
 

 

	

AI for Materials 

https://www.sciltp.com/journals/aimat 

 

 

Copyright: © 2026 by the authors. This is an open access article under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
Publisher’s Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Review 

Driving Catalytic Innovation: The Development and 
Application of Machine Learning Force Fields 
Xiaoyi Hu 1, Guanjie Wang 2,*, Cuilian Wen 1 and Baisheng Sa 1,* 
1 Materials Genome Institute, State Key Laboratory of Green and Efficient Development of Phosphorus Resources,  

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China 
2 School of Advanced Materials Innovation, University of Science and Technology Beijing, Beijing 100083, China 
* Correspondence: gjwang@ustb.edu.cn (G.W.); bssa@fzu.edu.cn (B.S.) 

How To Cite: Hu, X.; Wang, G.; Wen, C.; et al. Driving Catalytic Innovation: The Development and Application of Machine Learning Force 
Fields. AI for Materials 2026, 1(1), 5. 

Received: 22 October 2025 
Revised: 25 December 2025 
Accepted: 26 December 2025 
Published: 7 January 2026 

Abstract: Catalytic reactions lie at the heart of the modern chemical industry, 
where their efficiency being determined by microscopic interactions occurring on 
the surface of the catalyst. A comprehensive understanding of these mechanisms in 
atomic-scale is imperative for the rational design and process optimization of 
chemical reactions. However, computational simulations have long grappled with 
inherent limitations: high-accuracy first-principles methods demand exorbitant 
computational resources, whereas classical force fields often fail to capture the 
nuanced dynamics of chemical reactions. The emergence of machine learning force 
fields (MLFFs) has led to significant advancements in addressing this bottleneck, 
offering a promising balance between precision and efficiency. This review 
provides a systematic overview of the evolution of MLFFs methodologies in 
practical catalytic applications, and highlights their respective advantages as well 
as the persisting challenges. By consolidating contemporary research trends and 
unresolved obstacles, this work provides valuable insights for subsequent 
researchers by synthesizing existing approaches and challenges, contributing to the 
refinement of MLFFs computational algorithms and their broader application in 
complex catalytic systems. 

 Keywords: machine learning; traditional molecular dynamics; machine learning 
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1. Introduction 

Catalytic reactions represent pivotal technologies in modern chemical industry, energy conversion, and 
environmental protection, with their fundamental objective being the efficient and highly selective synthesis of 
target products [1,2]. Conventional research methodologies predominantly rely on experimental approaches, 
wherein investigators systematically modulate catalyst composition and architecture while evaluating catalytic 
performance in reactor systems [3]. Nevertheless, when probing atomic or molecular-scale mechanistic details, 
experimental techniques frequently encounter substantial limitations [4]. Standard characterization methods often 
fail to directly capture or identify crucial reaction intermediates due to their elevated reactivity and transient 
stability, consequently impeding comprehensive understanding of precise reaction pathways [5]. Under realistic 
operational conditions, catalyst surfaces undergo continuous dynamic reconstruction, making accurate 
characterization of active site configurations particularly challenging [6]. Therefore, structure-activity correlations 
are often constrained to theoretical postulation. Furthermore, the considerable experimental expenditures and 
protracted time requirements severely restrict exhaustive screening of potential catalyst candidates, especially for 
intricately designed multicomponent or nanostructured catalytic systems [7–10]. Precisely due to these 
experimental challenges, computational chemistry simulations play an indispensable role in catalyst design [11]. 
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Through first-principles calculations, we can construct atomic-scale models of catalytic active sites, accurately 
determining the adsorption configurations and reaction energetics of reactants, intermediates, transition states, and 
products on catalyst surfaces [12,13]. This enables comprehensive mapping of complete catalytic cycles, 
identification of rate-determining steps, and prediction of catalytic activity and selectivity [14]. Computational 
modeling not only provides mechanistic interpretations for experimental observations, but also offers strategic 
guidance for experimental work. By predicting the performance of diverse catalyst structures, it facilitates 
screening of the most promising candidate materials, thereby reducing research costs and enabling rational design 
of high-performance catalysts [15,16]. Consequently, the deep integration of computational and experimental 
approaches has become crucial for advancing catalytic reaction research to new levels. 

The accuracy of molecular simulations represents a critical factor in investigating microscopic mechanisms 
of catalytic reactions, yet computational methods have long confronted the dilemma of balancing precision with 
efficiency [17,18]. Quantum mechanical approaches such as density functional theory demonstrate superior 
accuracy in describing chemical bond breaking and formation, but their substantial computational cost strictly 
limits simulations to systems of hundreds of atoms and picosecond timescales. This limitation significantly 
impedes the study of slow kinetic processes and solvent effects in catalytic reactions [19,20]. Conventional 
molecular dynamics simulation method, while computationally efficient, rely on predetermined functional forms 
that cannot accurately capture crucial transition states or electron redistribution during chemical reactions [21]. 
This situation creates a fundamental trade-off: either achieving high accuracy at the expense of computational 
speed, or maintaining efficiency while sacrificing predictive reliability, thereby obstructing comprehensive 
understanding of intrinsic catalytic reaction mechanisms [22]. The advantage of machine learning lies in its ability 
to derive patterns directly from vast datasets without requiring predefined theoretical formulas set by humans. The 
emergence of machine learning has introduced transformative approaches for catalytic reaction studies, as it 
operates without requiring pre-defined theoretical formulas, instead autonomously extracting patterns from 
extensive datasets [23–27]. Specifically, researchers can input substantial quantum chemical calculation results, 
enabling machine learning models to automatically establish correlations between atomic structures and 
corresponding energies or forces. 

To effectively apply this capability to complex dynamic processes, a crucial bridge connecting machine learning 
models with molecular dynamics simulations becomes essential, with MLFFs serving as this pivotal link [28,29]. 
MLFFs efficiently and accurately simulate adsorption, diffusion, and reaction kinetics at catalytic active sites by 
autonomously learning interatomic interactions from quantum mechanical data [30–36]. Furthermore, MLFFs 
demonstrate remarkable generalization capability, allowing trained models to be transferred to different reaction 
environments, thereby enabling high-throughput screening of multi-step catalytic mechanisms [37]. 
Simultaneously, MLFFs maintain quantum-level accuracy while performing realistic simulations under practical 
catalytic conditions, establishing a robust computational foundation for rational design of high-performance 
catalysts [38]. 

MLFFs models are trained on first-principles data, with the aim of simultaneously predicting the total 
potential energy of an atomic system and the forces acting on each atom. This dual capability enables MLFFs to 
serve as surrogate potential energy surfaces, thereby supporting large-scale, long-timescale molecular dynamics 
simulations that can capture dynamic processes [39]. In contrast, machine learning property predictors are designed 
to directly map structural or compositional features to specific target properties without the need to predict atomic 
forces. Although property predictors are highly powerful in high-throughput screening, they cannot be used to 
simulate atomic trajectories or study reaction kinetics [22]. 

This review systematically examines the emergence context and developmental trajectory of MLFFs, alongside 
current methodologies with their respective strengths and limitations. It particularly focuses on investigating MLFFs 
applications in catalytic reaction research, emphasizing their roles in heterogeneous catalysis, reaction pathway 
exploration, and mechanistic studies. Building upon this foundation, the article further prospects future development 
trends and potential research directions for MLFFs. The primary objective is to provide valuable references for 
developing more accurate and efficient molecular simulation methods, thereby promoting widespread MLFFs 
implementation across catalysis design, materials development, and pharmaceutical research domains. 

2. The Development and Architectural Evolution of MLFFs 

The rapid development of machine learning is very evident from the data retrieved from the Web of Science. 
As shown in Figure 1a,b, since 2016, the number of published articles on machine learning has shown a significant 
upward trend. In terms of disciplinary distribution, the field of materials science has a particularly prominent 
participation in machine learning research, with related papers accounting for 8.7% of all machine learning papers, 
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a proportion second only to computer-related disciplines. This trend is particularly evident in the branch of 
computational materials science, especially in the classic research area of molecular dynamics simulations, where 
the introduction of machine learning techniques is triggering a paradigm shift. To understand the significance of 
this transformation, we first need to review the development history of molecular dynamics simulation methods. 

 

Figure 1. Trends in Machine Learning Development (based on data retrieved from Web of Science). (a) The 
number of machine learning articles published from 2016. (b) The proportion of machine learning papers in 
different fields, including materials science, relative to all machine learning papers. (c) The historical development 
from traditional molecular dynamics simulations to MLFFs. 

Molecular Dynamics (MD) simulations emerged during the 1950s–1960s, with classical Newtonian 
mechanics and simple empirical force fields serving as their fundamental theoretical basis [40]. Early force field 
models were suitable for biomolecular and simple material systems, where they employed parameterization to fit 
experimental or quantum chemical data, but remained incapable of describing chemical reactions or electronic 
structure evolution [41]. As illustrated in Figure 1c, the emergence of first-principles molecular dynamics in the 
1990s enabled precise quantum mechanical simulations, though the prohibitive computational cost restricted 
applications to small systems and short timescales [42–45]. Semi-empirical methods developed in the 2000s 
achieved better balance between accuracy and efficiency [46–49]. Nevertheless, they still relied on predetermined 
physical models with limited transferability. In conventional molecular dynamics simulations, classical force fields 
established a computationally feasible framework by explicitly distinguishing bonded from non-bonded 
interactions, subsequently building reliable parameter libraries for common molecular systems like proteins and 
aqueous solutions [50]. However, traditional force fields exhibit inherent accuracy limitations and dependence on 
fixed functional forms, preventing them from describing chemical bond breaking/formation, electronic 
polarization, charge transfer, transition states, or excited state phenomena [51]. Their poor generalization 
capability further confines applicability to specific chemical environments. The simplified treatment of long-range 
interactions in conventional force fields introduces significant errors in ionic solutions and interfacial systems, 
while failing to accurately capture complex interactions like π-π stacking and hydrogen-bond networks [52]. 
Assuming potential energy surfaces as minor perturbations near equilibrium states, traditional force fields prove 
inadequate for simulating extreme conditions such as high pressure or high temperature environments and non-
equilibrium processes [53]. 
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The evolution of MLFFs represents a coordinated advancement across theoretical foundations, core architectures, 
and training paradigms. In 2007, Behler and Parrinello introduced the conventional neural network potential, which 
employed atom-centered neural networks to describe local chemical environments, thereby demonstrating the 
feasibility of using machine learning to approximate high-dimensional potential energy surfaces [39,54]. Concurrently, 
between 2010 and 2015, kernel methods represented by Gaussian Process Regression (GPR), including 
implementations like sGDML, established an alternative robust technical pathway [55]. The emergence of deep 
learning, particularly with growing emphasis on invariance and equivariance in atomic system modeling, catalyzed 
transformative progress in MLFFs development [56]. MLFFs architectures subsequently underwent distinct 
evolutionary phases: progressing from early convolutional neural networks like SchNet in 2017, to graph neural 
networks such as CGCNN in 2018 that better represent chemical structures, and accelerating toward equivariant 
models including NequIP, MACE, Equiformer, and eSCN during 2021–2023 [57,58]. These architectures, by 
rigorously embedding physical symmetries, achieved quantum leaps in accuracy, data efficiency, and convergence 
speed, while spawning specialized foundation models like MACE-OFF and So3krates (So3LR) for targeted 
applications. Parallel to architectural innovations, training methodologies and data ecosystems advanced 
synchronously [59]. Active learning strategies substantially reduced dependency on DFT calculations through 
iterative sampling optimization, thereby lowering training costs. Meanwhile, the establishment of large-scale 
databases provided both standardized training datasets and crucial benchmarking platforms [60]. These 
coordinated breakthroughs across architecture, algorithms, and data resources collectively transformed MLFFs 
from theoretical concepts into practical research tools [61]. The subsequent discussion will systematically trace 
this developmental trajectory, examining technological evolution and core innovations from traditional neural 
network potentials to cutting-edge pretrained foundation models. 

2.1. Traditional Neural Network Potential (NNP) 

NNP establish their core concept by decomposing complex potential energy surfaces into summations of 
localized atomic energy contributions, representing the foundational architecture for MLFFs. Their theoretical 
foundation originates from the Behler-Parrinello scheme, which proposed that manually designed symmetry 
functions should transform the local chemical environment of central atoms into mathematical descriptors, thereby 
ensuring translational, rotational, and permutational invariance [39]. These descriptors subsequently serve as inputs 
to feedforward neural networks to approximate each atom’s contribution to the total system energy. NNP initially 
demonstrated that neural networks could learn atomic interactions with quantum-mechanical accuracy while 
significantly improving computational efficiency [62]. However, their performance critically depends on descriptor 
quality and completeness, with manual optimization of optimal descriptors presenting substantial challenges [61]. 
Furthermore, their strict locality assumptions inherently limit the capacity to describe long-range interactions. 

2.2. Kernel Methods 

Kernel methods represent another significant paradigm in MLFFs, developing concurrently with neural 
network approaches. The core concept of kernel methods involves predicting energies and forces for new atomic 
configurations not through explicit parametric functions, but by measuring similarity between new configurations 
and known structures in quantum mechanical databases [55]. Exemplified by GAP and gradient-domain machine 
learning, these methods operate on the principle that potential energy surfaces follow Gaussian processes, where 
predictions emerge as weighted averages of training set outputs, with weights determined by kernel functions [63]. 
As non-parametric models, they demonstrate remarkable robustness with small datasets and naturally provide 
uncertainty quantification, thereby offering crucial guidance for active learning strategies [64]. However, their 
computational cost escalates dramatically with training set size, typically ranging between O(N2) and O(N3), which 
restricts applications with very large datasets and renders their scalability inferior to parametric neural network 
models [65]. 

2.3. Invariant Graph Neural Network 

The development of invariant graph neural networks, exemplified by SchNet and CGCNN, marked MLFFs’s 
entry into the deep learning era by naturally representing atomic systems as graph structures with atoms as nodes 
and chemical bonds as edges. This framework enables models to automatically learn vector representations of 
atomic environments through message-passing mechanisms, thereby reducing dependency on handcrafted 
descriptors [66]. Their operational principle involves learning node and edge features, then iteratively propagating 
and updating information across graph neighborhoods, ultimately forming globally invariant graph-level 
representations to predict total system energy [67]. These architectures inherently incorporate translational, 
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rotational, and permutational invariance to ensure physical consistency. They demonstrate superior capability in 
automatically capturing complex interatomic interactions, with generalization performance significantly 
surpassing traditional NNP [68]. Atomic forces are computed via automatic differentiation, though invariant graph 
neural networks typically employ scalar fields to learn potential energy surfaces. While computationally efficient, 
this approach lacks strict equivariance and may introduce theoretical inaccuracies that potentially compromise 
predictive precision [69]. 

2.4. Equivariant Graph Neural Network 

Equivariant graph neural networks currently represent the cutting edge of MLFFs development, rigorously 
embedding physical symmetries including rotation, translation, and mirror symmetry directly into their 
architectural design to ensure coordinated transformation of output physical quantities according to proper 
geometric rules when input atomic configurations undergo these transformations. The rigorous embedding of such 
physical symmetries lies at the core of these models. Specifically, E(3) equivariance requires that the model’s 
outputs transform covariant under the full Euclidean group in three-dimensional space, reflecting the complete 
symmetry of real physical systems [67]. SO(3) equivariance is a more commonly adopted constraint in many 
implementations, demanding covariance only under pure rotations. For most catalytic systems where chirality is 
not a primary concern, enforcing either E(3) or SO(3) equivariance is crucial. By directly incorporating these 
geometric transformation rules into the model’s architecture, the model is inherently prevented from learning non-
physical relationships that violate these symmetries [67]. This significantly reduces the effective dimensionality 
of the hypothesis space that the model must explore during training. Consequently, the model can extract correct 
physical patterns from substantially less training data, leading to remarkable improvements in data efficiency, 
generalization accuracy, and training convergence speed [61]. Representative implementations such as NequIP, 
MACE, and Allegro demonstrate this paradigm [70,71]. These equivariant models utilize spherical harmonics and 
tensor products to construct equivariant features, maintaining transformation properties throughout all message-
passing steps, thereby enabling simultaneous prediction of energies and forces without requiring energy 
differentiation [69]. This fundamental innovation delivers exceptional data efficiency, enhanced accuracy, and 
accelerated convergence rates. However, the model architectures generally exhibit greater complexity with 
consequently increased computational overhead, while their implementation and optimization demand higher 
technical proficiency from researchers [61]. 

2.5. Transformer Architecture 

Transformer-based architectures, exemplified by Equiformer [72], introduce a novel paradigm for MLFFs by 
employing self-attention mechanisms that enable global, pairwise direct interactions among atoms, thereby 
transcending the limitations of conventional graph neural networks confined to local neighborhood message 
passing [73]. Their fundamental principle treats atomic systems as fully connected graphs, where dynamically 
computed attention weights determine interatomic correlations across all possible pairs, subsequently aggregating 
information to update atomic representations [74]. These architectures demonstrate particular suitability for 
modeling phenomena like charge fluctuations and polarization effects that challenge traditional GNN, owing to 
their inherent capability to capture long-range interactions. However, the computational complexity of self-
attention mechanisms scales quadratically with atom count, resulting in substantial computational costs that 
currently restrict applications to large-scale systems [75]. 

2.6. Foundation Model 

Foundation models represent an emerging trend in MLFFs development, involving large-scale pretraining on 
extensive and diverse first-principles datasets to establish universal, broadly knowledgeable foundational potential 
functions, with MACE-OFF and So3krates (So3LR) serving as representative examples [59,76]. Their underlying 
principle parallels large language models in natural language processing, where learning from comprehensive 
datasets encompassing elements, crystal structures, and molecular configurations internalizes fundamental 
physicochemical principles to create a powerful knowledge baseline [77]. For new systems, users can achieve 
quantum-mechanical accuracy without full retraining, requiring minimal or even no fine-tuning, thereby 
significantly reducing implementation barriers. Consequently, these models demonstrate remarkable 
transferability and user accessibility, though their pretraining entails substantial computational costs and their 
performance in unconventional or extreme chemical environments requires further validation [78]. However, 
catalytic applications face specific challenges such as accurate prediction of adsorption energies on complex 
surfaces and precise description of localized charge transfer. Researchers have developed specialized architectures 
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optimized for catalytic systems to address these challenges, achieving remarkable performance on benchmark tests 
such as the Open Catalyst Project. For instance, EquiformerV2, through its improved equivariant attention 
mechanism, has achieved leading performance on the OC20 benchmark, demonstrating the potential of Transformer 
architectures in handling long-range interactions and complex geometries within catalytic systems [79,80]. Models 
based on higher-order tensor representations excel at capturing subtle orientation and bonding interactions of 
surface adsorbates by constructing richer geometric descriptors, and these models consistently rank among the top 
performers on OC benchmark leaderboards [80]. These advances indicate that sustained improvement in catalytic 
performance depends not only on data scale but also on model inductive biases specifically optimized for the 
physics of surface science. Although general benchmarks for inorganic materials, such as Matbench, are not 
specifically designed for catalysis, their evaluation of properties such as formation energy and band gap also 
provides valuable complementary insights into the predictive capabilities of MLFFs models regarding catalyst 
bulk stability and electronic structure-related attributes [81]. 

3. Software Ecosystem for Developing and Applying MLFFs 

3.1. Core Software Libraries for MLFFs Development 

Core training framework software forms the foundation of the entire MLFFs workflow, providing researchers 
with the underlying architecture to construct high-accuracy, customized potential functions from DFT data [82]. 
These software packages are predominantly developed based on the principles of equivariant graph neural 
networks, incorporating mathematical tools from group theory such as irreducible representations and spherical 
harmonics to ensure strict adherence to rotational and translational symmetries in three-dimensional space for both 
energy and force predictions. By embedding physical laws directly into machine learning models, this approach 
guarantees fundamental physical consistency [83]. NequIP established itself as the pioneering software in this 
domain, while MACE and Allegro currently represent the cutting-edge technologies due to their exceptional 
accuracy and computational efficiency. DeepMD-kit remains one of the most widely adopted packages in practical 
applications, and SchNet maintains historical significance for its substantial impact on the development of deep 
learning potentials [67]. 

Taking the widely adopted DeepMD-kit as an example, Wang et al. [82]. systematically elaborated its design 
principles and performance metrics in their publication. Figure 2a illustrates the software architecture and 
workflow, demonstrating integration with TensorFlow for automated training and its implementation as a plugin 
for simulation packages like LAMMPS, thereby bridging the complete pathway from data processing to molecular 
simulation. The training procedure incorporates continuous monitoring through test sets to prevent overfitting, 
ensuring robust model generalization as visualized in Figure 2b. Performance evaluation reveals rapid convergence 
during water model training, with energy and force errors reduced to minimal levels (2–3%) in the learning curve 
shown in Figure 2c. Figure 2d presents comparative analysis between DeepMD and first-principles calculations, 
where nearly identical radial distribution functions confirm that the generated potential functions not only fit 
training data but also reliably predict and reproduce genuine physical properties. 

In the work by Ilyes Batatia et al. [84], the fundamental principles and innovations of MACE were 
comprehensively introduced. Conventional two-body message-passing networks typically require five to six 
layers, whereas MACE achieves convergence with merely two message-passing iterations by constructing four-
body interactions, substantially reducing computational overhead. Researchers observed that even without 
incorporating equivariant information, the integration of higher-order features significantly alters the learning 
curve slope, indicating the model’s enhanced capacity to extract more information from limited datasets. Through 
comparative analysis of energy distributions across three dihedral angle sections, systematically evaluates the 
performance of BOTNet, NequIP, MACE, and DFT calculations. The results demonstrate that MACE not only 
generates exceptionally smooth potential energy surfaces but also achieves remarkable alignment with DFT 
benchmarks, confirming its superior extrapolation capabilities. 

Collectively, software frameworks represented by NequIP, DeepMD-kit, MACE, and Allegro have 
continuously advanced through stricter symmetry constraints and higher-order interaction modeling at the 
theoretical level. Simultaneously, they have optimized training workflows while enhancing model generalization 
capability and simulation reliability at the engineering level. These systematic breakthroughs in accuracy, data 
efficiency, and transferability and generalization ability are progressively narrowing the gap between machine 
learning potentials and DFT calculations. Consequently, they are establishing a robust foundation for large-scale 
molecular dynamics simulations of complex systems. 
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Figure 2. (a) Schematic plot of the DeePMD-kit architecture and the workflow. (b) Schematic illustration of over-
fitting. (c) The radial distribution functions of the DeePMD compared with the PBE0+TS DFT water model. (d) The 
learning curves of the liquid water system [82]. Copyright 2018 Elsevier. 

3.2. Integrated Platforms for Automated Training and Simulation 

Integrated simulation platforms within MLFFs software unify critical components including potential 
function training, molecular dynamics simulation, and enhanced sampling techniques within a cohesive automated 
framework [85]. These platforms execute initial simulations while leveraging built-in uncertainty quantification 
modules to automatically identify new atomic configurations with low prediction reliability. Subsequently, DFT 
calculations validate these uncertain configurations, incorporating them into training datasets to iteratively refine 
potential functions. This methodology enables efficient and automated exploration of unknown phase space while 
ensuring model robustness [86]. The sGDML framework represents a significant implementation of this integrated 
approach, delivering a comprehensive high-precision environment spanning from accurate force field construction 
to dynamical simulations, though primarily focused on small molecular systems [87]. 

In the work by Klaus-Robert Müller et al. [88], the sGDML workflow was systematically presented, as 
illustrated in the upper portion of Figure 3, demonstrating how user-provided molecular configurations with energy 
and force labels are transformed into cross-validated, ready-to-use force field models through an automated 
pipeline. The lower portion of Figure 3 reveals how these lightweight models seamlessly interface with mainstream 
simulation engines, enabling researchers to perform structural optimization and compute vibrational spectra 
through Atomic Simulation environment (ASE) integration, while achieving path-integral molecular dynamics 
simulations via deep interoperability with i-PI [89,90]. This demonstrates how researchers can complete the entire 
workflow from force field construction to final property prediction within a unified framework, substantially 
streamlining high-precision computational workflows. 
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Figure 3. Schematic illustration of the integrated sGDML workflow, from force field construction to property 
prediction through seamless integration with ASE and i-PI for structural optimization, vibrational spectra 
calculation, and path-integral molecular dynamics simulations [88]. Copyright 2019 Elsevier. 

3.3. Pretrained Model Repositories and Foundation Models 

The development of pretrained model repositories aims to lower the entry barrier for MLFFs applications, 
enabling users to bypass expensive and specialized data generation and model training processes while directly 
performing high-accuracy molecular dynamics simulations [76]. The underlying principle involves pretraining on 
extensive datasets spanning diverse chemical spaces, allowing models to learn broad interatomic interaction 
patterns, thereby requiring only minimal fine-tuning with limited data when adapting to new systems [77]. Current 
representative implementations include MACE-OFF, which provides universal potential functions covering most 
elements of the periodic table based on the MACE architecture, alongside the ANI series that specifically focuses 
on organic molecules and biologically relevant systems. 

Researcher Gábor Csányi and his team developed MACE-OFF [76], demonstrating exceptional accuracy and 
generalization capability. As illustrated in Figure 4a, across diverse test sets including small molecules, dimers, 
water clusters, and peptides, MACE-OFF achieves energy and force prediction errors well below the chemical 
accuracy threshold (1 kcal/mol). Remarkably, it maintains outstanding performance even on tripeptide systems 
completely absent from its training data, confirming its robust and transferable generalization. For the more 
challenging task of predicting molecular dihedral rotation energy barriers, MACE-OFF predictions show excellent 
agreement with high-level quantum chemical benchmarks. Its errors are substantially lower than those of 
traditional empirical force fields, semi-empirical quantum chemical methods, and earlier machine learning 
potentials like ANI, as quantitatively demonstrated in Figure 4b. The development of pretrained model libraries 
indicates that the research focus of MLFFs is shifting from tool development to providing readily usable services. 
By sharing pre-trained parameters, these models help researchers avoid redundant foundational modeling work, 
enabling them to concentrate more effectively on addressing specific scientific challenges. 
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Figure 4. Performance evaluation of MACE-OFF23 models. (a) Test set root-mean-square errors (RMSE) for 
energy and force predictions across diverse molecular systems, with bottom panels specifically comparing 
intermolecular force errors against DFT reference magnitudes. (b) Dihedral angle benchmark scans: torsion drive 
analysis for the TorsionNet-500 dataset (top) and detailed torsion behavior between aromatic rings in a biaryl 
benchmark (bottom) [76]. Copyright 2025 American Chemical Society. 

3.4. General-Purpose Auxiliary Tools for Catalysis Modeling 

General-purpose auxiliary tools, such as the Atomic Simulation Environment (ASE), provide essential 
support for MLFFs workflows in catalysis research. They enable the creation and manipulation of surface and 
interface models, execution of tasks such as transition state searches and reaction path analysis, and integration 
with MLFFs and first-principles codes [91]. As a complement to ASE, pymatgen is a powerful Python library for 
materials analysis, offering comprehensive functionalities including crystal structure manipulation, phase diagram 
construction, composition analysis, and high-throughput computational data management, making it a standard 
tool in materials informatics for catalysis research [92]. Fairchem serves as the core toolkit of the Open Catalyst 
Project, providing specialized models, data loaders, preprocessing utilities, and evaluation metrics specifically 
tailored for catalytic surface modeling [80,93]. These tools help automate and standardize computational 
workflows, enhancing reproducibility and efficiency in catalytic simulations [90]. 

In the research by Hjorth Larsen et al. [90], ASE demonstrated its capability to construct complex periodic 
crystal structures such as Beryl with ease, utilizing space groups and unit cell parameters as illustrated in Figure 5a. 
The platform further provides comprehensive atomic-scale algorithms to validate MLFFs accuracy in transition 
state regions, exemplified in Figure 5b where the Nudged Elastic Band method calculates energy barriers for gold 
atom diffusion on aluminum surfaces. Figure 5c presents ASE’s integrated database module and web interface, 
facilitating efficient management, querying, and visualization of extensive computational datasets, thereby 
enhancing workflow efficiency in MLFFs research. As shown in Figure 5d, ASE incorporates global optimization 
tools including genetic algorithms to automatically identify the most stable configurations for surface adsorption 
systems, collectively demonstrating its robust capabilities as an integrated platform for supporting materials design. 
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Figure 5. Functional demonstrations of the ASE platform. (a) The unit cell of beryl crystal structure, displayed 
along the [001] direction with two repeated cells. (b) Database query interface showing the first 10 rows of results 
filtered by xc = PBE and O = 0, sorted by formation energy (hform). (c) Surface slab construction workflow: 
predefined simulation box with randomized initial atom positions, three candidate structures generated by the start 
generator, and the global minimum surface structure optimized using the EMT potential. (d) Potential energy 
profile along the normalized reaction coordinate for the diffusion of a Au atom on the Al(001) surface [90]. 
Copyright 2017 IOP Publishing Ltd. 

4. Practical Applications of MLFFs in Catalysis 

The application of MLFFs to catalytic reaction research relies not only on high-precision models but also on 
data infrastructure, evaluation standards, and reliable workflows oriented toward real-world catalytic problems. In 
recent years, the establishment of large-scale benchmark datasets, such as the Open Catalyst Project (OC20/OC22), 
has fundamentally advanced this field [22]. These datasets systematically encompass diverse adsorption 
configurations on metal, alloy, and oxide surfaces, with the core objective of evaluating model performance in 
predicting energies and forces for realistic catalytic interfaces—including defects, steps, and co-adsorption 
phenomena [92]. This benchmark has become a crucial criterion for assessing whether MLFFs can transition from 
proof-of-principle demonstrations to practical applications, and has fostered the development of automated 
workflows integrating active learning, uncertainty quantification, and high-throughput screening [94]. Driven by 
this framework, MLFFs have been successfully applied to the study of numerous key catalytic reactions, enabling 
simulations of surface defect dynamics, interfacial solvation effects, and diffusion and reaction processes in porous 
materials under near-realistic conditions. These simulations provide deep insights into active site structures, 
reactant dynamic behavior, and complete microscopic catalytic cycles, thereby establishing a solid theoretical and 
simulation foundation for the rational design and optimization of high-performance catalysts [95]. 

Subsequently, we will examine the current applications of MLFFs in catalytic reaction simulations. Based on 
this foundation, potential directions for improvement and development space will be proposed. 

4.1. Application of MLFFs in HER 

The Hydrogen Evolution Reaction (HER) serves as the fundamental half-reaction in electrochemical water 
splitting, representing a critical pathway for establishing a green hydrogen economy and achieving decarbonization 
of energy systems [96,97]. The comprehension of its microscopic mechanisms, in conjunction with the 
development of catalysts exhibiting optimal efficiency, constitutes a persistent challenge that has persisted for 
decades [98]. Conventional HER research relies on electrochemical measurements and various ex situ 
characterization techniques, which can evaluate overall catalyst performance but struggle to directly capture 
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atomic-scale dynamics at the electrode-electrolyte interface during reactions [99]. These limitations include real-
time adsorption/desorption behavior of reaction intermediates such as H*, and detailed transport mechanisms of 
hydronium ions through interfacial water networks [100,101]. Computational simulations, particularly DFT 
calculations, have played an indispensable role in investigating these microscopic properties, successfully 
establishing volcano plot relationships between microscopic descriptors like hydrogen adsorption free energy and 
macroscopic catalytic activity [102–104]. However, the substantial computational cost of DFT restricts simulations 
primarily to static, idealized surface models at absolute zero temperature [105]. Thereby preventing accurate 
treatment of finite-temperature effects including atomic thermal vibrations and entropy contributions, explicit 
solid-liquid interfaces with dynamic solvation effects, catalyst reconstruction processes, and realistic kinetic 
pathways with energy barriers for chemical reactions [106]. Consequently, MLFFs have emerged and rapidly 
developed as primary tools for investigating HER dynamic mechanisms [107]. During their initial development 
phase, research primarily focused on methodological validation and foundation establishment, aiming to 
demonstrate that MLFFs could achieve DFT comparable accuracy in describing key fundamental systems. These 
included hydrogen adsorption on metal surfaces and structural/dynamic properties of water clusters, while 
simultaneously enhancing computational efficiency [108]. Subsequently, MLFFs research has progressed to 
addressing more complex challenges, entering a phase dedicated to simulating realistic chemical reaction 
interfaces. Therefore, Abbas et al. [109]. Building upon the structural tunability of single-atom configurations and 
the high catalytic activity of Mo3P, systematically explored the configurational space of ternary molybdenum 
sulfur phosphorus compounds through MLFFs driven moment tensor potential methodology combined with 
particle swarm optimization and artificial bee colony algorithms, successfully predicting novel Mo2SP and Mo3SP 
material systems. The fundamental advantage of this approach lies in its integration of DFT-level accuracy with 
MLFFs computational efficiency, as demonstrated in Figure 6a where MLFFs-predicted energies show excellent 
agreement with DFT benchmarks, ensuring search reliability while the convex hull diagram confirms the method’s 
powerful discovery capability by identifying thermodynamically stable new phases. Furthermore, the trained 
MLFFs model enabled tasks impractical for direct DFT computation, as shown in Figure 6b, MLFF-driven 
molecular dynamics simulations validate the thermal stability of the predicted materials at room temperature over 
nanosecond timescales, which highlights the key capability of MLFFs in enabling large-scale, long-timescale 
dynamical simulations. This further underscore the indispensable role of MLFFs in assessing dynamic stability 
and structural evolution under realistic working conditions. 

 
Figure 6. (a) Workflow of crystal structure prediction via on-the-fly training of the moment tensor potential (MTP), 
an MLFFs method, enabling efficient exploration of complex potential energy surfaces. (b) MLFFs-enabled 
multiscale characterization: molecular dynamics simulations using the trained MTP validate kinetic and thermal 
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stability, while DFT-calculated band structures and electron localization function (ELF) maps reveal the electronic 
and bonding properties of Mo2SP and Mo3SP [109]. Copyright 2024 American Chemical Society. 

4.2. Application of MLFFs in CO2RR 

Against the backdrop of addressing global climate change and promoting sustainable development, the 
efficient catalytic conversion of CO2 into high-value chemicals represents a crucial pathway toward achieving 
carbon recycling [110]. In the design of catalysts for the CO2 reduction reaction, researchers face a fundamental 
conflict between the vast exploration space and the prohibitive computational cost of DFT calculations [40,111–114]. 
In the study by Tran and Ulissi [94], a high-throughput computational framework integrating MLFFs with active 
learning was developed, where local chemical environments of adsorption sites were numerically encoded as 
feature descriptors to train surrogate models for rapid prediction of the key reaction descriptor CO adsorption 
energy. The core advantage of this computational framework lies in its closed-loop iterative optimization 
mechanism, as illustrated in Figure 7a, where the model not only predicts adsorption energies but also evaluates 
its own predictive uncertainty to intelligently select the most computationally valuable candidate structures for 
subsequent DFT calculations. These newly generated DFT data points are continuously incorporated into training, 
progressively enhancing the model’s accuracy and generalization capability. This strategy achieved optimal allocation 
of computational resources, completing 42,785 DFT calculations across a vast space encompassing 31 elements and 
1499 intermetallic compounds, while successfully identifying 131 catalytic surfaces with near-ideal adsorption energies 
across 54 alloys. This research transcends conventional catalyst screening, as the generated large-scale, high-
quality dataset enables global analysis of catalytic trends. The bimetallic activity map shown in Figure 7b reveals 
structure-activity relationships between different elemental pairings and CO2 Reduction Reaction (CO2RR) 
performance, while the distribution of active sites in the reduced-dimensional space presented in Figure 7c 
identifies key local coordination patterns associated with high activity through structural similarity analysis. This 
work empirically demonstrates that MLFFs combined with active learning strategies can advance computational 
catalysis from discrete case studies to systematic material design and pattern discovery, establishing a 
methodological foundation for efficient exploration of complex catalytic systems. 

 

Figure 7. Active learning framework for high-throughput screening of CO2 reduction electrocatalysts. (a) Workflow 
(highlighted in red) illustrating the systematic and automated machine learning-guided candidate selection strategy 
using active learning and surrogate-based optimization. (b) CO2 reduction activity map for bimetallic materials, 
visualizing catalytic performance trends across elemental combinations. (c) Active site motif analysis: t-SNE40 
visualization of the latent space constructed from all DFT-simulated adsorption sites, revealing structural patterns 
associated with catalytic activity [94]. Copyright 2018 Springer Nature. 
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4.3. Application of MLFFs in Oxygen Reduction Reaction Mechanism Research 

The oxygen reduction reaction (ORR) serves as the fundamental cathodic process in clean energy 
technologies including fuel cells and metal-air batteries, yet its sluggish multi-step reaction kinetics significantly 
constrain energy conversion efficiency [115]. Platinum-based catalysts currently represent the most efficient ORR 
electrocatalysts, but their high cost and resource scarcity have redirected research focus toward enhancing atomic 
utilization efficiency [116]. Under practical ORR operating potentials and oxygen-rich environments, catalyst 
surfaces and bulk structures undergo dynamic reconstruction and oxidation rather than remaining static, making 
comprehension of this dynamic evolution process crucial for designing high-performance, stable catalysts [117]. 
Zheng et al. [118]. investigated dynamic active phases of catalysts under ORR conditions by introducing a 
topology-based persistent homology sampling algorithm, as illustrated in Figure 8a. This algorithm automatically 
identifies all potential adsorption/embedding sites within material structures by analyzing geometric topological 
features of atomic aggregates. Based on 100,000 initial PtOx configurations generated through this algorithm for 
Pt₅₅ clusters, efficient structural optimization and energy calculations were performed via MLFFs, achieving energy 
accuracy of 0.008 eV/atom and force accuracy of 0.21 eV/Å in the Pt-O system, as demonstrated in Figure 8b,c. 
Through systematic analysis of optimized configurations, the study successfully constructed a Pourbaix phase 
diagram for Pt clusters under varying potentials and pH conditions (Figure 8d), revealing that sub-nanometer Pt 
clusters undergo thermodynamically driven deep oxidation forming highly coordinated Pt-O structural units at 
typical ORR working potentials. This work demonstrates that combining topology-guided intelligent sampling 
with high-performance MLFFs enables automated discovery of catalyst active phases in complex environments, 
providing powerful computational tools for understanding and designing catalysts under realistic working conditions. 

 

Figure 8. (a) Application of MLFFs combined with topology-guided sampling in ORR catalyst exploration. 
(a) Illustration of the persistent homology-based sampling algorithm (PH-SA) for automated identification of 
potential adsorption/embedding sites in material structures. (b,c) Comparison between MLFFs predictions and 
DFT calculations for (b) energies and (c) forces in the Pt–O system, demonstrating high accuracy (energy error: 
0.008 eV/atom; force error: 0.21 eV/Å). (d) Analysis of oxygen coordination environments in PtOx clusters: the 
proportion of Pt atoms with different oxygen coordination numbers as a function of total oxygen concentration, 
accompanied by the Pourbaix diagram illustrating thermodynamic phase stability under varying potential and pH 
conditions [118]. Copyright 2018 Springer Nature. 

4.4. Towards Robust Workflows and Catalytic Challenges 

The application of MLFFs in catalysis research has extended beyond the pursuit of high precision for 
individual systems, evolving along a logical trajectory that encompasses standardized evaluation, automated 
exploration, and realistic simulation. On one hand, benchmark datasets exemplified by the Open Catalyst Project 
(OC20/OC22) have established a standard for evaluating model performance on realistic surface adsorption 
configurations. This advancement has driven the development of specialized model architectures, such as 



Hu et al.   Ai Mater. 2026, 1(1), 5 

  14 of 19  

EquiformerV2, tailored for catalytic interfaces, highlighting the crucial role of high-order geometric feature 
learning in capturing complex surface interactions. On the other hand, active learning workflows integrated with 
uncertainty quantification have substantially enhanced the efficiency of exploring new materials and catalysts. 
This is achieved through a closed-loop iterative process comprising initial training, configuration exploration, 
uncertainty-based filtering, and DFT validation, thereby transforming MLFFs from static predictive tools into 
dynamic discovery platforms. Nevertheless, fully realizing the core value of MLFFs in catalytic design still faces 
several practical challenges: scaling simulations to realistic nano catalyst sizes and explicit solvent environments, 
accurately calculating free energy barriers by integrating enhanced sampling methods, and reliably correlating 
microscopic descriptors derived from MLFFs—such as adsorption energies and reaction barriers—with 
macroscopic catalytic performance metrics like activity and selectivity. In summary, MLFFs are transitioning from 
an advanced potential function technique into a comprehensive computational paradigm that includes data 
benchmarks, intelligent algorithms, and integrated workflows. The vision of rational catalyst design driven by 
MLFFs can only be achieved through synergistic progress in model architecture innovation, workflow automation, 
and the tackling of multiscale challenges. 

5. Conclusions and Future Prospects 

This review systematically summarizes the developmental trajectory of MLFFs and their significant 
applications in catalytic reaction studies. Traditional molecular simulation methods have long confronted the 
challenge of balancing accuracy with computational efficiency, where quantum chemical approaches like DFT 
provide high precision but require substantial computational resources, while classical molecular dynamics offers 
efficiency but inadequate description of chemical reaction processes. MLFFs address this gap by employing 
machine learning to extract interatomic interactions from quantum mechanical data, successfully constructing 
next-generation potential functions that combine quantum accuracy with classical efficiency. The evolutionary 
path of MLFFs demonstrates progression from simple descriptor-based models to sophisticated deep neural 
network architectures, substantially enhancing both accuracy and applicability domains. In catalytic reaction 
research, MLFFs have demonstrated crucial roles across various systems including HER, CO₂RR and ORR. By 
simulating adsorption, migration, and transformation processes of reactants on catalyst surfaces, MLFFs enable 
revelation of dynamic evolution patterns at active sites and elucidate selectivity in reaction pathways, thereby 
providing atomic-level theoretical guidance for understanding catalytic mechanisms and designing high-
performance catalysts. 

Despite remarkable progress, MLFFs still confront numerous challenges. The performance of MLFFs is 
fundamentally constrained by the quality and coverage of training data. Since MLFFs models are typically trained 
on DFT generated data, inherent systematic errors from DFT calculations inevitably propagate into MLFFs 
predictions. These include biases in exchange-correlation functional selection and inadequate description of van 
der Waals interactions, which become particularly pronounced when simulating surface adsorption processes or 
reaction energy barriers. Significant challenges remain in accurately describing long-range electrostatic and van 
der Waals interactions, especially in catalytic systems involving charge transfer or polar interfaces [119–124]. 
Furthermore, MLFFs based on ground-state electronic structure struggle to handle processes involving excited 
electronic states, such as photocatalysis or plasma-driven catalysis. Future MLFFs development should prioritize 
enhancing model interpretability, creating novel architectures that balance accuracy with efficiency to support 
extended spatiotemporal simulations, and advancing seamless integration with multiscale methodologies like 
continuum models. As the technology matures and application scope expands, MLFFs will undoubtedly play 
increasingly vital roles in catalysis science and broader materials research, providing powerful theoretical 
foundations and technical capabilities for addressing critical energy and environmental challenges. 
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