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Abstract: Catalytic pyrolysis has emerged as a pivotal technology for converting renewable diverse feedstocks 
(i.e., lignocellulosic biomass, algal biomass, and plastic wastes) into biofuels and chemicals. This review 
comprehensively examines the reaction kinetics in catalytic pyrolysis, addressing the fundamental gap between 
lab-scale research and industrial applications. The mechanisms of conventional (i.e., electrical heating) and 
microwave-assisted catalytic pyrolysis are detailed, highlighting the role of catalysts in altering reaction rates, 
reaction pathways, and decreasing activation energies. This paper delves into kinetic analysis techniques by 
comparing the model-free and model-fitting approaches and exploring the emerging role of machine learning in 
predicting kinetic parameters. In addition, it extensively explores the feedstock specific kinetic models, 
highlighting the behavior of pseudo-components of lignocellulosic feedstocks, plastic wastes, and their mixtures 
with a specific focus on synergistic effect during co-pyrolysis. Further, an essential framework to integrate 
molecular-scale phenomena with reactor-scale process performance was presented by exploring the advanced 
modelling techniques such as microkinetic modelling using density functional theory (DFT), lumped system 
analysis using process simulations, and catalyst deactivation kinetics. Despite its promise, challenges such as 
catalyst deactivation, heat and mass transfer limitations, and feedstock variability remain critical hurdles. This 
review concludes by identifying future research directions, emphasizing the in-situ characterization, integration of 
machine learning and artificial intelligence for process optimization, and kinetics of emerging catalyst systems to 
facilitate the commercial deployment of predictive models for catalytic pyrolysis technologies. 
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1. Introduction 

Increasing global waste crisis demands sustainable and innovative management strategies, as traditional 
methods are insufficient for waste disposal [1,2]. The global waste crisis is determined by generation of massive 
mounting bulks of municipal, domestic, agricultural and industrial wastes. The larger part of these wastes is 
generated through rapid industrialization and population growth, resulting into enhanced municipal solid waste 
(MSW) generation through consumption of goods and materials [3,4]. This trend also drives greater exploitation 
of fossil fuels, accelerating climate change through greenhouse gas emissions [5]. At the same time, waste plastics 
have also created severe environmental pollutions, posing threats to ecosystem [6]. It presents a critical challenge 
for sustainable environment and indicates towards growing need of recycling and upcycling of wastes [7]. 
However, the sustainable carbon materials produced from renewable and waste resources have shown a good 
potential in environmental remediation and energy conversion systems [8]. In addition, the conversion of waste to 
useful energy forms has emerged as a promising solution to produce renewable energy [9]. 

Diverse biomass feedstocks are recognized for their renewability, accessibility, and carbon-neutrality [10,11]. 
In the present times, 80% of the energy demands are fulfilled with the help of fossil fuels, but the biomass which 
has abundancy (100 billion tons per annum) can be used in energy mix to reduce over-dependence over fossil 
fuels. The biomass utilization has been directed and accelerated in current times after the EU’s Renewable Energy 
Directive and U.S. Bioeconomy Initiative with biomass to fulfil around 20–30% of total renewable energy 
production by 2030 [12,13]. Also, as per study and predictions of International Energy Agency (IEA), around 27% 
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of global transportation energy demands are expected to be fulfilled using biomass by 2050 [14]. According to 
feedstocks, the biofuels are classified as first-generation (derived from edible feedstocks), second-generation 
(derived from lignocellulosic materials), third-generation (acquired from algal biomass feedstocks), and fourth-
generation biofuels (microalgal feedstocks developed via genetic modification) [15,16]. The global biomass 
availability, particularly in form of lignocellulosic materials, plays an important role in reducing fossil fuel 
dependence by serving as a renewable feedstock for bioenergy production. Lignocellulosic biomass is the most 
abundant form of plant materials on earth, accounting for approximately 57% of planet’s biogenic carbon [17]. 
This biomass is primarily sourced from agricultural residues (e.g., corn stover, wheat straw), forestry by-products 
(e.g., wood chips, sawdust), and dedicated energy crops (e.g., switchgrass, miscanthus). Globally, agricultural 
residues alone are estimated to be available at a technical potential of 1.44 billion tons annually, which could 
replace approximately 4.5% of global fossil fuel energy use [18,19]. Further, utilization of biomass offers several 
advantages such as biofuel production, energy generation, and waste valorization in the transition from fossil fuels. 
For instance, cellulosic ethanol is an advanced biofuel that can reduce greenhouse gas emissions by up to 85% 
compared to conventional gasoline, offering a more sustainable alternative for transportation [20]. 

In addition, numerous thermochemical and biochemical approaches are employed for generation of biofuels and 
biochemicals. Amongst them, pyrolysis which uses an inert environment is mostly adopted to produce bio-oil, 
biochar, and syngas [21,22]. However, the conventional pyrolysis requires high energy input, which impacts the overall 
energy efficiency of the process. Consequently, pyrolysis has evolved from conventional ways to catalytic pathways. 
The introduction of catalysts not only enhances reaction rates, lowers the activation energy and reduces operational 
energy demand [23], but also facilitates deoxygenation of bio-oil through cracking, aromatization, and hydrogenation 
reactions. It also produces high quality biochar and syngas, indicating improved product selectivity [24]. Therefore, 
exploring reaction kinetics during catalytic pyrolysis is essential, as it plays a critical role in reactor design, process 
optimization, understanding reaction mechanism, and scaling up to industry applications. Kinetic analysis 
fundamentally aims to determine the kinetic triplet (i.e., activation energy, pre-exponential factor, and reaction 
mechanism), which quantitatively describes the rate of the process. 

Although the catalytic pyrolysis field is a broad area to explore. This review provides a focused critical analysis 
of the reaction kinetic principles for catalytic pyrolysis of diverse waste feedstocks such as lignocellulosic biomass, 
algal biomass, and plastic wastes. Primary objectives are to evaluate the widespread kinetic models, evaluate the 
applicability of model-free, model-fitting, and machine learning methodologies by highlighting their corresponding 
limitations, strengths, and applications. In addition, this review will also explore the systematic interaction between 
catalyst properties and kinetic parameters for various feedstocks. The review will also address the prevailing 
challenges and issues in catalytic pyrolysis kinetics. Lastly, this review will outline the future research directions to 
bridge knowledge gaps and advance the development of practical and sustainable energy solutions. 

2. Fundamentals of Catalytic Pyrolysis 

2.1. Process Overview 

Generally, conventional pyrolysis processes which involve catalytic materials are referred to catalytic 
pyrolysis [25]. Catalytic pyrolysis is the prominent technique for transforming the variety of feedstocks into bio-
oil and chemicals. The catalytic pyrolysis thermal behavior and energy distribution is obtained through kinetic 
models [26]. It requires lower operating temperatures and shows great potential for enhanced hydrogen generation 
from waste plastic materials [27–29]. A typical catalytic pyrolysis process set up is capable of converting solid 
wastes into value-added products such as bio-oil, biochar, and syngas. The process flow generally comprises 
feeding mechanism for biomass feedstock, reactor, electronic heating filament, and temperature control system 
connected to condensing unit for bio-oil generation, while non-condensable gases and biochar are collected 
separately [30]. Typically, fixed-bed, fluidized-bed, or circulating fluidized-bed reactors are used for conventional 
catalytic pyrolysis [31,32]. The catalysts are generally used via in-situ and ex-situ modes as illustrated in Figure 1. It 
involves biomass thermal decomposition using catalyst in the temperature ranges of 400–600 °C with normally 
using N2 as working medium [33]. The study of catalytic mechanism for pyrolysis yields during terephthalate 
(PET) and hibiscus rosa-sinensis (HRS) co-pyrolysis revealed that inclusion of HRS increased oxygenated 
compounds and reduced hydrocarbons [34]. Catalytic cracking transforms the large oxygenated molecules and 
organic compounds into smaller ones by promoting the formation of aromatic compounds and olefins [35]. Also, 
interaction between varying composition of feedstocks and activity of catalysts also affects the products. For 
instance, Kim et al. [36] explored the catalytic pyrolysis of fungal biomass feedstocks and observed that the bio-
oil derived from aspergillus contains sugar-alcohol rich chemicals, while fatty-acid rich chemicals were noted for 
trichoderma and penicillium bio-oils. Meanwhile, introduction of Ni-based catalyst in ex-situ form further 
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converted the heavy volatiles into lighter molecules, resulting into enhanced syngas generation. A significant 
decline in polycyclic aromatic hydrocarbon (PAH) production was observed by Tahir et al. [37] during ZnO/ZSM-
5 assisted catalytic co-pyrolysis of waste cabbage and low-density polyethylene (LDPE). In-situ and ex-situ 
catalytic pyrolysis of lignocellulosic feedstocks was conducted to evaluate pyrolysis oil characteristics and 
observed that the ex-situ process demonstrated improved selectivity (98.56%), decreased oxygenated compounds 
(72.3%), and reduced acid contents [38]. 

 

Figure 1. Process flow diagram of conventional catalytic pyrolysis processes [38]. 

Meanwhile, microwave-assisted catalytic pyrolysis has also emerged as an advanced substitute to 
conventional electronic heating for catalytic pyrolysis [39]. A schematic understanding of microwave assisted 
catalytic pyrolysis framework is illustrated via Figure 2. Unlike conventional catalytic pyrolysis systems, 
microwave heating utilizes electromagnetic radiation to internally heat biomass and catalysts using dielectric loss 
mechanisms [40]. It also improves the interaction between biomass and catalyst active sites resulting into higher 
reaction rates [41]. Additionally, microwaves encourage specific catalytic effects by activating catalysts in a 
different manner as opposed to external heating, resulting into improved product selectivity, bio-oil quality, and 
lower energy consumption [42]. Furthermore, microwave-assisted pyrolysis enables synergistic effects that can 
significantly influence reaction kinetics. Tiwari and Vinu [43] explored the microwave-assisted in-situ and ex-situ 
catalytic pyrolysis of biomass in powder and pellet forms and revealed that pellet with in-situ catalytic pyrolysis 
produced the highest H2 yield, with an increased gas yield (2–10%) with palletization only. Yang et al. [44] 
proposed an integrated approach of reductive catalytic fractionization combined with microwave pyrolysis to 
improve biomass conversion as well as avoiding catalyst separation requirements and yielded 46.40 wt.% of 
monophenols by enhanced depolymerization of birch lignin, while syngas yields increased 1.8 times using 
microwave for pyrolysis. The study of synergistic effects of microwave and char-based catalysts during catalytic 
pyrolysis of bamboo showed that the synergy between microwave and biochar activates the catalytic active sites 
by promoting decarboxylation and water-gas shift reactions, resulting into diffusion of heavy components to 
produce higher syngas yields [45]. Similarly, enhanced H2-rich syngas (50.22%) and lower liquid yields were 
observed during microwave-assisted catalytic pyrolysis of rice straw with biochar materials [46]. 

 

Figure 2. Schematic illustration of microwave-assisted catalytic pyrolysis process [38]. 



Green Energy Fuel Res. 2025, 2(4), 328–359 https://doi.org/10.53941/gefr.2025.100023  

331 

2.2. Waste Feedstocks and Their Characteristics 

The selection of a suitable feedstock is primary element for the pyrolysis process. So, a fundamental 
understanding of feedstock characteristics is important for the catalyst selection as well as process design. The 
waste feedstocks generally aquatic wastes (i.e., algal biomass), agricultural and forestry wastes (i.e., lignocellulosic 
biomass), plastic wastes, municipal solid wastes (MSW), tires, medical waste, sewage sludge, and industrial 
sludge. Each waste feedstock is characterized by their unique characteristics. A summary of variety of waste 
feedstocks and their physicochemical characteristics is provided in Table 1. Generally, lignocellulosic biomass 
contains cellulose (37–50%), hemicellulose (22–32%), and lignin (15–26%), while algal feedstocks comprise of 
carbohydrates (3–30%), proteins (14–65%), and lipids (1–51%) [47,48]. The schematics of their respective 
chemical structure are illustrated in Figure 3. However, the higher oxygen present in lignocellulosic and algal 
biomass feedstocks tends to produce oxygenated, acidic, and low stability bio-oils, indicating for catalytic 
treatments for product upgradation [49]. 

Besides, plastic wastes containing hydrocarbons are also excellent feedstocks for chemicals and fuel 
recovery. Typical plastic wastes include polyethylene (PE), polypropylene (PP), polystyrene (PS), and 
polyethylene terephthalate (PET) [50]. The cracking of saturated hydrocarbon (H-C) polymer chains in PE and PP 
produces alkanes and alkenes at relatively low temperatures, while their higher volatile contents have attracted 
them as a suitable pyrolysis feedstock [51]. In addition, cracking of H-C chains in PS takes place through chain-
end scission, producing monomers and styrene. The presence of oxygen in polymer chain of PET results into 
generation of significant benzoic acid and oxygenated compounds from pyrolysis [52]. MSW, which is a 
heterogeneous mixture of biomass, plastics, and other materials require a careful pretreatment and sorting, because 
presence of materials such polyvinylchloride (PVC) may result in corrosion and poisoning since it contains 
chlorine [53,54]. Also, composite materials of rubber, additives, and black carbon present in tires produces oil 
yield enriched in limonene and aromatics, high-quality char, and high calorific value gas. In addition, high ash and 
moisture contents in industrial and sewage sludges are the primary and major challenges towards adulteration of 
catalyst [55]. 

Table 1. Summary of physicochemical characteristics of diverse waste feedstocks. 

Feedstock MC VM Ash FC d C H N S O d Reference 
Waste tea a 8.20 19.80 1.00 71.0 79.30 1.70 3.40 0.20 15.20 [56] 

Polystyrene a 0.20 98.80 0.30 0.70 90.40 8.60 0.40 - 0.60 [56] 
HDPE b - 98.62 1.10 0.28 75.79 11.25 0.001 0.001 11.86 [57] 
LDPP a - 100 - - 85.32 14.14 - 0.54 - [58] 

Rice straw a 5.00 72.00 10.90 12.10 40.00 5.60 0.70 0.10 53.60 [59] 
MSW a 0.30 57.27 34.57 7.86 43.15 c 4.10 c 1.56 c 0.11 c 51.08 [54] 

Greywater algae c 7.50 68.20 12.60 11.70 45.30 a 6.50 a 4.80 a 0.40 a 43.00 [60] 
PET c - - - - 62.57 4.52 0.05 0.07 32.79 [61] 

Wheat straw c 11.24 65.75 6.67 16.34 47.94 a 6.01 a 0.23 a 0.05 a 45.77 [62] 
Maplewood c 7.27 71.03 1.80 19.90 52.26 b 6.35 b 0.52 b 0.16 b 40.71 [63] 

Chicken bone waste a - - - 40.32 23.14 6.04 3.71 0.00 26.79 [64] 
Pinewood c 4.11 81.24 0.25 14.40 47.41 b 6.19 b 0.17 b 0.65 b 45.58 [65] 

Note: a dry basis; b dry and ash free basis, c as-received basis; and d calculated by difference. 

 

Figure 3. Schematics for chemical structures of lignocellulosic and algal feedstocks [47,48]. 
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2.3. Catalysts and Their Functions 

Catalysts play an important role in deciding the reaction pathways and distribution of final product yields. 
The catalysts provide active sites for specific reactions to reduce the activation energy [66,67]. Figure 4 shows the 
important catalyst properties which influence pyrolysis kinetics and mechanisms. Generally, catalysts are 
classified as acid, basic, mesoporous, and transition metal catalysts [68,69]. The acidic catalysts such as zeolites 
are widely employed during catalytic pyrolysis due to cracking and shape-selective reactions. Specifically, zeolites 
in different forms (i.e., HZSM-5, HY, Beta) have proven their effectiveness towards cracking of large hydrocarbon 
and oxygenated molecules, since they possess a microporous structure and have strong Brønsted acid sites [70]. 
Particularly, hydrogenated form of zeolites (HZSM-5) is popular for shape selectivity, aromatic hydrocarbon 
promotion, and enhanced production of olefins from the oxygenated compounds through oligomerization, 
decarboxylation, and dehydration reactions [71]. Besides, Y-zeolite based industrial catalysts such as fluid 
catalytic cracking (FCC) catalysts are not only effective with cracking of large molecules from waste feedstocks 
to gasoline type H-Cs, but are also very robust and cost effective [72]. 

 

Figure 4. Key catalyst properties and their reaction pathways influencing pyrolysis kinetics and mechanisms [70,72]. 

In addition, basic catalysts viz. MgO, CaO, etc. are particularly used for deoxygenation, since they encourage 
ketonization and aldol condensation reactions to remove oxygen in form of CO2 and H2O [73,74]. Also, these 
catalysts favor carboxylation and dehydration reactions, resulting into enhanced carbon conversion efficiency as 
opposed to acidic catalysts. The basic catalysts work as efficient pursuer for acid components to apprehend them 
as stable salts. On the other hand, mesoporous catalysts have greater pore sizes in the range of 2–50 nm in 
comparison to zeolites. Primarily, they help to handle the bulky components derived from pyrolysis and diffuse 
them into small pores of zeolites [75]. Also, they help to initiate the formation of smaller intermediates from large 
and bulky molecules, which can be processed using microporous catalysts. Furthermore, the transition metal 
catalysts famous for their hydrotreating functionality are formulated from the metals (i.e., Ni, Co, etc.) supported 
on oxides (Al2O3, SiO2) or zeolites [76,77]. These catalysts tend to eliminate oxygen in form of water via 
hydrodeoxygenation reactions, resulting into enhanced stability and deoxygenated bio-oil. They are also used as 
active members in cracking and reforming reaction [78]. Additionally, a summary of catalyst types, typical active 
sites, and their primary functions in catalytic pyrolysis is given in Table 2. 

Further, catalytic pyrolysis involves a series of complex progressions including breakdown of 
macromolecules followed by catalytic alterations of the intermediates [79]. Primarily, hemicellulose, cellulose, 
and lignin decompose in form of volatiles and form solid residue as char. Next, secondary reactions such as 
cracking, decarboxylation, and aromatization takes place in presence of catalysts which provide active sites, 
resulting into formation of enhanced quality liquid and gas yields [80]. The acidity, pore structure, and metal sites 
present in catalysts governed the interaction among intermediates and influence the reaction kinetics. Remarkably, 
the introduction of catalyst modifies the product selectivity by encouraging PAH formation in bio-oil or reforming 
reactions for enhanced gas yields [81]. The reaction pathways in the catalytic pyrolysis are more clearly illustrated 
in Figure 5. It was reported that zeolites have better deoxidation capacity as opposed to inorganic salts and metal 
oxide catalysts. However, the zeolites lead to formation of coke due to low hydrogen content in biomass [82]. 
Also, Vuppaladadiyam et al. [83] demonstrated the reaction mechanism during catalytic pyrolysis indicating that 
secondary reactions such as dehydration, decarboxylation, catalytic cracking, aromatization, ketonization, 
reforming, and hydrogenation tend to produce aliphatic hydrocarbons, anhydro-sugars, aromatic hydrocarbons, 
and furans. Further, similar observations were reported by Wang et al. [84]. Further, Huang et al. [85] studied the 
synergistic interaction reaction mechanism among biomass pseudo components and low-density polyethylene 
(LDPE) and reported that the synergistic interactions in form of deoxygenation, aromatization, and Diels-Alder 
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reactions resulted in enhanced production of light aromatics including benzene, methylbenzene, and xylene. Also, 
a decline in activation energy barrier for aromatic formation (15–20 kJ/mol) was reported. Razzak et al. [86] 
explored the synergistic effects during catalytic co-pyrolysis of biomass and plastic wastes and observed that co-
pyrolysis of algal feedstocks and plastic wastes strengthen the synergy. In-situ dual catalytic system study during 
biomass pyrolysis revealed that reforming reactions are intensified by CaO and Ni-char catalytic systems, leading 
to lower CO2 in pyrolysis gas [87,88]. 

Table 2. Summary of catalyst types, typical active sites, and their primary functions in catalytic pyrolysis. 

Catalyst Type Example Active Sites Primary Functions in Pyrolysis Reference 

Acidic, microporous HZSM-5, beta, HY Bronsted acid sites Cracking, deoxygenation (dehydration and 
decarboxylation), aromatization, isomerization [89–91] 

Basic/alkaline MgO, CaO, NaOH, 
Ca(OH)2 Basic sites Deoxygenation (ketonization, aldol 

condensation), acid gas capture [92–94] 

Mesoporous MCM-41, SBA-15, 
Al-MCM-41 Weak acid sites Pre-cracking of bulky molecules,  

reduced coking [95–97] 

Transition metal oxides Ni/SiO2-Al2O3, Co-
Mo/γ-Al2O3 Metallic sites Hydrodeoxygenation,  

hydrogenation, reforming [98,99] 

 

Figure 5. Reaction pathways in catalytic pyrolysis [83,84]. 

3. Reaction Kinetics Methodologies for Catalytic Pyrolysis 

Reaction kinetics plays a key role in scaling up and commercialization of catalytic pyrolysis. The study of 
reaction kinetics generally involves determination of kinetic triplet (activation energy, reaction mechanism, and 
pre-exponential factor). The understanding of reaction kinetics is important for catalyst selection, process 
optimization, and reactor design [100]. The reaction kinetics for the catalytic pyrolysis is complicated and 
challenging to understand due to heat and mass transfer effects, complex feedstock characteristics, and a series of 
complex reactions occurring simultaneously [101]. This section explains the primary theoretical and experimental 
methodologies employed to evaluate the kinetic parameters. 

3.1. Experimental Techniques 

The choice of the experimental techniques adopted for the understanding of reaction kinetics requires 
information about decomposition rates and specific reaction pathways. Broadly, thermogravimetric analyzers 
(TGA) are used to monitor the solid-state kinetics. It measures the weight changes of a solid sample (i.e., a waste 
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feedstock mixed with catalyst) with time and temperature in a controlled environment [102]. TGA allows to 
analyze the devolatilization stages during thermal decomposition of a waste feedstock sample. In addition, it 
provides thermal decomposition data for non-isothermal and isothermal conditions [103]. Non-isothermal TGA 
methods are mostly used, where sample temperature is ramped gradually at constant heating rate (β). The resulting 
mass loss curves and their differential thermogravimetric (DTG) curves are used to analyze the decomposition 
stages for a particular process [104]. The model-free kinetic analysis methods consider the varying conversion 
rates for different heating rates and provides the activation energy (E) values without considering their reaction 
mechanisms. Figure 6 synthesizes a critical characteristics of catalytic pyrolysis kinetics, indicating the strong 
dependence of decomposition profiles on heating rate. The divergence of conversion rate (dα /dt) curves (Figure 6b) 
at higher conversions underscores the multi-step nature of the reaction due to catalyst interactions. It supports the 
requirement of using model-free isoconversional methods over single heating rate models to accurately capture the 
variable E across reaction pathway, a basis for consistent kinetic explanation of complex waste feedstocks. On the 
other side, isothermal TGA methods ramped the sample temperature to target temperature at rapid heating rates and 
observe the mass loss with time [105]. Reaction rates are directly observed at particular constant temperature value 
using this method. However, it involves some inaccuracies due to rapid heating stage which disregards the kinetics 
of reaction for the time it reaches the target temperature. However, TGA can effectively provide the mass loss data 
required for reaction kinetics studies, it does not provide any information about the products formulated during 
catalytic pyrolysis. For this, TGA equipment is normally attached to other analysis systems such as gas 
chromatography (GC), mass spectroscopy (MS), GC-MS, and Fourier transform infrared (FTIR) spectroscopy [106]. 

While TGA provides fundamental and reproducible decomposition data, it is crucial to critically interpret the 
derived kinetic parameters within the context of their idealized experimental conditions. The small sample mass, 
fine particle size, and uniform heating in TGA minimize intra-particle and inter-phase heat and mass transfer 
resistances, allowing the measurement of kinetics that approach the intrinsic chemical reaction rates. However, 
real catalytic pyrolysis reactors (e.g., fluidized beds, screw conveyors) operate under significant transport 
limitations, where bulk heating, volatile diffusion, and catalyst-contact efficiency govern the observed global rates. 
The kinetics extracted from TGA are therefore more accurately termed apparent kinetics for that specific analytical 
configuration. Directly applying these parameters to predict behavior in large-scale reactors can be misleading, as 
the apparent activation energies and reaction models do not account for the dominant transport phenomena and 
complex hydrodynamics at scale. Consequently, TGA serves as an essential tool for initial screening and 
mechanistic insight under controlled conditions, but its data must be consciously integrated with pilot-scale 
validation or coupled with reactor models that explicitly resolve transport effects to bridge the lab-to-industry gap. 

  
(a) Conversion curves (b) Conversion rate curves 

Figure 6. Conversion and conversion rate curves for non-isothermal TGA methods [16]. 

3.2. Data Processing and Model Fitting 

The experimental data derived from non-isothermal and isothermal TGA methods is further processed to 
extract the kinetic parameters viz. activation energy (E), reaction mechanism (f(α)), and pre-exponential factor (A). 
Kinetic analysis uses α and conversion rates for further processing of the TGA experimental data. α can be 
calculated using following expression [107]: 

𝛼 ൌ
𝑚଴ െ𝑚௧

𝑚଴ െ 𝑚୤
 (1)
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Here, m0, mt, and mf represent the original, instantaneous, and final values of sample mass in the defined 
temperature stages. For an individual thermal decomposition process, α varies in the range of 0 to 1. Although, the 
kinetic parameters are not evaluated normally at start and end of the process, since no conversion rates can be 
determined at these instants [108]. Further, the conversion rates rely on temperature (T) dependent Arrhenius 
reaction rate constant (k) and α dependent reaction mechanism [109], which is generally expressed in form of 
Equation (2). 

d𝛼
d𝑡

ൌ 𝑘ሺ𝑇ሻ𝑓ሺ𝛼ሻ ൌ 𝐴𝑒ቀ
ିா
ோ்ቁ𝑓ሺ𝛼ሻ (2)

where: R denotes universal gas constant (J/mol·K), f(α) signifies reaction mechanism, A represents pre-exponential 
or frequency factor, E signifies activation energy, and t represents time. 

3.2.1. Determination of Activation Energy 

Various approaches of kinetic analysis are used to determine activation energy by using Equation (2) in their 
modified differential and integrated forms. These are generally classified as model-free and model-fitting methods. 
Model-free kinetic analysis approaches are commonly employed for examining thermal degradation behavior 
during pyrolysis without taking into consideration of their reaction models [110]. For this, reaction rates are 
evaluated with respect to constant α for different β values to determine activation energy (E). Also, it considers 
the reaction rate as a function of temperature (T) at constant α value. Model-free methods provide E profiles which 
are further used to decide the reaction mechanisms and pre-exponential factor (A) across α, presenting valuable 
efforts towards optimization of process and reactor design. Generally, model-free methods are classified as 
differential (i.e., Friedman) and integral methods viz. Kissinger-Akahira-Sunose (KAS), Starink, Boswell, and 
Ozawa-Flynn-Wall (FWO) [65]. The differential isoconversional Friedman method has proven its accuracy in E 
calculations, while integral methods are used with certain integral approximations as they lack exact solution 
unlike Friedman method [111]. Also, model free methods involve potential errors due to experimental limitations 
(i.e., experimental data) and data interpretation challenges for vastly heterogeneous schemes. Despite these 
limitations, isoconversional model free methods provide an important reaction kinetics pathway for the catalytic 
pyrolysis of biomass. The common mathematical expressions for these differential and integral methods are 
provided in Table 3 [108,112]. 

Table 3. Commonly used differential and integral model-free kinetic analysis methods. 

Type Method Empirical Correlation Source 

Differential Friedman ln ൬
d𝛼
d𝑡
൰ ൌ lnሾ𝑓ሺ𝛼ሻ𝐴ሿ െ

𝐸
𝑅𝑇

 [113] 

Integral 

KAS ln ൬
𝛽
𝑇ଶ
൰ ൌ ln ൤

𝐴𝑅
𝐸𝑔ሺ𝛼ሻ

൨ െ
𝐸
𝑅𝑇

 [114] 

FWO lnሺ𝛽ሻ ൌ ln ൤
𝐴𝐸

𝑅𝑔ሺ𝛼ሻ
൨ െ 5.330െ 1.0518 ൬

𝐸
𝑅𝑇

൰ [115] 

Starink ln ൬
𝛽

𝑇ଵ.ଽଶ
൰ ൌ constant െ 1.0008 ൬

𝐸
𝑅𝑇

൰ [63] 

Boswell ln ൬
𝛽
𝑇
൰ ൌ constantെ ൬

𝐸
𝑅𝑇

൰ [108] 

These differential and integral methods are used to draw the isoconversional plots at multiple heating rates. 
The slopes of these linear isoconversional plots are used to calculate activate energy variations, while the intercept 
values are used for pre-exponential factor determination with varying α [116]. Furthermore, the main advantage 
of using the model-free methods is that they provide separate E with α values. A nominal change in E with α 
signifies that the reaction is single step. But, a very significant variation in E values with α indicates towards multi-
step and complex reaction. Such incidents are generally noticed in cases where catalysts are used during pyrolysis 
of waste feedstocks. 

Complementary to model free methods, kinetic analysis of catalytic pyrolysis can also be performed using 
model-fitting approach. Model-free techniques, such as Friedman, FWO and KAS, estimate activation energy 
without specifying reaction mechanisms, focusing on empirical determination from thermal analysis data. 
Meanwhile, model-fitting methods involve assuming reaction models (e.g., 1st-order, nth-order, nucleation, etc.) 
and adjusting parameters to best fit experimental data. These models provide mechanistic insights but may 
oversimplify the inherently complex reactions of biomass. However, model-fitting can simulate the explicit 
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pyrolysis stages or catalyst effects in a better way to predict kinetic parameters. Coats-Redfern (C-R) method is 
the most common and widely used model-fitting approach. Largely, it is considered as an integral approach of 
kinetic analysis as it uses integral form of theoretical reaction models to evaluate E. Also, a major difference 
between model-free integral methods and C-R method is that it considers only single heating rate and provides 
one value of E and A for whole process, while model-free methods can provide multiple E and A values at particular 
α and also uses multiple heating rates (i.e., usually ≥3). The generalized C-R method’s empirical correlation is 
represented by Equation (3) [117]. 

ln ቈ
𝑔ሺ𝛼ሻ

𝑇ଶ
቉ ൌ ln ൤

𝐴𝑅
𝛽𝐸

൬1െ
2𝑅𝑇
𝐸
൰൨ െ

𝐸
𝑅𝑇

 (3)

Here, g(α) denotes the integral reaction mechanism, which is evaluated using the master plot analysis 
discussed in subsequent subsection. 

3.2.2. Determination of Reaction Mechanism and Pre-Exponential Factor 

Once the values of E are determined using model-free methods, the average activation energy (E0) values are 
generally used for deciding the suitable reaction model. For this, master plot analysis is generally employed which 
usually follows a single-step approach. Master plots use the integral and differential form of theoretical reaction 
model curves to compare with experimental curves [118]. For instance, y(α) master plots use the differential form 
of theoretical reaction models, while Z(α) master plots use a combined approach where they consider both integral 
and differential theoretical reaction models for comparison and it also do not require prior knowledge of E 
[108,119]. Basically, the conversion rate expression in Equation (2) formulates the basis of y(α) master plot 
analysis and used in following form [120]: 

yሺ𝛼ሻ ൌ ൬
d𝛼
d𝑡
൰ 𝑒ቀ

ா
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Here, thermogravimetric experiments help to provide temperature (T) and conversion rate (dα/dt) values, 
while E values are obtained using the slopes of isoconversional plots drawn from expressions listed in Table 3. It 
assumes that E values do not vary much across α and uses average value of activation energy (E0). Also, it considers 
the average values for pre-exponential factor (A0) instead of separate A for individual α [121]. Additionally, the 
reaction models vary in magnitude based on their type and nature (i.e., nucleation, order-based, sigmoidal, power 
law) [122]. Therefore, theoretical reaction models are normalized at a reference value (say at α = 0.5), which 
redevelops Equation (4) in following form [123]: 
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In Equation (5), D(α) denotes the normalized y(α) master plot, and the f(α)/f(0.5) signifies formulations of 
theoretical reaction model curves, which are compared with experimental curves to determine reaction 
mechanisms. A list of common theoretical solid-state reaction models is presented in Table 4. 

Table 4. Commonly used solid-state reaction mechanism in their differential and integral forms [110,124]. 

Reaction Model Notation Differential Form f(α) Integral Form g(α) 
Exponential growth models 

Power law P2/3 [2/3] α−1/2 α3/2 
Power law Pn n α(n−1)/n α1/n 

Diffusion processes 
1-D diffusion D1 [1/2] α−1 α2 
2-D diffusion D2 [−ln(1 − α)]−1 [(1 − α) ln(1 − α)] + α 
3-D diffusion D3 [3/2] (1 − α)2/3[1 − (1 − α)1/3] −1 [1 − (1 − α)1/3]2 

Nucleation reactions 
Avrami-Erofeev An n(1 − α) [−ln(1 − α)](n−1/n) [−ln(1 − α)]1/n 

Order-based reactions 
First-order F1 (1 − α) −ln(1 − α) 
nth-order Fn (1 − α)n [(1 − α)1−n − 1]/(n − 1) 

Shrinkage models 
Contracting cylinder R2 2(1 − α)1/2 1 − (1 − α)1/2 
Contracting sphere R3 3(1 − α)3/2 1 − (1 − α)1/3 

Note: n notifies the order of the reaction. 
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In addition to that, Z(α) master plots are obtained by using the integral form of conversion rate expression 
and can be expressed in form of Equation (6) after various integral approximations. Then, Z(α) function is obtained 
by using subsequent rearrangements in form of Equation (7) [125]. 
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Here, x = E/RT and function π(x) denotes the Arrhenius integral approximation function, which is defined 
using following expression [126]: 
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where, the term [π(x)/Tαβ] in Equation (7) usually ignored while drawing master plot curves, since it does not 
affect Z(α) function considerably. Also, it is used in normalized form as I(α) for similar reasons and expressed as 
followings after rearrangements: 
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Here, term f(α)g(α)/f(0.5)g(0.5) denotes the theoretical form of reaction mechanism, while right hand side 
term is drawn from experimental data. Then, a comparison of shape similarity and closeness between theoretical 
and experimental reaction models is established to select the suitable reaction model. Moreover, sometimes it is 
difficult to observe and decide the proper order (n) of the reaction model used. For this, mathematical regression 
analysis is used in form of χ2-minimization or RSS-minimization [22]. After determining the reaction model with 
correct order (n), the intercept values from the isoconversional plots are used to determine A values with α. 

While, master plot analysis provides a systematic framework for mechanism selection, its application to 
complex systems such as catalytic pyrolysis comprises inherent subjectivity. The assignment of a reaction 
mechanism can be non-unique, as multiple theoretical models (differential or integral) may show similar curve 
shapes, resulting into reasonable but unclear fits. This ambiguity is often intensified by sensitivity of data 
preprocessing such as smoothing of DTG curves to reduce noise, and the range of T and α. Consequently, 
mechanism selection should not solely rely on visual inspection for matching curves. It requires a complimentary 
statistical regression such as χ2-minimization or RSS-minimization to validate against independent experimental 
evidence or physicochemical reasoning regarding the likely catalytic cracking or decomposition pathways. Figure 7 
integrates the methodological discussion into a novel, decision focused framework. 

 

Figure 7. Decision flowchart for selecting kinetic analysis methodologies in catalytic pyrolysis [127]. 
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Therefore, in order to carry out a rigorous kinetic study of catalytic pyrolysis, one should begin with choosing 
a particular experimental technique (such as TGA to analyze decomposition rate data) followed by processing the 
experimental data using isoconversional methods to obtain E profiles. It helps to decide reaction complexity. These 
observations are further followed by master plot analysis to determine the suitable reaction mechanism and its correct 
order following regression analysis methods. Lastly, it involves calculation of A using intercept values at each α. 

Various studies in the literature have used different approaches for conducting kinetic analyses under variable 
experimental conditions. For instance, kinetic analysis during pyrolysis of chlorella vulgaris was explored using 
model-free methods, including FWO, KAS, Starink, and Tang and observed the activation energies in the range 
of 138.7–141.5 kJ/mol for a conversion range of 0.1–0.9 in the temperature range of 150–600 °C for three heating 
rates were used as 10, 20, and 30 °C/min [128]. Further, co-pyrolysis of industrial hemp waste (IHS) and polyvinyl 
chloride (PVC) under 10, 15, and 30 °C/min conditions yielded average activation energy of 154.37 kJ/mol using 
Friedman method. However, the pseudo-components P-H, P-C, P-L, P-P for IHS+PVC exhibited mean activation 
energy of 172.28, 186.76, 110.7, 286.06 kJ/mol, respectively [129]. A thermokinetic study using KAS and FWO 
methods during pyrolysis of hydrothermally pretreated pumpkin (PC) and hemp (HC) oil cakes revealed that the 
E values varied in the range of 93.6–529.9 kJ/mol for PC and 71.3–669.9 kJ/mol for HC [130]. Meanwhile, kinetic 
analysis of PMMA/H-β zeolite using Gaussian deconvolution yielded E0 values as 84.9, 128.2, 113.1 kJ/mol for 
P/B-91, P/B-82, and P/B-73, respectively [131]. These observations reported in the literature visually synthesize 
how varying experimental conditions can lead to dissimilar results. 

3.2.3. Machine Learning for Kinetics 

In addition to conventional methods, machine learning (ML) has emerged as a powerful computational 
approach for conducting kinetic analysis and predicting product yields from complex pyrolysis data [132]. ML 
plays a key role in handling large, complex TGA experimental datasets and identifying the non-linear correlations 
which are usually overlooked in conventional kinetic analysis methods [133]. A standard ML workflow comprises 
data collection, followed by algorithm training using linear regression models, Gaussian process, and artificial 
neural network (ANN) regression models [134]. Then, these models are validated to predict the kinetic parameters, 
as illustrated in Figure 8. This emphasizes that ML is not a one-time fitting exercise but an iterative process where 
model failures inform targeted new data generation. Also, ML enables the development of dynamic and adaptive 
models which integrate the process variables, catalyst properties, and feedstock heterogeneity, resulting into 
enhanced accuracy of control, prediction, and optimization [135]. 

Practical case studies demonstrate the successful application of diverse ML algorithms across various 
feedstocks. For instance, study of catalytic pyrolysis kinetics explored using Gaussian process regression (GPR) 
revealed that the GPR model predicted the thermo-kinetic parameters with high accuracy (R2 > 0.999) [136], 
ensemble methods like extreme gradient boosting (XGBoost) to optimize liquid oil yield predictions from plastic 
waste (R2 = 0.85) [137]. Beyond catalysis, ML has shown versatility in related domains, such as hydrogen release 
kinetics in alloys using evolutionary deep neural network (EVoDN2) [138] and modelling biomass pyrolysis via 
multi-variative adaptive regression splines (MARS) to closely match activation energies (R2 = 0.9974) [139]. 
Further applications include comparing ANN performance (R2 = 0.994) against traditional model-free and model-
fitting methods [140] and utilizing random forest models to predict activation energies for diverse feedstocks with 
high accuracy (R2 = 0.9964) [141]. Collectively, these practical cases underscore ML’s empirical strength in 
pattern recognition and yield prediction [133,142]. 

However, a critical perspective must accompany these demonstrations of predictive power. A primary focus 
on high R2 values can overshadow significant limitations, including model transparency, overfitting risks, and a 
lack of mechanistic insight. ML models particularly complex architectures like deep ANNs, often function as black 
boxes, where the derived parameters (viz. apparent activation energy, reaction order, frequency factor) may serve 
as flexible empirical fitting coefficients rather than possessing direct physical or mechanistic meaning [132,134]. 
This opaqueness challenges the extraction of fundamental chemical insight. Additionally, these models are 
susceptible of overfitting, especially with limited or noisy training data, which can compromise their 
generalizability beyond original dataset [133,143]. 

Therefore, while ML is an effective tool for empirical correlation and prediction, its role should be 
distinguished from methods that yield physically interpretable kinetic triplet. Future advancements should 
prioritize strategies that enhance interpretability and physical grounding. It includes development of hybrid models 
that embed fundamental constraints such as mass balance, Arrhenius-type relationships, within the ML architecture 
and employing interpretability techniques to elucidate which input features most considerably influence 
predictions [132,144]. Through such approaches, ML can evolve from a purely empirical fitting tool to a 
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complementary component of a multi-scale modelling framework, bridging data-driven patterns with mechanistic 
understanding for more reliable scale-up and optimization. 

 

Figure 8. Machine learning workflow for kinetic modelling [145]. 

3.3. Comparative Reliability and Applicability 

Pyrolysis characteristics and kinetics were explored by several researchers using model-fitting, model-free, 
and machine learning approaches. The comparative analysis of model-free methods showed that KAS and 
Vyazovkin methods follow similar trends of E variations due to temperature integral approximations, while 
Friedman showed different E variation trends since it does not contain systematic error caused by various integral 
approximations. Meanwhile, model-fitting C-R method exhibited insignificant variations since it considers 
reaction as single-step [146] Bharti et al. [147] also used similar approaches during pyrolysis of microalgal 
feedstock and observed E0 values as 146.78, 148.86, and 147.11 kJ/mol with KAS, FWO, and Vyazovkin models, 
while it was noted that E values varied significantly based on the reaction mechanism, when C-R method was used. 
In another study, model-free (KAS, FWO, Friedman, Starink, and Vyazovkin) and DAEM model-fitting methods 
were used to explore the finger millet pyrolysis kinetics and observed E0 values ranging from 167–175 kJ/mol, while 
one-way ANOVA revealed that there are no statistical differences (p = 0.9353) in E0 values calculated from 
different methods. Meanwhile, development of ANN based ML model accurately predicted the mass loss (%) with 
an R2 of 0.9995 [140]. Sbirrazzuoli [148] performed the kinetic analysis of complex chemical reactions by coupling 
model-free and model-fitting analyses. The advanced non-linear isoconversional (NLN) method revealed 
increasing E-dependency (35–103.6 kJ/mol) and lnA-dependency (4.72–30.78 s−1) from competing reactions, 
while consecutive reaction shows decreasing dependency, while independent reactions exhibited a more complex 
(increasing/decreasing) dependency with α. A critical analysis of possibility of using model-free methods for 
kinetic analysis and developed conversion functions to determine compensation effect parameters, stating obvious 
differences in kinetic parameters due to inherent experimental errors, errors in evaluation of activation parameters, 
and deviation from linearity of lnA vs. E regression [149]. 

4. Kinetic Models for Catalytic Pyrolysis of Specific Waste Feedstocks 

Optimization of catalytic pyrolysis for different waste feedstocks faces challenges during suitable kinetic 
model development. Since, it involves a network of complex reactions, occurring at interface of feedstock 
components and catalysts at elevated temperatures [150]. This complexity arises from the multicomponent nature 
of waste materials as well as dynamic interaction amongst volatiles and active sites of the catalysts [151]. 
Therefore, current state of kinetic modelling is represented in this section to highlight feedstock specific 
challenges, modelling approaches, and catalytic effects. 

4.1. Lignocellulosic and Algal Biomass 

The lignocellulosic feedstock structure involves three primary components such as hemicellulose, cellulose, 
and lignin. These components react differently during thermal decomposition, which poses a considerable 
challenge during kinetic analysis. The single step kinetic models often fail to consider the overlapping thermal 
degradation regimes of these components. It is a noticeable fact that the hemicellulose degradation takes place at 
lower temperatures (220–325 °C), cellulose at relatively higher (315–400 °C), and lignin decomposes throughout 
the reaction at low degradation rates with temperatures starting from 160 °C to end of process [152,153]. This 
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create overlapping reaction profiles which are not easy to deconvolute. Now, these limitations are advanced 
through deconvolution modelling approach, which breaks the decomposition curves into its pseudo-components. 
A good performance in deconvolution was reported using Fraser-Suzuki deconvolution technique, which provides 
a good fitting accuracy to TGA data. In addition, algae feedstocks are comprised of proteins, carbohydrates, and 
lipids which decompose in the temperature ranges of 205–310 °C, 160–470 °C, and 200–635 °C [154,155]. This 
multi-stage and overlapping regime decomposition behavior of algae feedstocks requires selecting multiple 
temperature regimes for kinetic modelling, where each temperature regime provides separate kinetic parameters. 
It has been reported in the literature that algae feedstocks demonstrate lower E values as compared to 
lignocellulosic feedstocks [156]. 

Meanwhile, a significant effect of catalysts is evident over kinetic triplets during pyrolysis, showing separate 
reaction pathways and lower E values. For instance, E values and reaction models are significantly affected by the 
inclusion of acid catalysts such as HZSM-5 during pyrolysis of biomass feedstocks [95,157]. A significant decline 
in E barrier by 30.54% for xylan, 6.73% for cellulose, and 14.75% for lignin was observed during catalytic 
pyrolysis of model biomass compounds [100]. It indicates towards the requirement for the component specific 
kinetic modelling during catalytic pyrolysis. Further, different reaction models are followed for the individual 
biomass component. It was reported that the pseudo-components (hemicellulose and lignin) obey F3 reaction model, 
while cellulose follows the random scission mode [158], while these reaction models are altered for catalytic pyrolysis 
and showed diffusion mechanisms as most favorable models. Further, catalysts containing alkali metals such as 
potassium compounds further encourage the cross-linking reactions owing to decline in char yield as well as E values 
for the cellulose rich biomass feedstocks, while making the pyrolysis reaction more complex [159]. 

Further, lumped kinetic modelling approach considers the practical framework to predict distribution of 
products by tracking the individual chemical reaction. These lumped models form discrete lumps to describe the 
concerned reaction networks [160,161]. These lumped approaches are particularly converted into complex 
formulations for catalytic pyrolysis, since it involves secondary cracking reactions which encourage formation of 
H-C, water, and light gases [162]. Therefore, a careful consideration of catalyst to biomass ratios is needed to 
control the secondary reactions. Models need to consider enhanced aromatization and deoxygenation reactions at 
higher catalytic loadings. In addition, these lumped models should consider the N-containing compounds for 
proteins [163]. It has been observed from lumped model kinetic analysis that the E values vary in the order of 
gas > bio-oil > char, indicating raising energy requirements in these pathways. 

4.2. Plastic Waste 

The pyrolysis of plastic waste is governed by random scission and end-chain scission models during kinetic 
models. The polymer chain breakage resulting into reduced molecular weights and varying size fragments is 
assumed via random scission models [164]. The polymers (i.e., PP, PE) promoting random cleavage of C-C bonds 
are analyzed through random scission models. In addition, end-chain scission models involving sequential 
elimination of monomers from chain ends results into intermediate fragments of monomers. PS degradation which 
yields higher styrene monomers is governed by the end-chain scission models [165]. However, random scission 
results into a broad distribution of product yields with lighter liquids and high gases, while monomer recovery is 
ideal in end-chain scission models. Meanwhile, the real-world plastic wastes exhibit the higher reaction complexity 
of kinetic modelling since it contains mixed polymers which affect the scission behavior during pyrolysis [166]. 

Additionally, plastic pyrolysis reaction kinetics is significantly altered using acid catalysts such as zeolites 
and FCC catalysts in form of enhanced carbonium ion intermediates. Also, a significant reduction in E values was 
noticed from catalytic pathways as opposed to non-catalytic pyrolysis [167]. Formation of carbocation 
intermediates must be considered during kinetic modeling of these plastic wastes to analyze the β-scission and 
hydrogen transfer reactions. Further, kinetic triplet is affected by concentration and strength of acid sites in 
catalysts, because stronger active sites encourage the widespread cracking at relatively low temperatures. For 
instance, catalytic cracking mechanism for polyolefins begins through polymer chain protonation at Brønsted acid 
sites, then these reactions further break the polymer chain into smaller H-C via β-scission reactions [168,169]. 
Coke formation which blocks the active sites considers the catalyst deactivation during kinetic modelling. It has 
been reported from several studies that the inclusion of catalysts during plastic pyrolysis requires 30–50% lesser 
E compared to non-catalytic pyrolysis, indicating higher decomposition rates for catalytic systems [100,170]. 

Further, due to varying chain structure, stereochemistry, and bond cleavage energies for different polymer 
types showed significant difference in kinetic behavior during catalytic pyrolysis of plastic wastes. For instance, 
PP and PE demonstrate similar catalytic degradation behaviors. However, lower E required for PP, since it possess 
ternary carbons. Meanwhile, HZSM-5 assisted catalytic pyrolysis of PP obeys F1 model with lower E values 
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varying in the range of 150–180 kJ/mol as compared to non-catalytic pyrolysis (200–250 kJ/mol) [171]. Similarly, 
catalytic pyrolysis for PS kinetic modeling replicates end-chain scission reactions to produce monomers. Also, 
thermal decomposition kinetics of PS is affected by aromatic rings in form of resonance stabilization [172]. 
Besides, PET offers extra reaction complexity as it has higher oxygen content. This leads to consideration of 
dehydration and deoxygenation reactions during kinetic modelling. The lower E requirements in PET pyrolysis 
are particularly referred to availability of esters linkages [173]. 

4.3. Mixed Feedstocks 

Mixed feedstocks such as plastic-biomass mixtures during pyrolysis demonstrate non-additive behavior with 
a significant deviation between reaction rates and distribution of product yields compared to individual 
components [174]. The synergistic effect is quantitatively defined as a significant deviation from the weighted 
additive behavior of individual feedstocks. Generally, this deviation is most rigorously identified through key 
kinetic parameters, such as measurable reduction in activation energy, or a change in reaction mechanism 
compared to the linear combination of individual component kinetics. While, synergy indicates the important 
interactions, it is important to distinguish true chemical interactions from artifacts of experimental certainty. 
Apparent synergy can arise from measurement errors in TGA, heat/mass transfer limitations that differentially 
affect blends, or statistical variability in product analysis. Therefore, claims of synergy should be supported by 
rigorous statistical analysis, reproducibility across experimental setups, and mechanistic evidence, ensuring the 
observed deviation exceeds the cumulative experimental error of the measurements. The synergistic effects between 
mixed feedstocks show significant variations in kinetic parameters. Commonly, synergistic effects are observed in 
terms of E reductions, due to stabilization of intermediates from biomass pyrolysis and plastic radicals [175]. For 
example, a significant reduction in E values to 24.31 kJ/mol owing to synergistic effects during co-pyrolysis of 
coal and microalgae feedstocks was observed as compared to coal (31.11 kJ/mol) pyrolysis [176]. Alterations in 
reaction mechanisms also indicate enhanced synergy of mixed-feedstock pyrolysis. Like, reaction mechanism 
changed from diffusion mechanism to reaction-controlled mechanism for biomass and plastic feedstock mixtures. 
However, blending ratio plays important role to decide the extent of synergy between mixed feedstocks [177]. 
Therefore, an extra consideration of terms such as interaction coefficients and coupled reaction becomes necessary 
during kinetic modelling. 

Bamboo and oakwood co-pyrolysis with PP and PS revealed that the activation energy significantly decreased 
from when a mixing ratio of 4:1 was used. Particularly, highest decrease was observed for bamboo and PS mixture 
from 217.59 kJ/mol to 149.81 kJ/mol, indicating positive synergistic effect [178]. Study of synergistic effects during 
catalytic co-pyrolysis of sludge and chlorella with mixing ratio of 1:3 using CaO/K2FeO4 demonstrated lower 
carboxylic acids and nitrogen chemicals with a decline by 17.84% and 54.62%, respectively [179]. Li et al. [180] 
explored the thermal behavior and K-Fe synergistic effects during catalytic pyrolysis of Chinese herb residues and 
observed a K-Fe derived catalytic synergistic effect in terms of reduced activation energy from 186.1 kJ/mol to 
149.6 kJ/mol, while increased H2 yield was also observed from 51.46 L/kg to 135.36 L/kg. In addition, tobacco straw 
and LDPE co-pyrolysis in presence of HZSM-5/graphite felt composite catalyst yielded 41.47% of MAHs at a mass 
ratio of 80%, indicating combined synergistic effects from pore acidity of catalyst and microwaves [181]. These 
discrepancies in literature demonstrates that divergent experimental conditions often yield conflicting results. 

Additionally, several formidable challenges related to contribution of pseudo-components and their 
interaction in deconvolution are presented by mixed feedstocks during kinetic analysis [182]. Primarily, 
overlapping regions of thermal decomposition owing to simultaneous degradation of multiple components presents 
the primary challenge. This complexity is largely noticed in the MSW which are generally comprised of various 
plastics, biomass, textiles, and inert materials [183]. Multi-step kinetic reaction models consider such conditions 
separately to analyze the decomposition and interaction behavior [184]. For example, five different reaction stages 
were defined to evaluate the separate kinetic triplet in each reaction stage during co-pyrolysis of microalgae and 
sewage sludge [185]. During elimination of moisture and light volatiles, F1 model with E values varying in the 
range of 15.07–42.34 kJ/mol was seen, while major devolatilization regime showed comparatively greater range 
of E variations as 62.69–78.86 kJ/mol. Besides, use of isoconversional approaches can efficiently tackle these 
complex situations by providing the insights into limiting steps and shifting conversion rates with progress of 
reaction [186,187]. It was observed from isoconversional techniques that E values varied considerably with α 
during pyrolysis of mixed feedstocks, while individual pure feedstocks showed very insignificant variations in E 
values. A comprehensive comparison of kinetic parameters during kinetic analysis of catalytic pyrolysis for diverse 
feedstocks in presented in Table 5. Additionally, Figure 9 provides a cross-feedstock meta-analysis, revealing a 
key literature insight, the range of E for plastics is significantly lower than for heterogeneous biomass feedstocks. 
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It underscores that the feedstock identity dictates kinetic simplicity. Crucially, it highlights outlaying position of 
mixed feedstocks, which often show lower E than pure feedstocks, suggesting kinetic synergy. Further, Table 6 
presents a summary of synergistic effects observed for the co-pyrolysis of mixed feedstocks. Catalytic pyrolysis 
kinetics for diverse feedstocks still remains a challenging task due to developments in waste valorization methods. 
Also, multicomponent nature of feedstocks is treated using deconvolution methods. Still, a big area of exploration 
lies in capturing synergistic interactions of mixed feedstocks and evolution of catalytic activity during pyrolysis. 

 

Figure 9. Comparative analyses of activation energies for catalytic pyrolysis of different feedstocks viz. cotton swab 
and non-woven mask (CSM) [188], corncob (CC) [189], Bamboo and LDPE (BLP) [190], PP [191], Chinese herb 
residue (CHR) [192], chlorella vulgaris (CV) [193], caster seeds (CS) [194], sewage sludge (SS) [195], PET [196], 
and waxy residue (WR) [197]. 

Table 5. Comprehensive comparison of kinetic parameters for catalytic pyrolysis of diverse feedstocks. 

Feedstock Catalyst Catalyst Type Kinetics Method E0 (kJ/mol) Reaction Mechanism Reference 

Pineapple peel Ni-Fe Supported metal FWO, KAS, and 
Starink 

69.38, 69.87, and 
67.25 

Nucleation and 
diffusion [198] 

Barley straw NaOH Alkali (Basic) Friedman 138.02 Nucleation and  
Vasudev (V2) [16] 

Bamboo ZSM-5 Acidic Friedman 114.82 Nucleation (A4) [22] 
Red algae KOH Alkali (Basic) Friedman 116.85 Vasudev (V2)  [22] 

Chlorella sp. Ni/θ-Al2O3 Supported metal Friedman and KAS 186.29 and 166.81 - [199] 

Chlorella vulgaris HZSM-5 Acidic FWO, KAS, Starink, 
and Vyazovkin 

145.26, 147.84, 
145.55, and 145.59 - [193] 

MSW Al-SBA-15 Acidic Friedman 86 Diffusion [102] 

Waste fishing nets ZSM-5 Acidic 
KAS, FWO, 
Friedman, 

Vyazovkin, and Cai 

151.40, 185.90, 
200.80, 158.25, and 

161.15 
- [200] 

Chitin Calcined 
dolomite Metal oxide C-R and Friedman 138.43 and 124.88 - [201] 

Bamboo N-doped 
biochar 

Doped carbon 
material 

KAS, Friedman, 
Starink, and 
Kissinger 

168.46, 166.30, 
169.35, and 164.17 

Chemical, diffusion,  
and nucleation [202] 
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Table 6. Synergistic effects during co-pyrolysis of mixed feedstocks. 

Feedstock Catalyst Synergistic Metric Quantitative Value Reference 

Soyabean husk  
and HDPE HZSM-5 

Reduced activation energy 
and enhanced  

hydrocarbon yields 

Waste to catalyst ratio (1:1 to 1:5) reduced 
activation energy by 30% and increased H-C 

production by 25%. 
[203] 

Sugarcane bagasse  
and HDPE - Higher liquid yields 

Oil with 34% higher carbon content, 47% 
higher hydrogen content, and 70% lower 
oxygen content compared to sugarcane 

bagasse pyrolysis. 

[204] 

Enteromorpha prolifera 
and HDPE HZSM-5 

Reduced amount of acid, 
oxygenated compounds, 
and nitrogen compounds  

in oil 

Increased heating value from 30.644 MJ/kg to 
42.01 MJ/kg, reduced acids from 13.1% to 

7.68% (acetic acid), pyridine, 3-methyl from 
5.43% to 2.14%. 

[181] 

Fir, Chestnut, PE, 
 and PS - Increased H/C ratio and 

decreased O/C ratio 
Maximum synergistic effects were observed 

with 30% plastic. [205] 

Cherry seed and 
polyvinyl chloride - 

Decrease in activation 
energy of  

biomass pyrolysis 

Activation energy decreased from  
268.5 kJ/mol (cherry seed) to 167.8 kJ/mol 

with a mixing ration of 1:1. 
[206] 

Date palm waste and  
PE foam - Reduced activation energy 

of plastic pyrolysis 
A reduction from 216.33 kJ/mol to  

206.47 kJ/mol was observed. [207] 

Waste office paper  
and HDPE - Reduced activation energy 

Highest decrease in activation energy from 
262.3 to 209.3kJ/mol was observed at mixing 

ratio of 2:1. 
[208] 

Coffee grains and PE - Reduced activation energy Reduced activation energy  
(268.32–218.58 kJ/mol) with mixing ratio 7:3. [209] 

4.4. Impact of Catalyst and Reactor Environment 

While fundamental models like random and end-chain scission describe initial polymer breakdown or biomass 
component decomposition, the apparent kinetics in catalytic pyrolysis are devastatingly shaped by the interaction of 
primary volatiles with catalyst and reactor environment. Three dominating, but often overlooked factors are catalyst 
pore confinement, secondary vapor phase reactions, and coke formation and dynamic deactivation. 

Catalyst pore confinement in microporous/mesoporous materials (e.g., zeolites, MCM-41) imposes steric and 
diffusion constraints, increasing intermediate residence time, enabling shape-selective aromatization, and masking 
intrinsic kinetics with mass transfer resistances, yielding higher apparent activation energies [26,210]. Primary 
pyrolysis vapors undergo extensive secondary cracking, oligomerization, deoxygenation, and aromatization over acid 
sites, making product selectivity dependent on these sequential reactions rather than primary scission alone [211,212]. 
Continuous coke deposition progressively blocks sites and pores, altering activity and selectivity with time-on-
stream (TOS) and causing lab-to-reactor performance gaps when deactivation is ignored [213]. Predictive kinetic 
models for catalytic pyrolysis thus require multi-scale frameworks integrating intrinsic kinetics, diffusion modules, 
secondary reaction networks, and time-dependent deactivation functions to accurately link fundamental 
mechanisms to apparent kinetics [214]. 

5. Advanced Modelling Approaches and Deactivation Kinetics 

Advanced kinetic modelling approaches used for catalytic pyrolysis are performed through computational 
frameworks. Even though, a valuable correlation between reaction rates and operation variables is well understood 
through modeling techniques discussed above, but they have limitations of not considering molecular-level resolution 
or catalyst lifespan prediction. Now, critical kinetic modelling domains such as microkinetic modelling, process 
simulation by integrating lumped systems, and catalyst deactivation are explored in this section. These advanced 
approaches formulate a multi-scale framework by addressing limitations of conventional kinetic analysis methods. 

5.1. Microkinetic Modelling and Density Functional Theory Insights 

The most granular method of kinetic analysis during catalytic pyrolysis is microkinetic modelling, which 
describes every elementary step through reaction networks [215]. It takes into consideration the surface 
intermediate concentration and active site structures. This approach is particularly important for catalytic pyrolysis 
involving a series of complex reactions [216]. Further, it can integrate the density functional theory (DFT) to 
determine thermokinetic parameters without any experimental fitting. DFT uses Schrodinger equation to provide 
catalyst and adsorbate structures for predicting activation barriers and reaction energy for every step involved in 
the reaction [217]. DFT calculations during catalytic pyrolysis using acid catalysts explained the carbocation 
formation, deoxygenation pathways, and aromatization mechanisms. Particularly, strong reliance of activation 
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energy values over carbocation intermediates is measured through proton transfer from acid sites to oxygenated 
compounds or olefins [218]. In addition, deoxygenation pathways predict the comparative energy barriers for 
dehydration, decarboxylation, and decarbonylation reactions. Further, conversion of linear intermediates into 
aromatics is governed via step-wise cyclization and dehydrogenation during DFT calculations [219]. Besides, 
microkinetic modelling shows enhanced performance when DFT is linked with experimental data for kinetic 
analysis. For this, mechanistic validation of reaction networks proposed is performed with experimental 
distribution of product yields. Later on, active site characterization is performed to relate the activation energies 
with density and strength of active sites. It also allows to identify the relationship between catalyst properties to 
guide for design of catalyst [220,221]. 

5.2. Process-Scale Simulation and Lumped Kinetic Models 

Process-scale simulations provide a deep understanding for reactor design, techno-economic analysis, and 
energy integration thorough kinetic modeling for catalytic pyrolysis processes. Typical execution of the process 
scale simulations comprises primarily the reactor module selection, method definition to select suitable 
thermodynamic packages, and employment of kinetic parameters from lumped models [222]. Further, this 
advanced process simulation deals with various complexities of catalytic pyrolysis kinetics by providing the 
molecular scale insights from microkinetic modelling and DFT calculations to evaluate reactions pathways and 
their sensitivity towards process conditions [223]. Also, lumped kinetic systems describe both reaction rates as 
well the product yields. It combines kinetic models to mass and energy balance, separation units, and heat 
exchanger networks for process optimization. This technique is important to determine the optimum catalyst to 
feedstock ratio for balanced reaction rates [224]. However, execution of catalytic pyrolysis kinetics in process 
simulators undergo several challenges such as feedstock variability, catalyst deactivation, and heat integration 
complexity. Because most of the kinetic models consider that the catalytic activity remains uniform or constant 
throughout the process and neglect the decay of catalyst with time. Also, coupling to pyrolysis endothermic nature 
with exothermic nature of catalyst affect the kinetic parameters [225]. Despite this, process-scale simulations are 
important tools for understanding the reaction kinetics for industrial applications. For instance, parameters from 
DAEM obtained via TGA have been implemented in Aspen Plus reactor models to predict product yields. Also, it 
becomes important to explore the catalyst deactivation kinetics. 

Therefore, to address this gap between laboratory-derived kinetics and process-scale simulations, real-life 
applications demonstrate the integration workflow, where parameters from DAEM obtained using TGA are 
employed in Aspen Plus reactor models to forecast the product yields. Improved chemical kinetics simulations 
were incorporated in Aspen Plus for lignocellulosic biomass pyrolysis, using RYIELD reactors and pseudo-
components to represent volatiles and obtained a good agreement with pilot-scale data through adjustments for 
heat transfer and yield correlations [226]. For CFD modeling of fluidized-bed catalytic pyrolysis reactors, detailed 
reaction kinetics were simplified into a lumped four-step scheme (heavy oil→ gasoline→ light gases→ coke), 
derived from catalytic cracking mechanisms. This scheme was integrated into Eulerian-Eulerian CFD frameworks 
to simulate reactor hydrodynamics and predict product selectivity. The models also included the effectiveness 
factors to account for deactivation and secondary reactions [227]. Such workflows demonstrate that the integration 
of lumped kinetic schemes requiring careful species lumping and scaling factor adjustments, ensures mass and 
energy balance closure, maintaining computational feasibility while capturing key pathways for reactor-scale 
predictions. Despite this, a critical parameter tuning is required for direct transfer of experimental kinetics to 
simulators. The compensation effects between E and A can lead to rate mispredictions under reactor-scale 
conditions [111]. Also, the lab-scale kinetics studies often neglect the scale-dependent phenomena such as heat 
and mass transfer limitations, in-situ catalyst deactivation from coke, and secondary reactions [228]. Further, 
lumping also contribute in gathering the detailed spectra into broad categories and losing selectivity details, which 
requires stoichiometric tuning against plant data and limiting extrapolation [214]. Consequently, addressing these 
challenges encompasses the personalized approaches based on source of data and type of simulator. For TGA-
derived DAEM in Aspen Plus lumped models, transport omissions and high-rate overpredictions are mitigated by 
pre-exponential scaling or pseudo-component additions [229]. For the detailed micro kinetics in CFD fluidized 
beds, over-lumping and deactivation are handled using the reduced lump schemes and supporting hybrid methods 
[230], while the lab-scale fixed-bed global rates scaled to process simulators need careful tuning of Thiele modulus 
for transport governance [231]. Eventually, the hybrid kinetic-transport modeling with calibration improves the 
consistency of scale-up processes for catalytic pyrolysis. 
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5.3. Catalyst Deactivation Kinetics 

Catalytic pyrolysis is largely affected by the deactivation of catalyst in form of coking or coke deposition, 
sintering, poisoning, and mechanical attrition mechanisms [232]. Particularly, active sites are blocked from 
deposition of carbonaceous materials, condensation of aromatic compounds, and olefinic polymerization, while 
loss of active surface area occurs from decay of catalyst structure results into sintering. Further, biomass ash 
contaminants (i.e., Na, K, and Ca) and plastic waste impurities (i.e., N, S, Cl) lead to poisoning of catalyst [233]. 
Also, fluidized bed systems result into breakdown of catalyst particles through mechanical attrition. 

Deactivation kinetics is modeled through time-on-stream (TOS) models, which provide a practical 
framework to quantify the catalyst deactivation [234]. Commonly TOS include separable kinetics and site-
coverage models. Separable kinetics express the overall reaction rate (r) as the function of initial rate (r0) and 
deactivation function [235]. This can be expressed through following expression: 

𝑟ሺ𝑡ሻ ൌ 𝑟଴ ൈ 𝑎ሺ𝑡ሻ (10)

Here, a(t) represents the activity function for catalyst decays with TOS. 
Further, site-coverage models consider the fraction of active sites that are blocked or covered by coke [236]. 

It is expressed in the following form: 

െ
d𝜃௖
d𝑡

ൌ െ𝑘ୢሺ1െ 𝜃௖ሻ௡ (11)

Here, θc denotes the fraction of deactivated sites, while kd represents the deactivation rate constant. It is 
important to mention that second order decay model is generally followed during catalyst deactivation kinetics as 
coke formation shows the bimolecular nature [237]. 

Recent studies provide quantitative insights into deactivation parameters across different systems. For 
instance, in CO2 methanation over Ni/Al2O3, hydrothermal sintering and CO-induced restructuring increased the 
apparent activation energy from 141.6 kJ/mol to 200.4 kJ/mol, corresponding to significant activity loss under 
optimal conditions [238]. Similarly, a modified Weibull distribution model for a Cu-based catalyst in formaldehyde 
ethynylation yielded a deactivation energy of 45.8 kJ/mol, a pre-exponential factor of 1.2 × 107 h−1, and first-order 
deactivation kinetics [239]. Advanced models, such as three stage deactivation frameworks for residual 
hydrotreating (accounting for active-site formation, coke coverage, and metal deposition) have successfully 
predicted complex, non-S-shaped deactivation profiles and product properties [240]. These examples highlight the 
quantitative application of deactivation models, yielding specific kinetic parameters that describe the rate and 
extent of activity loss. 

Additionally, a critical challenge remains in experimental validation of these models under realistic, long 
duration pyrolysis conditions. Most quantitative studies derive parameters from controlled, short-duration 
experiments [241,242]. While valuable for parametrizing models, such data may not capture prolonged deactivation 
mechanisms (i.e., slow sintering, pre blockage) that dominate the continuous industrial operation. Among the models, 
separable kinetics (TOS) models are often validated against bench scale runs of several hours [235,238], whereas 
structure-based models require advanced operando characterization rarely applied in pyrolysis studies [241,242]. 
Consequently, the reliability of deactivation kinetics for predictive scale-up is constrained by a scarcity of long-
term, high-resolution kinetic data collected under relevant process conditions. Future work must prioritize long-
term deactivation experiments coupled with operando characterization to correlate activity loss with specific 
structural changes, transforming these models from descriptive tools into predictive assets for reactor design. 

Furthermore, deactivation kinetics is also approached through structure-based model, multi-mechanism 
models, and deactivation mapping. These structure-based models interpret pore structure evolution of catalyst 
during deactivation to identify coke deposition over micropores, which affects the effectiveness of internal 
diffusion [241]. Subsequently, multi-mechanism models combine the multiple deactivation pathways viz. sintering 
and coking during kinetic modelling [242]. Deactivation mapping approach tend to create operational diagrams to 
identify deactivation regimes to allow positive moderation tactics. Figure 10 shows the mechanism and modelling 
of deactivation of catalyst. 
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Figure 10. Mechanism and modeling of catalyst deactivation [243]. 

6. Challenges in Catalytic Pyrolysis 

6.1. Feedstock Variability and Data Discrepancy 

Despite the reassuring developments in catalytic pyrolysis, a number of challenges still remain unanswered. 
The development of robust kinetic models faces primary challenges due to feedstock variability and inherent 
characteristics during catalytic pyrolysis. For instance, model compounds (i.e., xylan, PE, cellulose) can help to 
examine the reaction pathways but cannot evaluate the inhibitory and synergistic effects. Similarly, MSW can 
create a very complex reactive environment due to its heterogeneous nature, it leads to significant changes in E 
values as well as the reaction mechanisms as compared to real or pure feedstocks. However, these challenges 
provide a thoughtful practical inference by often providing very poor predictions from model compounds for 
industrial feedstocks. This problem requires the advancement of composition-adaptive kinetic models which can 
consider feedstock variability as well its effect over reaction mechanisms and reaction rates. 

Further, kinetic parameters are also influenced by various sources such as reactor configuration, experimental 
protocol, and analytical methods employed. For example, experimental data measured through various reactors 
such as fixed-bed, TGA, and fluidized bed, carry several heat and mass transfer characteristics, yielding 
discrepancy in kinetic parameters. Also, variation in catalytic loadings, feedstock particle size, and heating rates 
affect the reaction kinetics. Therefore, to establish the reliable kinetic analysis database, standardized conventions 
need to be followed alongside conducting comparative revisions. 

6.2. Heat and Mass Transfer Limitations 

Another hurdle that lies in progress of catalytic pyrolysis kinetics is the disparity between intrinsic and 
apparent kinetics, since the combined physical and chemical processes are reflected during experimental 
measurement of global reaction rates. It includes various limitations such as intra-particle diffusion, inter-phase 
heat transfer, and boundary layer effects. These limitations can lead to underestimation of activation energies and 
wrong reaction order from complicated inherent chemical kinetics. Also, the change from chemical to diffusion 
reaction control during catalytic pyrolysis affects understanding of kinetic triplet directly. Further, these transport 
phenomena are affected by deactivation of catalyst in form of coke deposition which alters the accessibility of 
active sites and structure of pores. So, catalyst deactivation is another challenge which needs to be addressed. 

6.3. Catalyst Deactivation 

One of the most poorly quantified aspects during the kinetic analysis of catalytic pyrolysis is the catalyst 
deactivation. Its complexity arises from the loss of catalytic activity of catalysts with time that requires inclusion 
of an extra parameter (TOS) which is often not considered in the conventional kinetic analysis techniques. Also, 
literature have vastly reported the kinetic triplets using fresh catalysts. This leaves a very big gap in progress of 
lab-scale to industrial scale measurements where catalysts are employed regularly without considering their 
deactivation with time. Further, deactivation also occurs through various simultaneous mechanisms such as coking, 
sintering, and poisoning. These simultaneous deactivation mechanisms also complicate the kinetics. Therefore, it 
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is required to decouple and quantify these mechanisms and their contributions in overall activity loss during 
development of predictive models for catalyst deactivation kinetics. 

7. Knowledge Gaps and Future Perspectives 

7.1. Knowledge Gaps 

The absence of standard kinetics protocols for catalytic pyrolysis is the most critical gap. Also, catalytic 
pyrolysis lacks in various aspects such as method validation using standard reference, protocol specifications for 
reactor types as well as kinetic modelling to associate the uncertainties. This gap obstructs the direct association 
of results presented in various studies with slowly progressing kinetic models. Further, a clear knowledge gap lies 
in understanding of in-situ and ex-situ configurations for the comparison of reaction rates and pathways, 
understanding of product distribution kinetics from volatile and catalyst contact duration, and modelling the 
kinetics consequences of heat transfer limitations. Additionally, kinetics implications arise from the catalyst-
adsorbent interaction in the initial stages. However, DFT calculations consider the ideal surface interactions, but 
they neglect the multicomponent and complex nature of pyrolysis vapors. It is important to consider the adsorption 
interaction, surface residence time and its effect over reaction pathways, and accessibility of catalytic active sites 
during kinetic modelling for the catalytic pyrolysis. 

7.2. Future Perspectives 

Further researches are required to integrate advanced methodologies for overcoming the existing challenges. 
Use of in-situ and operando characterization approaches like Raman and X-ray absorption spectroscopy (XAS) 
can directly observe the catalyst behavior alongside simultaneous measurement of kinetic triplets. It is also 
important for analyzing the catalysts-adsorbate interactions and catalyst deactivation processes. Subsequently, 
kinetic analysis should incorporate the ML and AI to navigate the complexity of feedstock, predict the kinetic 
triplet, and optimize the process conditions. This will prioritize the advancement of multi-scale models to connect 
molecular-level phenomena with process-scale simulation. Lastly, the kinetic studies should also consider the 
properties of emerging catalyst systems such as single-atom catalyst, engineered biochar, and hierarchical zeolites. 
These emerging catalysts display dissimilar kinetic behavior which cannot be defined effectively using the 
conventional kinetic methods employed for the traditional catalysts. Therefore, it will be important to understand 
kinetics of these next-generation catalytic resources to harness their full potential. 

7.2.1. Industrial Applications and Scale-Up Challenges 

While most of the research studies focusing on kinetics are performed for laboratory scale, several new 
industrial and pilot-scale projects demonstrate the commercial pathway for catalytic pyrolysis, which bridges the 
gap between real-world operations and fundamental kinetics. For example: catalytic thermochemical pathways are 
used for full-scale municipal waste to advanced biofuels and chemicals generation facility of Enerkem. Also, 
catalytic depolymerization was employed for chemical recycling of polystyrene at large scale by Agilyx. 
Additionally, large-scale fluid-catalytic cracking process is a comparable industrial process for catalytic cracking, 
providing suggestions on catalyst deactivation consideration and kinetics for large-scale systems. However, it faces 
several challenges from an industrial viability standpoint. Therefore, it is important to handle the highly variable 
waste streams to make adaptive kinetic models for real world applications to ensure stable operation. Also, the 
economics of catalyst management, directly governed by deactivation kinetics is important for the catalyst lifetime, 
regeneration strategies, and cost-benefit analyses. Most importantly, the robust kinetic models lay foundation for 
techno-economic assessment (TEA) and life-cycle analysis (LCA), ensuring commercial feasibility. The kinetic 
parameters provide the important inputs for process simulators to predict the yields, utility demand, reactor size. 
Subsequently, reliable LCA studies also depend upon the process models to govern the environmental benefits of 
the technology. 

By focusing these future perspectives, catalytic pyrolysis community can progress towards development of 
robust kinetic models for predictive kinetic modelling of diverse waste feedstocks in a sustainable way for 
industrial-scale applications. 

7.2.2. Implementation Pathways 

In order to translate the future perspectives into actionable development, structured implementation pathways 
are required. A practical pipeline for in-situ and operando characterization involves developing spectroscopy-
compatible reactor cells for realistic conditions, synchronizing spectral data with real-time product analysis, and 
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using innovative algorithms to directly compare the spectral characteristics with kinetic variations. Subsequently, 
an integration of robust ML/AI involves building curated, open-access kinetic databases and developing hybrid, 
physics-informed neural networks which are validated for the lab and pilot scale studies. For novel catalysts, a 
personalized system from controlled synthesis and in-situ analysis to microkinetic modeling that detect unique 
active-site formations are required. Finally, confirming industrial relevance requires a closed-loop scale-up 
framework comprising intrinsic kinetics from the optimized lab experiments updating the CFD models of pilot 
reactors. Further, these models are iteratively refined using operational pilot data and finally used for TEA and 
LCA to generate a feedback loop where economic aims guide essential research implications. 

8. Conclusions 

In this review, we have summarized the current state of art knowledge in the field of catalytic pyrolysis 
kinetics for different waste feedstocks. The inclusion of catalysts generally alters the reaction pathways, indicating 
decreasing activation energy for several feedstocks, while it also showed enhanced product selectivity in form of 
cracking, deoxygenation, and aromatization reactions. Also, development of methodologies for model-free and 
model-fitting isoconversional kinetic analysis methods was explained. In addition, multi-step kinetic models 
showed enhanced performance in describing the kinetic parameters accurately for real wastes such as municipal 
solid waste, while machine learning has emerged as a powerful tool to deal with the complexities of these real 
heterogeneous wastes. Further, varying kinetic behavior of different feedstocks was observed using multi-
component decomposition kinetics which was further complicated by mixed-feedstocks posing significant 
synergistic effects. The development of integrated multi-scale modeling frameworks can integrate DFT with 
reactor-level simulations to create advanced predictive proficiencies from molecular-scale to process-scale. Still, 
feedstock variability and complexity, heat and mass transfer limitations, and study of kinetics during deactivation 
of catalyst pose significant challenges during kinetic modelling for catalytic pyrolysis processes. Addressing these 
limitations indicate towards the employment of in-situ and operando characterization techniques, predictive 
machine learning, and study of emerging catalyst systems. Finally, the development of the robust and adaptive 
kinetic models which consider the variabilities of feedstocks in real world and activity of catalysts with time is 
crucial to transform catalytic pyrolysis as commercially feasible practice from only a lab-scale practice for the 
renewable energy generation and sustainable waste utilization. 
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