOs, SiO,) or zeolites [76,77]. These catalysts tend to eliminate oxygen in form of water via
hydrodeoxygenation reactions, resulting into enhanced stability and deoxygenated bio-oil. They are also used as
active members in cracking and reforming reaction [78]. Additionally, a summary of catalyst types, typical active
sites, and their primary functions in catalytic pyrolysis is given in Table 2.

Further, catalytic pyrolysis involves a series of complex progressions including breakdown of
macromolecules followed by catalytic alterations of the intermediates [79]. Primarily, hemicellulose, cellulose,
and lignin decompose in form of volatiles and form solid residue as char. Next, secondary reactions such as
cracking, decarboxylation, and aromatization takes place in presence of catalysts which provide active sites,
resulting into formation of enhanced quality liquid and gas yields [80]. The acidity, pore structure, and metal sites
present in catalysts governed the interaction among intermediates and influence the reaction kinetics. Remarkably,
the introduction of catalyst modifies the product selectivity by encouraging PAH formation in bio-oil or reforming
reactions for enhanced gas yields [81]. The reaction pathways in the catalytic pyrolysis are more clearly illustrated
in Figure 5. It was reported that zeolites have better deoxidation capacity as opposed to inorganic salts and metal
oxide catalysts. However, the zeolites lead to formation of coke due to low hydrogen content in biomass [82].
Also, Vuppaladadiyam et al. [83] demonstrated the reaction mechanism during catalytic pyrolysis indicating that
secondary reactions such as dehydration, decarboxylation, catalytic cracking, aromatization, ketonization,
reforming, and hydrogenation tend to produce aliphatic hydrocarbons, anhydro-sugars, aromatic hydrocarbons,
and furans. Further, similar observations were reported by Wang et al. [84]. Further, Huang et al. [85] studied the
synergistic interaction reaction mechanism among biomass pseudo components and low-density polyethylene
(LDPE) and reported that the synergistic interactions in form of deoxygenation, aromatization, and Diels-Alder
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reactions resulted in enhanced production of light aromatics including benzene, methylbenzene, and xylene. Also,
a decline in activation energy barrier for aromatic formation (15-20 kJ/mol) was reported. Razzak et al. [86]
explored the synergistic effects during catalytic co-pyrolysis of biomass and plastic wastes and observed that co-
pyrolysis of algal feedstocks and plastic wastes strengthen the synergy. In-situ dual catalytic system study during
biomass pyrolysis revealed that reforming reactions are intensified by CaO and Ni-char catalytic systems, leading

to lower CO; in pyrolysis gas [87,88].

Table 2. Summary of catalyst types, typical active sites, and their primary functions in catalytic pyrolysis.

Catalyst Type Example Active Sites Primary Functions in Pyrolysis Reference
Cracking, deoxygenation (dehydration and
. RS .. [89-91]
decarboxylation), aromatization, isomerization

Acidic, microporous HZSM-5, beta, HY Bronsted acid sites

. . MgO, CaO, NaOH, L. Deoxygenation (ketonization, aldol -
Basic/alkaline Ca(OH)2 Basic sites condensation), acid gas capture [92-94]
MCM-41, SBA-15, S Pre-cracking of bulky molecules,
Mesoporous AL-MCM-41 Weak acid sites reduced coking [95-97]
. . . Ni/Si02-AL203, Co- Lo Hydrodeoxygenation,
Transition metal oxides Mo/y-ALOs Metallic sites hydrogenation, reforming [98,99]
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Figure 5. Reaction pathways in catalytic pyrolysis [83,84].

3. Reaction Kinetics Methodologies for Catalytic Pyrolysis

Reaction kinetics plays a key role in scaling up and commercialization of catalytic pyrolysis. The study of
reaction kinetics generally involves determination of kinetic triplet (activation energy, reaction mechanism, and
pre-exponential factor). The understanding of reaction kinetics is important for catalyst selection, process
optimization, and reactor design [100]. The reaction kinetics for the catalytic pyrolysis is complicated and
challenging to understand due to heat and mass transfer effects, complex feedstock characteristics, and a series of
complex reactions occurring simultaneously [101]. This section explains the primary theoretical and experimental
methodologies employed to evaluate the kinetic parameters.

3.1. Experimental Techniques

The choice of the experimental techniques adopted for the understanding of reaction kinetics requires
information about decomposition rates and specific reaction pathways. Broadly, thermogravimetric analyzers
(TGA) are used to monitor the solid-state kinetics. It measures the weight changes of a solid sample (i.e., a waste
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feedstock mixed with catalyst) with time and temperature in a controlled environment [102]. TGA allows to
analyze the devolatilization stages during thermal decomposition of a waste feedstock sample. In addition, it
provides thermal decomposition data for non-isothermal and isothermal conditions [103]. Non-isothermal TGA
methods are mostly used, where sample temperature is ramped gradually at constant heating rate (). The resulting
mass loss curves and their differential thermogravimetric (DTG) curves are used to analyze the decomposition
stages for a particular process [104]. The model-free kinetic analysis methods consider the varying conversion
rates for different heating rates and provides the activation energy (F) values without considering their reaction
mechanisms. Figure 6 synthesizes a critical characteristics of catalytic pyrolysis kinetics, indicating the strong
dependence of decomposition profiles on heating rate. The divergence of conversion rate (da /d¢) curves (Figure 6b)
at higher conversions underscores the multi-step nature of the reaction due to catalyst interactions. It supports the
requirement of using model-free isoconversional methods over single heating rate models to accurately capture the
variable E across reaction pathway, a basis for consistent kinetic explanation of complex waste feedstocks. On the
other side, isothermal TGA methods ramped the sample temperature to target temperature at rapid heating rates and
observe the mass loss with time [105]. Reaction rates are directly observed at particular constant temperature value
using this method. However, it involves some inaccuracies due to rapid heating stage which disregards the kinetics
of reaction for the time it reaches the target temperature. However, TGA can effectively provide the mass loss data
required for reaction kinetics studies, it does not provide any information about the products formulated during
catalytic pyrolysis. For this, TGA equipment is normally attached to other analysis systems such as gas
chromatography (GC), mass spectroscopy (MS), GC-MS, and Fourier transform infrared (FTIR) spectroscopy [106].

While TGA provides fundamental and reproducible decomposition data, it is crucial to critically interpret the
derived kinetic parameters within the context of their idealized experimental conditions. The small sample mass,
fine particle size, and uniform heating in TGA minimize intra-particle and inter-phase heat and mass transfer
resistances, allowing the measurement of kinetics that approach the intrinsic chemical reaction rates. However,
real catalytic pyrolysis reactors (e.g., fluidized beds, screw conveyors) operate under significant transport
limitations, where bulk heating, volatile diffusion, and catalyst-contact efficiency govern the observed global rates.
The kinetics extracted from TGA are therefore more accurately termed apparent kinetics for that specific analytical
configuration. Directly applying these parameters to predict behavior in large-scale reactors can be misleading, as
the apparent activation energies and reaction models do not account for the dominant transport phenomena and
complex hydrodynamics at scale. Consequently, TGA serves as an essential tool for initial screening and
mechanistic insight under controlled conditions, but its data must be consciously integrated with pilot-scale
validation or coupled with reactor models that explicitly resolve transport effects to bridge the lab-to-industry gap.
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Figure 6. Conversion and conversion rate curves for non-isothermal TGA methods [16].

3.2. Data Processing and Model Fitting

The experimental data derived from non-isothermal and isothermal TGA methods is further processed to
extract the kinetic parameters viz. activation energy (E), reaction mechanism (f{a)), and pre-exponential factor (4).
Kinetic analysis uses o and conversion rates for further processing of the TGA experimental data. o can be
calculated using following expression [107]:

my —m;

@ m
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Here, mo, m;, and ms represent the original, instantaneous, and final values of sample mass in the defined
temperature stages. For an individual thermal decomposition process, a varies in the range of 0 to 1. Although, the
kinetic parameters are not evaluated normally at start and end of the process, since no conversion rates can be
determined at these instants [108]. Further, the conversion rates rely on temperature (7) dependent Arrhenius
reaction rate constant (k) and a dependent reaction mechanism [109], which is generally expressed in form of
Equation (2).

da K _ (—_E)
3 = k(Df (@) = AR/ f (o) 2
where: R denotes universal gas constant (J/mol-K), fla) signifies reaction mechanism, 4 represents pre-exponential
or frequency factor, £ signifies activation energy, and ¢ represents time.

3.2.1. Determination of Activation Energy

Various approaches of kinetic analysis are used to determine activation energy by using Equation (2) in their
modified differential and integrated forms. These are generally classified as model-free and model-fitting methods.
Model-free kinetic analysis approaches are commonly employed for examining thermal degradation behavior
during pyrolysis without taking into consideration of their reaction models [110]. For this, reaction rates are
evaluated with respect to constant a for different £ values to determine activation energy (E). Also, it considers
the reaction rate as a function of temperature (7)) at constant o value. Model-free methods provide E profiles which
are further used to decide the reaction mechanisms and pre-exponential factor (4) across a, presenting valuable
efforts towards optimization of process and reactor design. Generally, model-free methods are classified as
differential (i.e., Friedman) and integral methods viz. Kissinger-Akahira-Sunose (KAS), Starink, Boswell, and
Ozawa-Flynn-Wall (FWO) [65]. The differential isoconversional Friedman method has proven its accuracy in £
calculations, while integral methods are used with certain integral approximations as they lack exact solution
unlike Friedman method [111]. Also, model free methods involve potential errors due to experimental limitations
(i.e., experimental data) and data interpretation challenges for vastly heterogeneous schemes. Despite these
limitations, isoconversional model free methods provide an important reaction kinetics pathway for the catalytic
pyrolysis of biomass. The common mathematical expressions for these differential and integral methods are
provided in Table 3 [108,112].

Table 3. Commonly used differential and integral model-free kinetic analysis methods.

Type Method Empirical Correlation Source
da E
Differential Friedma — )= _— 113
i i i n In (dt) In[f(a)A] BT [113]
KAS In (£> =1In [i] —i [114]
T2 Eg(a)l RT
AE E
FWO In(B) =In [—] —5.330 — 1.0518 (—) [115]
Integral Rg(a) RT
Starink 1 ) tant — 1.0008 a [63]
n m ‘8— constan . ﬁ
E
B 1 ) = — (= 108
oswe In (T) constant ( RT) [108]

These differential and integral methods are used to draw the isoconversional plots at multiple heating rates.
The slopes of these linear isoconversional plots are used to calculate activate energy variations, while the intercept
values are used for pre-exponential factor determination with varying o [116]. Furthermore, the main advantage
of using the model-free methods is that they provide separate £ with a values. A nominal change in £ with o
signifies that the reaction is single step. But, a very significant variation in £ values with « indicates towards multi-
step and complex reaction. Such incidents are generally noticed in cases where catalysts are used during pyrolysis
of waste feedstocks.

Complementary to model free methods, kinetic analysis of catalytic pyrolysis can also be performed using
model-fitting approach. Model-free techniques, such as Friedman, FWO and KAS, estimate activation energy
without specifying reaction mechanisms, focusing on empirical determination from thermal analysis data.
Meanwhile, model-fitting methods involve assuming reaction models (e.g., 1st-order, nth-order, nucleation, etc.)
and adjusting parameters to best fit experimental data. These models provide mechanistic insights but may
oversimplify the inherently complex reactions of biomass. However, model-fitting can simulate the explicit
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pyrolysis stages or catalyst effects in a better way to predict kinetic parameters. Coats-Redfern (C-R) method is
the most common and widely used model-fitting approach. Largely, it is considered as an integral approach of
kinetic analysis as it uses integral form of theoretical reaction models to evaluate E. Also, a major difference
between model-free integral methods and C-R method is that it considers only single heating rate and provides
one value of E and 4 for whole process, while model-free methods can provide multiple £ and 4 values at particular
o and also uses multiple heating rates (i.e., usually >3). The generalized C-R method’s empirical correlation is

represented by Equation (3) [117].
g@| [AR( _ 2RT)] _E
1n[T2 ]—ln GE 1 I RT 3)

Here, g(a) denotes the integral reaction mechanism, which is evaluated using the master plot analysis
discussed in subsequent subsection.

3.2.2. Determination of Reaction Mechanism and Pre-Exponential Factor

Once the values of £ are determined using model-free methods, the average activation energy (Eo) values are
generally used for deciding the suitable reaction model. For this, master plot analysis is generally employed which
usually follows a single-step approach. Master plots use the integral and differential form of theoretical reaction
model curves to compare with experimental curves [118]. For instance, y(a) master plots use the differential form
of theoretical reaction models, while Z(a) master plots use a combined approach where they consider both integral
and differential theoretical reaction models for comparison and it also do not require prior knowledge of £
[108,119]. Basically, the conversion rate expression in Equation (2) formulates the basis of y(a) master plot
analysis and used in following form [120]:

d
y(@ = (3 ) el = ar@ @)

Here, thermogravimetric experiments help to provide temperature (7) and conversion rate (da/df) values,
while E values are obtained using the slopes of isoconversional plots drawn from expressions listed in Table 3. It
assumes that £ values do not vary much across a and uses average value of activation energy (£o). Also, it considers
the average values for pre-exponential factor (4o) instead of separate 4 for individual « [121]. Additionally, the
reaction models vary in magnitude based on their type and nature (i.e., nucleation, order-based, sigmoidal, power
law) [122]. Therefore, theoretical reaction models are normalized at a reference value (say at a = 0.5), which
redevelops Equation (4) in following form [123]:

day (o

@ _ (@ fw@

y(0.5) (g_a) @) f05) )
t/os

D(a)

In Equation (5), D(a) denotes the normalized y(a) master plot, and the f{a)/f(0.5) signifies formulations of
theoretical reaction model curves, which are compared with experimental curves to determine reaction
mechanisms. A list of common theoretical solid-state reaction models is presented in Table 4.

Table 4. Commonly used solid-state reaction mechanism in their differential and integral forms [110,124].

Reaction Model Notation Differential Form f{a) Integral Form g(a)
Exponential growth models
Power law P2/3 [2/3] a1 a?
Power law Pn n g n al
Diffusion processes
1-D diffusion D1 [12] o a?
2-D diffusion D2 [~In(1 = a)]! [A=a)In(l-a)]+a
3-D diffusion D3 [32]1(1 —a)*3[1 = (1 - )" [1-(1-)'"P
Nucleation reactions
Avrami-Erofeev An n(1 = o) [-In(1 — a)]™ " [<In(1 —a)]'""
Order-based reactions
First-order F1 (1-a) —In(1 — a)
nth-order Fn (1-a) [(A-a)"=1)/(n-1
Shrinkage models
Contracting cylinder R2 2(1 — )2 1-(1-a)"”?
Contracting sphere R3 3(1 — a)*? 1-(1-a)

Note: n notifies the order of the reaction.

336



Green Energy Fuel Res. 2025, 2(4), 328-359 https://doi.org/10.53941/gefr.2025.100023

In addition to that, Z(a) master plots are obtained by using the integral form of conversion rate expression
and can be expressed in form of Equation (6) after various integral approximations. Then, Z(a) function is obtained
by using subsequent rearrangements in form of Equation (7) [125].

AE
9@) = e —”S‘)] ©)
d
2@ = f(@g(@ = (3) 72 [’;(’;) ™

Here, x = E/RT and function 7z(x) denotes the Arrhenius integral approximation function, which is defined
using following expression [126]:
x3 + 18x% + 88x + 96
y* 4+ 20y3 + 120y2 + 240y + 120

w(x) = (3)

where, the term [7(x)/Tf] in Equation (7) usually ignored while drawing master plot curves, since it does not
affect Z(a) function considerably. Also, it is used in normalized form as I(«) for similar reasons and expressed as
followings after rearrangements:

d
e f@e@ (G T

T Z(05)  f(05)9(05) (55) 7,

I(a) )

Here, term fla)g(a)/f(0.5)g(0.5) denotes the theoretical form of reaction mechanism, while right hand side
term is drawn from experimental data. Then, a comparison of shape similarity and closeness between theoretical
and experimental reaction models is established to select the suitable reaction model. Moreover, sometimes it is
difficult to observe and decide the proper order (n) of the reaction model used. For this, mathematical regression
analysis is used in form of y>-minimization or RSS-minimization [22]. After determining the reaction model with
correct order (7), the intercept values from the isoconversional plots are used to determine 4 values with o.

While, master plot analysis provides a systematic framework for mechanism selection, its application to
complex systems such as catalytic pyrolysis comprises inherent subjectivity. The assignment of a reaction
mechanism can be non-unique, as multiple theoretical models (differential or integral) may show similar curve
shapes, resulting into reasonable but unclear fits. This ambiguity is often intensified by sensitivity of data
preprocessing such as smoothing of DTG curves to reduce noise, and the range of 7 and a. Consequently,
mechanism selection should not solely rely on visual inspection for matching curves. It requires a complimentary
statistical regression such as y>-minimization or RSS-minimization to validate against independent experimental
evidence or physicochemical reasoning regarding the likely catalytic cracking or decomposition pathways. Figure 7
integrates the methodological discussion into a novel, decision focused framework.

Qrt: TGA data (a, da/dt, TD
Model-free or Model-fitting?

Model-fitting

Model-free
Requires multiple heating Suitable for single heating
rates (f > 3) rate

4 4

Differential or Apply C-R method with
integral? assumed g(a)
Differential Integral ‘

Friedm: KAS, FWO, Output: Single E and A
riedman Starink for assumed model

I Output: E vs a profile ]—‘[ Master plot analysis ]
Kinetic parameters T T R
for process modeling identified?
' Y

b, No
I Determine kinetic triplet | I Refine experimental data I

Figure 7. Decision flowchart for selecting kinetic analysis methodologies in catalytic pyrolysis [127].
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Therefore, in order to carry out a rigorous kinetic study of catalytic pyrolysis, one should begin with choosing
a particular experimental technique (such as TGA to analyze decomposition rate data) followed by processing the
experimental data using isoconversional methods to obtain £ profiles. It helps to decide reaction complexity. These
observations are further followed by master plot analysis to determine the suitable reaction mechanism and its correct
order following regression analysis methods. Lastly, it involves calculation of 4 using intercept values at each a.

Various studies in the literature have used different approaches for conducting kinetic analyses under variable
experimental conditions. For instance, kinetic analysis during pyrolysis of chlorella vulgaris was explored using
model-free methods, including FWO, KAS, Starink, and Tang and observed the activation energies in the range
of 138.7-141.5 kJ/mol for a conversion range of 0.1-0.9 in the temperature range of 150-600 °C for three heating
rates were used as 10, 20, and 30 °C/min [128]. Further, co-pyrolysis of industrial hemp waste (IHS) and polyvinyl
chloride (PVC) under 10, 15, and 30 °C/min conditions yielded average activation energy of 154.37 kJ/mol using
Friedman method. However, the pseudo-components P-H, P-C, P-L, P-P for IHS+PVC exhibited mean activation
energy of 172.28, 186.76, 110.7, 286.06 kJ/mol, respectively [129]. A thermokinetic study using KAS and FWO
methods during pyrolysis of hydrothermally pretreated pumpkin (PC) and hemp (HC) oil cakes revealed that the
E values varied in the range of 93.6-529.9 kJ/mol for PC and 71.3-669.9 kJ/mol for HC [130]. Meanwhile, kinetic
analysis of PMMA/H-$ zeolite using Gaussian deconvolution yielded Ey values as 84.9, 128.2, 113.1 kJ/mol for
P/B-91, P/B-82, and P/B-73, respectively [131]. These observations reported in the literature visually synthesize
how varying experimental conditions can lead to dissimilar results.

3.2.3. Machine Learning for Kinetics

In addition to conventional methods, machine learning (ML) has emerged as a powerful computational
approach for conducting kinetic analysis and predicting product yields from complex pyrolysis data [132]. ML
plays a key role in handling large, complex TGA experimental datasets and identifying the non-linear correlations
which are usually overlooked in conventional kinetic analysis methods [133]. A standard ML workflow comprises
data collection, followed by algorithm training using linear regression models, Gaussian process, and artificial
neural network (ANN) regression models [134]. Then, these models are validated to predict the kinetic parameters,
as illustrated in Figure 8. This emphasizes that ML is not a one-time fitting exercise but an iterative process where
model failures inform targeted new data generation. Also, ML enables the development of dynamic and adaptive
models which integrate the process variables, catalyst properties, and feedstock heterogeneity, resulting into
enhanced accuracy of control, prediction, and optimization [135].

Practical case studies demonstrate the successful application of diverse ML algorithms across various
feedstocks. For instance, study of catalytic pyrolysis kinetics explored using Gaussian process regression (GPR)
revealed that the GPR model predicted the thermo-kinetic parameters with high accuracy (R? > 0.999) [136],
ensemble methods like extreme gradient boosting (XGBoost) to optimize liquid oil yield predictions from plastic
waste (R? = 0.85) [137]. Beyond catalysis, ML has shown versatility in related domains, such as hydrogen release
kinetics in alloys using evolutionary deep neural network (EVoDN2) [138] and modelling biomass pyrolysis via
multi-variative adaptive regression splines (MARS) to closely match activation energies (R? = 0.9974) [139].
Further applications include comparing ANN performance (R? = 0.994) against traditional model-free and model-
fitting methods [140] and utilizing random forest models to predict activation energies for diverse feedstocks with
high accuracy (R? = 0.9964) [141]. Collectively, these practical cases underscore ML’s empirical strength in
pattern recognition and yield prediction [133,142].

However, a critical perspective must accompany these demonstrations of predictive power. A primary focus
on high R? values can overshadow significant limitations, including model transparency, overfitting risks, and a
lack of mechanistic insight. ML models particularly complex architectures like deep ANNS, often function as black
boxes, where the derived parameters (viz. apparent activation energy, reaction order, frequency factor) may serve
as flexible empirical fitting coefficients rather than possessing direct physical or mechanistic meaning [132,134].
This opaqueness challenges the extraction of fundamental chemical insight. Additionally, these models are
susceptible of overfitting, especially with limited or noisy training data, which can compromise their
generalizability beyond original dataset [133,143].

Therefore, while ML is an effective tool for empirical correlation and prediction, its role should be
distinguished from methods that yield physically interpretable kinetic triplet. Future advancements should
prioritize strategies that enhance interpretability and physical grounding. It includes development of hybrid models
that embed fundamental constraints such as mass balance, Arrhenius-type relationships, within the ML architecture
and employing interpretability techniques to elucidate which input features most considerably influence
predictions [132,144]. Through such approaches, ML can evolve from a purely empirical fitting tool to a
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complementary component of a multi-scale modelling framework, bridging data-driven patterns with mechanistic
understanding for more reliable scale-up and optimization.
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Figure 8. Machine learning workflow for kinetic modelling [145].

3.3. Comparative Reliability and Applicability

Pyrolysis characteristics and kinetics were explored by several researchers using model-fitting, model-free,
and machine learning approaches. The comparative analysis of model-free methods showed that KAS and
Vyazovkin methods follow similar trends of E variations due to temperature integral approximations, while
Friedman showed different £ variation trends since it does not contain systematic error caused by various integral
approximations. Meanwhile, model-fitting C-R method exhibited insignificant variations since it considers
reaction as single-step [146] Bharti et al. [147] also used similar approaches during pyrolysis of microalgal
feedstock and observed Ey values as 146.78, 148.86, and 147.11 kJ/mol with KAS, FWO, and Vyazovkin models,
while it was noted that £ values varied significantly based on the reaction mechanism, when C-R method was used.
In another study, model-free (KAS, FWO, Friedman, Starink, and Vyazovkin) and DAEM model-fitting methods
were used to explore the finger millet pyrolysis kinetics and observed Ey values ranging from 167—175 kJ/mol, while
one-way ANOVA revealed that there are no statistical differences (p = 0.9353) in Ey values calculated from
different methods. Meanwhile, development of ANN based ML model accurately predicted the mass loss (%) with
an R? 0f 0.9995 [140]. Sbirrazzuoli [ 148] performed the kinetic analysis of complex chemical reactions by coupling
model-free and model-fitting analyses. The advanced non-linear isoconversional (NLN) method revealed
increasing E-dependency (35-103.6 kJ/mol) and In4-dependency (4.72-30.78 s!) from competing reactions,
while consecutive reaction shows decreasing dependency, while independent reactions exhibited a more complex
(increasing/decreasing) dependency with a. A critical analysis of possibility of using model-free methods for
kinetic analysis and developed conversion functions to determine compensation effect parameters, stating obvious
differences in kinetic parameters due to inherent experimental errors, errors in evaluation of activation parameters,
and deviation from linearity of In4 vs. E regression [149].

4. Kinetic Models for Catalytic Pyrolysis of Specific Waste Feedstocks

Optimization of catalytic pyrolysis for different waste feedstocks faces challenges during suitable kinetic
model development. Since, it involves a network of complex reactions, occurring at interface of feedstock
components and catalysts at elevated temperatures [150]. This complexity arises from the multicomponent nature
of waste materials as well as dynamic interaction amongst volatiles and active sites of the catalysts [151].
Therefore, current state of kinetic modelling is represented in this section to highlight feedstock specific
challenges, modelling approaches, and catalytic effects.

4.1. Lignocellulosic and Algal Biomass

The lignocellulosic feedstock structure involves three primary components such as hemicellulose, cellulose,
and lignin. These components react differently during thermal decomposition, which poses a considerable
challenge during kinetic analysis. The single step kinetic models often fail to consider the overlapping thermal
degradation regimes of these components. It is a noticeable fact that the hemicellulose degradation takes place at
lower temperatures (220325 °C), cellulose at relatively higher (315-400 °C), and lignin decomposes throughout
the reaction at low degradation rates with temperatures starting from 160 °C to end of process [152,153]. This
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create overlapping reaction profiles which are not easy to deconvolute. Now, these limitations are advanced
through deconvolution modelling approach, which breaks the decomposition curves into its pseudo-components.
A good performance in deconvolution was reported using Fraser-Suzuki deconvolution technique, which provides
a good fitting accuracy to TGA data. In addition, algae feedstocks are comprised of proteins, carbohydrates, and
lipids which decompose in the temperature ranges of 205-310 °C, 160—470 °C, and 200—635 °C [154,155]. This
multi-stage and overlapping regime decomposition behavior of algae feedstocks requires selecting multiple
temperature regimes for kinetic modelling, where each temperature regime provides separate kinetic parameters.
It has been reported in the literature that algae feedstocks demonstrate lower E values as compared to
lignocellulosic feedstocks [156].

Meanwhile, a significant effect of catalysts is evident over kinetic triplets during pyrolysis, showing separate
reaction pathways and lower E values. For instance, £ values and reaction models are significantly affected by the
inclusion of acid catalysts such as HZSM-5 during pyrolysis of biomass feedstocks [95,157]. A significant decline
in E barrier by 30.54% for xylan, 6.73% for cellulose, and 14.75% for lignin was observed during catalytic
pyrolysis of model biomass compounds [100]. It indicates towards the requirement for the component specific
kinetic modelling during catalytic pyrolysis. Further, different reaction models are followed for the individual
biomass component. It was reported that the pseudo-components (hemicellulose and lignin) obey F3 reaction model,
while cellulose follows the random scission mode [158], while these reaction models are altered for catalytic pyrolysis
and showed diffusion mechanisms as most favorable models. Further, catalysts containing alkali metals such as
potassium compounds further encourage the cross-linking reactions owing to decline in char yield as well as E values
for the cellulose rich biomass feedstocks, while making the pyrolysis reaction more complex [159].

Further, lumped kinetic modelling approach considers the practical framework to predict distribution of
products by tracking the individual chemical reaction. These lumped models form discrete lumps to describe the
concerned reaction networks [160,161]. These lumped approaches are particularly converted into complex
formulations for catalytic pyrolysis, since it involves secondary cracking reactions which encourage formation of
H-C, water, and light gases [162]. Therefore, a careful consideration of catalyst to biomass ratios is needed to
control the secondary reactions. Models need to consider enhanced aromatization and deoxygenation reactions at
higher catalytic loadings. In addition, these lumped models should consider the N-containing compounds for
proteins [163]. It has been observed from lumped model kinetic analysis that the £ values vary in the order of
gas > bio-oil > char, indicating raising energy requirements in these pathways.

4.2. Plastic Waste

The pyrolysis of plastic waste is governed by random scission and end-chain scission models during kinetic
models. The polymer chain breakage resulting into reduced molecular weights and varying size fragments is
assumed via random scission models [164]. The polymers (i.e., PP, PE) promoting random cleavage of C-C bonds
are analyzed through random scission models. In addition, end-chain scission models involving sequential
elimination of monomers from chain ends results into intermediate fragments of monomers. PS degradation which
yields higher styrene monomers is governed by the end-chain scission models [165]. However, random scission
results into a broad distribution of product yields with lighter liquids and high gases, while monomer recovery is
ideal in end-chain scission models. Meanwhile, the real-world plastic wastes exhibit the higher reaction complexity
of kinetic modelling since it contains mixed polymers which affect the scission behavior during pyrolysis [166].

Additionally, plastic pyrolysis reaction kinetics is significantly altered using acid catalysts such as zeolites
and FCC catalysts in form of enhanced carbonium ion intermediates. Also, a significant reduction in £ values was
noticed from catalytic pathways as opposed to non-catalytic pyrolysis [167]. Formation of carbocation
intermediates must be considered during kinetic modeling of these plastic wastes to analyze the f-scission and
hydrogen transfer reactions. Further, kinetic triplet is affected by concentration and strength of acid sites in
catalysts, because stronger active sites encourage the widespread cracking at relatively low temperatures. For
instance, catalytic cracking mechanism for polyolefins begins through polymer chain protonation at Brensted acid
sites, then these reactions further break the polymer chain into smaller H-C via f-scission reactions [168,169].
Coke formation which blocks the active sites considers the catalyst deactivation during kinetic modelling. It has
been reported from several studies that the inclusion of catalysts during plastic pyrolysis requires 30-50% lesser
E compared to non-catalytic pyrolysis, indicating higher decomposition rates for catalytic systems [100,170].

Further, due to varying chain structure, stereochemistry, and bond cleavage energies for different polymer
types showed significant difference in kinetic behavior during catalytic pyrolysis of plastic wastes. For instance,
PP and PE demonstrate similar catalytic degradation behaviors. However, lower E required for PP, since it possess
ternary carbons. Meanwhile, HZSM-5 assisted catalytic pyrolysis of PP obeys F1 model with lower E values
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varying in the range of 150—180 kJ/mol as compared to non-catalytic pyrolysis (200-250 kJ/mol) [171]. Similarly,
catalytic pyrolysis for PS kinetic modeling replicates end-chain scission reactions to produce monomers. Also,
thermal decomposition kinetics of PS is affected by aromatic rings in form of resonance stabilization [172].
Besides, PET offers extra reaction complexity as it has higher oxygen content. This leads to consideration of
dehydration and deoxygenation reactions during kinetic modelling. The lower E requirements in PET pyrolysis
are particularly referred to availability of esters linkages [173].

4.3. Mixed Feedstocks

Mixed feedstocks such as plastic-biomass mixtures during pyrolysis demonstrate non-additive behavior with
a significant deviation between reaction rates and distribution of product yields compared to individual
components [174]. The synergistic effect is quantitatively defined as a significant deviation from the weighted
additive behavior of individual feedstocks. Generally, this deviation is most rigorously identified through key
kinetic parameters, such as measurable reduction in activation energy, or a change in reaction mechanism
compared to the linear combination of individual component kinetics. While, synergy indicates the important
interactions, it is important to distinguish true chemical interactions from artifacts of experimental certainty.
Apparent synergy can arise from measurement errors in TGA, heat/mass transfer limitations that differentially
affect blends, or statistical variability in product analysis. Therefore, claims of synergy should be supported by
rigorous statistical analysis, reproducibility across experimental setups, and mechanistic evidence, ensuring the
observed deviation exceeds the cumulative experimental error of the measurements. The synergistic effects between
mixed feedstocks show significant variations in kinetic parameters. Commonly, synergistic effects are observed in
terms of £ reductions, due to stabilization of intermediates from biomass pyrolysis and plastic radicals [175]. For
example, a significant reduction in £ values to 24.31 kJ/mol owing to synergistic effects during co-pyrolysis of
coal and microalgae feedstocks was observed as compared to coal (31.11 kJ/mol) pyrolysis [176]. Alterations in
reaction mechanisms also indicate enhanced synergy of mixed-feedstock pyrolysis. Like, reaction mechanism
changed from diffusion mechanism to reaction-controlled mechanism for biomass and plastic feedstock mixtures.
However, blending ratio plays important role to decide the extent of synergy between mixed feedstocks [177].
Therefore, an extra consideration of terms such as interaction coefficients and coupled reaction becomes necessary
during kinetic modelling.

Bamboo and oakwood co-pyrolysis with PP and PS revealed that the activation energy significantly decreased
from when a mixing ratio of 4:1 was used. Particularly, highest decrease was observed for bamboo and PS mixture
from 217.59 kJ/mol to 149.81 kJ/mol, indicating positive synergistic effect [178]. Study of synergistic effects during
catalytic co-pyrolysis of sludge and chlorella with mixing ratio of 1:3 using CaO/K,FeO4 demonstrated lower
carboxylic acids and nitrogen chemicals with a decline by 17.84% and 54.62%, respectively [179]. Li et al. [180]
explored the thermal behavior and K-Fe synergistic effects during catalytic pyrolysis of Chinese herb residues and
observed a K-Fe derived catalytic synergistic effect in terms of reduced activation energy from 186.1 kJ/mol to
149.6 kJ/mol, while increased H; yield was also observed from 51.46 L/kg to 135.36 L/kg. In addition, tobacco straw
and LDPE co-pyrolysis in presence of HZSM-5/graphite felt composite catalyst yielded 41.47% of MAHs at a mass
ratio of 80%, indicating combined synergistic effects from pore acidity of catalyst and microwaves [181]. These
discrepancies in literature demonstrates that divergent experimental conditions often yield conflicting results.

Additionally, several formidable challenges related to contribution of pseudo-components and their
interaction in deconvolution are presented by mixed feedstocks during kinetic analysis [182]. Primarily,
overlapping regions of thermal decomposition owing to simultaneous degradation of multiple components presents
the primary challenge. This complexity is largely noticed in the MSW which are generally comprised of various
plastics, biomass, textiles, and inert materials [183]. Multi-step kinetic reaction models consider such conditions
separately to analyze the decomposition and interaction behavior [184]. For example, five different reaction stages
were defined to evaluate the separate kinetic triplet in each reaction stage during co-pyrolysis of microalgae and
sewage sludge [185]. During elimination of moisture and light volatiles, F1 model with E values varying in the
range of 15.07—42.34 kJ/mol was seen, while major devolatilization regime showed comparatively greater range
of E variations as 62.69—78.86 kJ/mol. Besides, use of isoconversional approaches can efficiently tackle these
complex situations by providing the insights into limiting steps and shifting conversion rates with progress of
reaction [186,187]. It was observed from isoconversional techniques that £ values varied considerably with a
during pyrolysis of mixed feedstocks, while individual pure feedstocks showed very insignificant variations in £
values. A comprehensive comparison of kinetic parameters during kinetic analysis of catalytic pyrolysis for diverse
feedstocks in presented in Table 5. Additionally, Figure 9 provides a cross-feedstock meta-analysis, revealing a
key literature insight, the range of E for plastics is significantly lower than for heterogeneous biomass feedstocks.
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It underscores that the feedstock identity dictates kinetic simplicity. Crucially, it highlights outlaying position of
mixed feedstocks, which often show lower E than pure feedstocks, suggesting kinetic synergy. Further, Table 6
presents a summary of synergistic effects observed for the co-pyrolysis of mixed feedstocks. Catalytic pyrolysis
kinetics for diverse feedstocks still remains a challenging task due to developments in waste valorization methods.
Also, multicomponent nature of feedstocks is treated using deconvolution methods. Still, a big area of exploration
lies in capturing synergistic interactions of mixed feedstocks and evolution of catalytic activity during pyrolysis.
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Figure 9. Comparative analyses of activation energies for catalytic pyrolysis of different feedstocks viz. cotton swab
and non-woven mask (CSM) [188], corncob (CC) [189], Bamboo and LDPE (BLP) [190], PP [191], Chinese herb
residue (CHR) [192], chlorella vulgaris (CV) [193], caster seeds (CS) [194], sewage sludge (SS) [195], PET [196],
and waxy residue (WR) [197].

Table 5. Comprehensive comparison of kinetic parameters for catalytic pyrolysis of diverse feedstocks.

Feedstock Catalyst Catalyst Type Kinetics Method Eo (kJ/mol) Reaction Mechanism Reference
FWO, KAS,and  69.38, 69.87, and Nucleation and

Pineapple peel Ni-Fe  Supported metal Starink 6725 diffusion [198]
. . . Nucleation and
Barley straw NaOH Alkali (Basic) Friedman 138.02 Vasudev (V2) [16]
Bamboo ZSM-5 Acidic Friedman 114.82 Nucleation (A4) [22]
Red algae KOH Alkali (Basic) Friedman 116.85 Vasudev (V2) [22]
Chlorella sp.  Ni/8-Al2Os Supported metal Friedman and KAS 186.29 and 166.81 - [199]
. . FWO, KAS, Starink, 145.26, 147.84,
Chlorella vulgaris HZSM-5 Acidic and Vyazovkin  145.55, and 145.59 - [193]
MSW Al-SBA-15 Acidic Friedman 86 Diffusion [102]
KAS, FWO, 151.40, 185.90,
Waste fishing nets ZSM-5 Acidic Friedman, 200.80, 158.25, and - [200]
Vyazovkin, and Cai 161.15
Chitin CalclnF:d Metal oxide C-R and Friedman 138.43 and 124.88 - [201]
dolomite
KAS, Friedman . . .
N-doped Doped carbon > ’ 168.46, 166.30,  Chemical, diffusion,
Bamboo biochar material Sgir:slikn’;l;d 169.35, and 164.17 and nucleation [202]
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Table 6. Synergistic effects during co-pyrolysis of mixed feedstocks.

Feedstock Catalyst Synergistic Metric Quantitative Value Reference
Soyabean husk Reduced activation energy ~ Waste to catalyst ratio (1:1 to 1:5) reduced
and HDPE HZSM-5 and enhanced activation energy by 30% and increased H-C [203]
hydrocarbon yields production by 25%.
Oil with 34% higher carbon content, 47%
Sugarcane bagasse . L higher hydrogen content, and 70% lower
and HDPE ) Higher liquid yields oxygen content compared to sugarcane [204]
bagasse pyrolysis.
Reduced amount of acid, Increased heating value from 30.644 MJ/kg to
Enteromorpha prolifera HZSM-5 oxygenated compounds,  42.01 MJ/kg, reduced acids from 13.1% to [181]
and HDPE and nitrogen compounds  7.68% (acetic acid), pyridine, 3-methyl from
in oil 5.43% to 2.14%.
Fir, Chestnut, PE, ) Increased H/C ratio and ~ Maximum synergistic effects were observed [205]
and PS decreased O/C ratio with 30% plastic.
Cherry seed and Decrease in activation Activation energy decreased from
. . - energy of 268.5 kJ/mol (cherry seed) to 167.8 kJ/mol [206]
polyvinyl chloride bi . . .. X :
iomass pyrolysis with a mixing ration of 1:1.
Date palm waste and _ Reduced activation energy A reduction from 216.33 kJ/mol to [207]
PE foam of plastic pyrolysis 206.47 kJ/mol was observed.
Waste office paper Highest decrease in activation energy from
- Reduced activation energy 262.3 to 209.3kJ/mol was observed at mixing  [208]
and HDPE .
ratio of 2:1.
Coffee grains and PE - Reduced activation energy @ 68.327211{;(1511;?((]1 /?ggl\)/ivuﬁﬁ ﬁiﬂi}é ratio 7-3. [209]

4.4. Impact of Catalyst and Reactor Environment

While fundamental models like random and end-chain scission describe initial polymer breakdown or biomass
component decomposition, the apparent kinetics in catalytic pyrolysis are devastatingly shaped by the interaction of
primary volatiles with catalyst and reactor environment. Three dominating, but often overlooked factors are catalyst
pore confinement, secondary vapor phase reactions, and coke formation and dynamic deactivation.

Catalyst pore confinement in microporous/mesoporous materials (e.g., zeolites, MCM-41) imposes steric and
diffusion constraints, increasing intermediate residence time, enabling shape-selective aromatization, and masking
intrinsic kinetics with mass transfer resistances, yielding higher apparent activation energies [26,210]. Primary
pyrolysis vapors undergo extensive secondary cracking, oligomerization, deoxygenation, and aromatization over acid
sites, making product selectivity dependent on these sequential reactions rather than primary scission alone [211,212].
Continuous coke deposition progressively blocks sites and pores, altering activity and selectivity with time-on-
stream (TOS) and causing lab-to-reactor performance gaps when deactivation is ignored [213]. Predictive kinetic
models for catalytic pyrolysis thus require multi-scale frameworks integrating intrinsic kinetics, diffusion modules,
secondary reaction networks, and time-dependent deactivation functions to accurately link fundamental
mechanisms to apparent kinetics [214].

5. Advanced Modelling Approaches and Deactivation Kinetics

Advanced kinetic modelling approaches used for catalytic pyrolysis are performed through computational
frameworks. Even though, a valuable correlation between reaction rates and operation variables is well understood
through modeling techniques discussed above, but they have limitations of not considering molecular-level resolution
or catalyst lifespan prediction. Now, critical kinetic modelling domains such as microkinetic modelling, process
simulation by integrating lumped systems, and catalyst deactivation are explored in this section. These advanced
approaches formulate a multi-scale framework by addressing limitations of conventional kinetic analysis methods.

5.1. Microkinetic Modelling and Density Functional Theory Insights

The most granular method of kinetic analysis during catalytic pyrolysis is microkinetic modelling, which
describes every elementary step through reaction networks [215]. It takes into consideration the surface
intermediate concentration and active site structures. This approach is particularly important for catalytic pyrolysis
involving a series of complex reactions [216]. Further, it can integrate the density functional theory (DFT) to
determine thermokinetic parameters without any experimental fitting. DFT uses Schrodinger equation to provide
catalyst and adsorbate structures for predicting activation barriers and reaction energy for every step involved in
the reaction [217]. DFT calculations during catalytic pyrolysis using acid catalysts explained the carbocation
formation, deoxygenation pathways, and aromatization mechanisms. Particularly, strong reliance of activation
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energy values over carbocation intermediates is measured through proton transfer from acid sites to oxygenated
compounds or olefins [218]. In addition, deoxygenation pathways predict the comparative energy barriers for
dehydration, decarboxylation, and decarbonylation reactions. Further, conversion of linear intermediates into
aromatics is governed via step-wise cyclization and dehydrogenation during DFT calculations [219]. Besides,
microkinetic modelling shows enhanced performance when DFT is linked with experimental data for kinetic
analysis. For this, mechanistic validation of reaction networks proposed is performed with experimental
distribution of product yields. Later on, active site characterization is performed to relate the activation energies
with density and strength of active sites. It also allows to identify the relationship between catalyst properties to
guide for design of catalyst [220,221].

5.2. Process-Scale Simulation and Lumped Kinetic Models

Process-scale simulations provide a deep understanding for reactor design, techno-economic analysis, and
energy integration thorough kinetic modeling for catalytic pyrolysis processes. Typical execution of the process
scale simulations comprises primarily the reactor module selection, method definition to select suitable
thermodynamic packages, and employment of kinetic parameters from lumped models [222]. Further, this
advanced process simulation deals with various complexities of catalytic pyrolysis kinetics by providing the
molecular scale insights from microkinetic modelling and DFT calculations to evaluate reactions pathways and
their sensitivity towards process conditions [223]. Also, lumped kinetic systems describe both reaction rates as
well the product yields. It combines kinetic models to mass and energy balance, separation units, and heat
exchanger networks for process optimization. This technique is important to determine the optimum catalyst to
feedstock ratio for balanced reaction rates [224]. However, execution of catalytic pyrolysis kinetics in process
simulators undergo several challenges such as feedstock variability, catalyst deactivation, and heat integration
complexity. Because most of the kinetic models consider that the catalytic activity remains uniform or constant
throughout the process and neglect the decay of catalyst with time. Also, coupling to pyrolysis endothermic nature
with exothermic nature of catalyst affect the kinetic parameters [225]. Despite this, process-scale simulations are
important tools for understanding the reaction kinetics for industrial applications. For instance, parameters from
DAEM obtained via TGA have been implemented in Aspen Plus reactor models to predict product yields. Also, it
becomes important to explore the catalyst deactivation kinetics.

Therefore, to address this gap between laboratory-derived kinetics and process-scale simulations, real-life
applications demonstrate the integration workflow, where parameters from DAEM obtained using TGA are
employed in Aspen Plus reactor models to forecast the product yields. Improved chemical kinetics simulations
were incorporated in Aspen Plus for lignocellulosic biomass pyrolysis, using RYIELD reactors and pseudo-
components to represent volatiles and obtained a good agreement with pilot-scale data through adjustments for
heat transfer and yield correlations [226]. For CFD modeling of fluidized-bed catalytic pyrolysis reactors, detailed
reaction kinetics were simplified into a lumped four-step scheme (heavy oil— gasoline— light gases— coke),
derived from catalytic cracking mechanisms. This scheme was integrated into Eulerian-Eulerian CFD frameworks
to simulate reactor hydrodynamics and predict product selectivity. The models also included the effectiveness
factors to account for deactivation and secondary reactions [227]. Such workflows demonstrate that the integration
of lumped kinetic schemes requiring careful species lumping and scaling factor adjustments, ensures mass and
energy balance closure, maintaining computational feasibility while capturing key pathways for reactor-scale
predictions. Despite this, a critical parameter tuning is required for direct transfer of experimental kinetics to
simulators. The compensation effects between £ and A can lead to rate mispredictions under reactor-scale
conditions [111]. Also, the lab-scale kinetics studies often neglect the scale-dependent phenomena such as heat
and mass transfer limitations, in-situ catalyst deactivation from coke, and secondary reactions [228]. Further,
lumping also contribute in gathering the detailed spectra into broad categories and losing selectivity details, which
requires stoichiometric tuning against plant data and limiting extrapolation [214]. Consequently, addressing these
challenges encompasses the personalized approaches based on source of data and type of simulator. For TGA-
derived DAEM in Aspen Plus lumped models, transport omissions and high-rate overpredictions are mitigated by
pre-exponential scaling or pseudo-component additions [229]. For the detailed micro kinetics in CFD fluidized
beds, over-lumping and deactivation are handled using the reduced lump schemes and supporting hybrid methods
[230], while the lab-scale fixed-bed global rates scaled to process simulators need careful tuning of Thiele modulus
for transport governance [231]. Eventually, the hybrid kinetic-transport modeling with calibration improves the
consistency of scale-up processes for catalytic pyrolysis.
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5.3. Catalyst Deactivation Kinetics

Catalytic pyrolysis is largely affected by the deactivation of catalyst in form of coking or coke deposition,
sintering, poisoning, and mechanical attrition mechanisms [232]. Particularly, active sites are blocked from
deposition of carbonaceous materials, condensation of aromatic compounds, and olefinic polymerization, while
loss of active surface area occurs from decay of catalyst structure results into sintering. Further, biomass ash
contaminants (i.e., Na, K, and Ca) and plastic waste impurities (i.e., N, S, Cl) lead to poisoning of catalyst [233].
Also, fluidized bed systems result into breakdown of catalyst particles through mechanical attrition.

Deactivation kinetics is modeled through time-on-stream (TOS) models, which provide a practical
framework to quantify the catalyst deactivation [234]. Commonly TOS include separable kinetics and site-
coverage models. Separable kinetics express the overall reaction rate () as the function of initial rate () and
deactivation function [235]. This can be expressed through following expression:

r(t) =1y X a(t) (10)

Here, a(t) represents the activity function for catalyst decays with TOS.
Further, site-coverage models consider the fraction of active sites that are blocked or covered by coke [236].
It is expressed in the following form:

= kg1 - 0" (an

Here, 0. denotes the fraction of deactivated sites, while k4 represents the deactivation rate constant. It is
important to mention that second order decay model is generally followed during catalyst deactivation kinetics as
coke formation shows the bimolecular nature [237].

Recent studies provide quantitative insights into deactivation parameters across different systems. For
instance, in CO, methanation over Ni/Al,O3, hydrothermal sintering and CO-induced restructuring increased the
apparent activation energy from 141.6 kJ/mol to 200.4 kJ/mol, corresponding to significant activity loss under
optimal conditions [238]. Similarly, a modified Weibull distribution model for a Cu-based catalyst in formaldehyde
ethynylation yielded a deactivation energy of 45.8 kJ/mol, a pre-exponential factor of 1.2 x 107 h™!, and first-order
deactivation kinetics [239]. Advanced models, such as three stage deactivation frameworks for residual
hydrotreating (accounting for active-site formation, coke coverage, and metal deposition) have successfully
predicted complex, non-S-shaped deactivation profiles and product properties [240]. These examples highlight the
quantitative application of deactivation models, yielding specific kinetic parameters that describe the rate and
extent of activity loss.

Additionally, a critical challenge remains in experimental validation of these models under realistic, long
duration pyrolysis conditions. Most quantitative studies derive parameters from controlled, short-duration
experiments [241,242]. While valuable for parametrizing models, such data may not capture prolonged deactivation
mechanisms (i.e., slow sintering, pre blockage) that dominate the continuous industrial operation. Among the models,
separable kinetics (TOS) models are often validated against bench scale runs of several hours [235,238], whereas
structure-based models require advanced operando characterization rarely applied in pyrolysis studies [241,242].
Consequently, the reliability of deactivation kinetics for predictive scale-up is constrained by a scarcity of long-
term, high-resolution kinetic data collected under relevant process conditions. Future work must prioritize long-
term deactivation experiments coupled with operando characterization to correlate activity loss with specific
structural changes, transforming these models from descriptive tools into predictive assets for reactor design.

Furthermore, deactivation kinetics is also approached through structure-based model, multi-mechanism
models, and deactivation mapping. These structure-based models interpret pore structure evolution of catalyst
during deactivation to identify coke deposition over micropores, which affects the effectiveness of internal
diffusion [241]. Subsequently, multi-mechanism models combine the multiple deactivation pathways viz. sintering
and coking during kinetic modelling [242]. Deactivation mapping approach tend to create operational diagrams to
identify deactivation regimes to allow positive moderation tactics. Figure 10 shows the mechanism and modelling
of deactivation of catalyst.
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Figure 10. Mechanism and modeling of catalyst deactivation [243].

6. Challenges in Catalytic Pyrolysis
6.1. Feedstock Variability and Data Discrepancy

Despite the reassuring developments in catalytic pyrolysis, a number of challenges still remain unanswered.
The development of robust kinetic models faces primary challenges due to feedstock variability and inherent
characteristics during catalytic pyrolysis. For instance, model compounds (i.e., xylan, PE, cellulose) can help to
examine the reaction pathways but cannot evaluate the inhibitory and synergistic effects. Similarly, MSW can
create a very complex reactive environment due to its heterogeneous nature, it leads to significant changes in £
values as well as the reaction mechanisms as compared to real or pure feedstocks. However, these challenges
provide a thoughtful practical inference by often providing very poor predictions from model compounds for
industrial feedstocks. This problem requires the advancement of composition-adaptive kinetic models which can
consider feedstock variability as well its effect over reaction mechanisms and reaction rates.

Further, kinetic parameters are also influenced by various sources such as reactor configuration, experimental
protocol, and analytical methods employed. For example, experimental data measured through various reactors
such as fixed-bed, TGA, and fluidized bed, carry several heat and mass transfer characteristics, yielding
discrepancy in kinetic parameters. Also, variation in catalytic loadings, feedstock particle size, and heating rates
affect the reaction kinetics. Therefore, to establish the reliable kinetic analysis database, standardized conventions
need to be followed alongside conducting comparative revisions.

6.2. Heat and Mass Transfer Limitations

Another hurdle that lies in progress of catalytic pyrolysis kinetics is the disparity between intrinsic and
apparent kinetics, since the combined physical and chemical processes are reflected during experimental
measurement of global reaction rates. It includes various limitations such as intra-particle diffusion, inter-phase
heat transfer, and boundary layer effects. These limitations can lead to underestimation of activation energies and
wrong reaction order from complicated inherent chemical kinetics. Also, the change from chemical to diffusion
reaction control during catalytic pyrolysis affects understanding of kinetic triplet directly. Further, these transport
phenomena are affected by deactivation of catalyst in form of coke deposition which alters the accessibility of
active sites and structure of pores. So, catalyst deactivation is another challenge which needs to be addressed.

6.3. Catalyst Deactivation

One of the most poorly quantified aspects during the kinetic analysis of catalytic pyrolysis is the catalyst
deactivation. Its complexity arises from the loss of catalytic activity of catalysts with time that requires inclusion
of an extra parameter (TOS) which is often not considered in the conventional kinetic analysis techniques. Also,
literature have vastly reported the kinetic triplets using fresh catalysts. This leaves a very big gap in progress of
lab-scale to industrial scale measurements where catalysts are employed regularly without considering their
deactivation with time. Further, deactivation also occurs through various simultaneous mechanisms such as coking,
sintering, and poisoning. These simultaneous deactivation mechanisms also complicate the kinetics. Therefore, it
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is required to decouple and quantify these mechanisms and their contributions in overall activity loss during
development of predictive models for catalyst deactivation kinetics.

7. Knowledge Gaps and Future Perspectives
7.1. Knowledge Gaps

The absence of standard kinetics protocols for catalytic pyrolysis is the most critical gap. Also, catalytic
pyrolysis lacks in various aspects such as method validation using standard reference, protocol specifications for
reactor types as well as kinetic modelling to associate the uncertainties. This gap obstructs the direct association
of results presented in various studies with slowly progressing kinetic models. Further, a clear knowledge gap lies
in understanding of in-situ and ex-situ configurations for the comparison of reaction rates and pathways,
understanding of product distribution kinetics from volatile and catalyst contact duration, and modelling the
kinetics consequences of heat transfer limitations. Additionally, kinetics implications arise from the catalyst-
adsorbent interaction in the initial stages. However, DFT calculations consider the ideal surface interactions, but
they neglect the multicomponent and complex nature of pyrolysis vapors. It is important to consider the adsorption
interaction, surface residence time and its effect over reaction pathways, and accessibility of catalytic active sites
during kinetic modelling for the catalytic pyrolysis.

7.2. Future Perspectives

Further researches are required to integrate advanced methodologies for overcoming the existing challenges.
Use of in-situ and operando characterization approaches like Raman and X-ray absorption spectroscopy (XAS)
can directly observe the catalyst behavior alongside simultaneous measurement of kinetic triplets. It is also
important for analyzing the catalysts-adsorbate interactions and catalyst deactivation processes. Subsequently,
kinetic analysis should incorporate the ML and Al to navigate the complexity of feedstock, predict the kinetic
triplet, and optimize the process conditions. This will prioritize the advancement of multi-scale models to connect
molecular-level phenomena with process-scale simulation. Lastly, the kinetic studies should also consider the
properties of emerging catalyst systems such as single-atom catalyst, engineered biochar, and hierarchical zeolites.
These emerging catalysts display dissimilar kinetic behavior which cannot be defined effectively using the
conventional kinetic methods employed for the traditional catalysts. Therefore, it will be important to understand
kinetics of these next-generation catalytic resources to harness their full potential.

7.2.1. Industrial Applications and Scale-Up Challenges

While most of the research studies focusing on kinetics are performed for laboratory scale, several new
industrial and pilot-scale projects demonstrate the commercial pathway for catalytic pyrolysis, which bridges the
gap between real-world operations and fundamental kinetics. For example: catalytic thermochemical pathways are
used for full-scale municipal waste to advanced biofuels and chemicals generation facility of Enerkem. Also,
catalytic depolymerization was employed for chemical recycling of polystyrene at large scale by Agilyx.
Additionally, large-scale fluid-catalytic cracking process is a comparable industrial process for catalytic cracking,
providing suggestions on catalyst deactivation consideration and kinetics for large-scale systems. However, it faces
several challenges from an industrial viability standpoint. Therefore, it is important to handle the highly variable
waste streams to make adaptive kinetic models for real world applications to ensure stable operation. Also, the
economics of catalyst management, directly governed by deactivation kinetics is important for the catalyst lifetime,
regeneration strategies, and cost-benefit analyses. Most importantly, the robust kinetic models lay foundation for
techno-economic assessment (TEA) and life-cycle analysis (LCA), ensuring commercial feasibility. The kinetic
parameters provide the important inputs for process simulators to predict the yields, utility demand, reactor size.
Subsequently, reliable LCA studies also depend upon the process models to govern the environmental benefits of
the technology.

By focusing these future perspectives, catalytic pyrolysis community can progress towards development of
robust kinetic models for predictive kinetic modelling of diverse waste feedstocks in a sustainable way for
industrial-scale applications.

7.2.2. Implementation Pathways

In order to translate the future perspectives into actionable development, structured implementation pathways
are required. A practical pipeline for in-situ and operando characterization involves developing spectroscopy-
compatible reactor cells for realistic conditions, synchronizing spectral data with real-time product analysis, and
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using innovative algorithms to directly compare the spectral characteristics with kinetic variations. Subsequently,
an integration of robust ML/AI involves building curated, open-access kinetic databases and developing hybrid,
physics-informed neural networks which are validated for the lab and pilot scale studies. For novel catalysts, a
personalized system from controlled synthesis and in-situ analysis to microkinetic modeling that detect unique
active-site formations are required. Finally, confirming industrial relevance requires a closed-loop scale-up
framework comprising intrinsic kinetics from the optimized lab experiments updating the CFD models of pilot
reactors. Further, these models are iteratively refined using operational pilot data and finally used for TEA and
LCA to generate a feedback loop where economic aims guide essential research implications.

8. Conclusions

In this review, we have summarized the current state of art knowledge in the field of catalytic pyrolysis
kinetics for different waste feedstocks. The inclusion of catalysts generally alters the reaction pathways, indicating
decreasing activation energy for several feedstocks, while it also showed enhanced product selectivity in form of
cracking, deoxygenation, and aromatization reactions. Also, development of methodologies for model-free and
model-fitting isoconversional kinetic analysis methods was explained. In addition, multi-step kinetic models
showed enhanced performance in describing the kinetic parameters accurately for real wastes such as municipal
solid waste, while machine learning has emerged as a powerful tool to deal with the complexities of these real
heterogeneous wastes. Further, varying kinetic behavior of different feedstocks was observed using multi-
component decomposition kinetics which was further complicated by mixed-feedstocks posing significant
synergistic effects. The development of integrated multi-scale modeling frameworks can integrate DFT with
reactor-level simulations to create advanced predictive proficiencies from molecular-scale to process-scale. Still,
feedstock variability and complexity, heat and mass transfer limitations, and study of kinetics during deactivation
of catalyst pose significant challenges during kinetic modelling for catalytic pyrolysis processes. Addressing these
limitations indicate towards the employment of in-situ and operando characterization techniques, predictive
machine learning, and study of emerging catalyst systems. Finally, the development of the robust and adaptive
kinetic models which consider the variabilities of feedstocks in real world and activity of catalysts with time is
crucial to transform catalytic pyrolysis as commercially feasible practice from only a lab-scale practice for the
renewable energy generation and sustainable waste utilization.
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