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Abstract: Reconfigurable Intelligent Surfaces (RIS) have emerged as a key enabling
technology for beyond-5G and 6G wireless networks, offering programmable con-
trol over the radio propagation environment with extremely low power consump-
tion. However, jointly optimizing the base station (BS) beamforming vector and
the high-dimensional RIS phase configuration remains a fundamentally challenging
task due to non-convex coupling, hardware constraints, imperfect channel knowledge,
and fast-varying user mobility patterns. Traditional optimization-based approaches,
such as alternating optimization and convex relaxations, struggle to scale with large
RIS arrays and are unable to adapt efficiently to rapidly changing channel condi-
tions. To address these limitations, this work proposes a deep reinforcement learning
(DRL) framework that learns an adaptive control policy through direct interaction
with the wireless environment, without requiring explicit channel models or hand-
crafted optimization procedures. The proposed actor–critic architecture simultane-
ously outputs continuous beamforming and RIS phase-shift actions and incorporates
domain-specific reward shaping to balance spectral efficiency, energy consumption,
and phase-switching smoothness. Comprehensive experiments across diverse propa-
gation scenarios—including shadowing variations, multipath sparsity levels, mobile
users, and hardware ablation settings—demonstrate that the proposed method achieves
significantly higher rate, energy efficiency, and robustness than conventional baselines,
while maintaining efficient online inference suitable for real-time 6G deployments. The
results confirm that DRL-driven beamforming provides a scalable and model-agnostic
solution for next-generation intelligent wireless environments.

Keywords: reconfigurable intelligent surface (RIS); 6G wireless networks; deep
reinforcement learning (DRL); actor-critic networks; energy-efficient communications;
adaptive control; multi-path propagation

1. Introduction

The evolution toward sixth–generation (6G) wireless networks is driven by the demand for immersive communi-
cations, large-scale connectivity, and ultra-reliable high-capacity services, motivating the adoption of transformative
physical-layer technologies beyond the limits of 5G systems [1,2]. Among various emerging paradigms, reconfig-
urable intelligent surfaces (RIS) have rapidly become a key enabler due to their capability to shape the wireless
propagation environment in an energy-efficient and cost-effective manner [3]. By leveraging programmable meta-
surfaces, RISs can reconstruct wavefronts and provide controllable reflections, enabling near-real-time channel
reconfiguration in future 6G scenarios [4]. Meanwhile, the integration of RIS into millimeter-wave and terahertz
communication further enhances coverage and reliability, especially under severe blockage and non-line-of-sight
(NLoS) conditions [5,6]. As system scale grows, particularly in extremely large RIS deployments, optimizing the
joint beamforming between base stations (BS) and RIS becomes increasingly critical [7,8].

However, efficient control of RIS-assisted systems remains challenging due to their high dimensionality,
fast-varying wireless conditions, and the need for low-latency real-time optimization. Existing resource allocation
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and user fairness solutions for mobile and aerial platforms highlight the complexity created by spatial mobility
and dynamic topology [9, 10]. To address interference, channel correlation, and electromagnetic coupling, ad-
vanced model-based optimization has been explored, including MMSE-based designs and fractional programming
approaches [11,12]. Yet, these conventional methods typically rely on accurate channel state information (CSI),
involve iterative non-convex optimization, and may be unsuitable for real-time adaptation in large-scale RIS settings.

The emergence of machine learning, particularly model-driven and data-driven hybrid approaches, has opened
new opportunities for physical-layer optimization [13,14]. Reinforcement learning (RL) and deep reinforcement
learning (DRL) have been widely recognized as promising paradigms for intelligent communication systems,
enabling autonomous resource allocation, network control, and policy adaptation under uncertainty [15,16]. Recent
developments in DRL-driven joint beamforming for active and passive RIS architectures demonstrate the potential
of actor–critic and policy-gradient algorithms in solving continuous control problems intrinsic to high-dimensional
beamforming [17,18]. Furthermore, advances in RIS channel modeling and mobility-aware prediction methods
provide new tools for improving the realism and robustness of DRL policies [19,20].

Nevertheless, despite growing interest in DRL for RIS-aided networks, several important shortcomings remain.
Prior DRL-based schedulers and QoS-aware control frameworks illustrate the sensitivity of learning stability to
reward shaping and network dynamics [21], while DRL-driven localization and sensing tasks reveal challenges
relating to partial observability and sample inefficiency [22]. Comprehensive surveys on RIS beamforming
optimization further highlight that scalable learning under large RIS sizes, high mobility, and limited CSI feedback
is still underexplored [23]. In addition, RIS-enabled multiuser MIMO uplink studies emphasize the need for jointly
optimizing spectral and energy efficiency under realistic hardware constraints [24]. Distributed DRL systems for
multi-access and vehicular networks further underscore the need for scalable policy learning when subject to latency,
user mobility, and interference coupling [25].

Motivated by these challenges, this work proposes a unified DRL-based framework for joint BS beamforming
and RIS phase optimization in 6G communication environments. Leveraging continuous-action actor–critic archi-
tectures, the proposed system integrates real-time environmental feedback with model-aware feature representations
to achieve stable, scalable, and energy-efficient beamforming decisions. The framework is designed to operate
under imperfect CSI, mobility-induced fluctuations, and large RIS dimensionality, while preserving adaptability
across diverse propagation conditions. Through comprehensive simulations under varying SNR levels, shadowing
conditions, mobility patterns, and RIS configurations, we demonstrate that the proposed DRL framework signif-
icantly outperforms classical optimization baselines in throughput, robustness, and energy efficiency, offering a
promising foundation for next-generation RIS-assisted 6G networks. It is worth clarifying the scope of comparison
and positioning of the proposed framework with respect to existing learning-based RIS optimization studies. Re-
cent works have explored DRL- or graph-based approaches under specific system assumptions, such as discrete
phase shifts, fixed beamforming structures, or task-oriented objectives tailored to particular network settings. In
contrast, the present work focuses on a unified continuous-control formulation that jointly optimizes beamforming
and RIS phase configurations within a single actor–critic framework, with emphasis on scalability, stability, and
deployment-oriented design. Due to the diversity of modeling assumptions, state representations, and action spaces
across existing learning-based methods, direct quantitative comparison is not always meaningful. Instead, this work
aims to demonstrate consistent performance gains over well-established optimization baselines while providing a
flexible and model-agnostic learning framework applicable to a broad range of RIS-assisted 6G scenarios.

2. Methodology

In this section, we present the proposed deep reinforcement learning (DRL) framework for joint base station
(BS) beamforming and reconfigurable intelligent surface (RIS) phase optimization in 6G wireless systems.

We first introduce the overall system architecture and signal model, then formalize the optimization objectives
for rate and energy efficiency. Subsequently, we cast the problem into a Markov decision process (MDP) and describe
the DRL agent design, including state representation, action space, reward shaping, and network architectures.
Finally, we discuss the training procedure, convergence aspects, and computational complexity.

2.1. Overall System Architecture

We consider a downlink 6G communication scenario in which a multi-antenna BS communicates with one
or more single-antenna user equipments (UEs) in the presence of a programmable RIS. The RIS is deployed on
a building facade or indoor wall to enhance coverage in non-line-of-sight (NLoS) zones, which are typical in
millimeter-wave (mmWave) and terahertz (THz) bands. The DRL agent resides either at the BS (e.g., integrated in
the baseband unit) or in a nearby edge server, and is responsible for jointly adapting the BS beamforming vector and
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RIS phase configuration based on real-time observations.
Figure 1 provides an intuitive illustration of the proposed architecture. The BS transmits downlink signals that

reach the UEs through both direct and RIS-reflected paths. The RIS consists of N passive reflecting elements whose
phase shifts are electronically tunable. The DRL agent observes the system state, including channel measurements
and past control actions, and outputs a pair of continuous control variables: the BS beamforming vector and
the RIS phase-shift vector. User feedback, such as estimated signal-to-noise ratio (SNR) or achievable rate, is
aggregated into a scalar reward that guides the learning process. This closed-loop interaction plays a central role in
enabling adaptive and data-driven beamforming in highly dynamic propagation environments, where hand-crafted
optimization becomes intractable.

Figure 1. Overall RIS-aided 6G downlink architecture. The BS sends a beamforming vector toward both the UEs
and the RIS; the DRL agent observes the system state st, configures the RIS phase shifts, and updates the BS
beamforming, while the UEs provide reward feedback to close the learning loop.

2.2. Channel and Signal Model

We adopt a narrowband block-fading model over a single resource block, which can be extended to an
OFDM-based multi-carrier system with subcarrier-wise processing. The channel remains quasi-static within one
coherence block and changes independently across blocks.

2.2.1. BS–UE Direct Link

Let hBU,u ∈ CM denote the direct channel from the M -antenna BS to the u-th UE. The received baseband
signal via the direct link is affected by large-scale path loss, shadowing, and small-scale fading. In mmWave/THz
regimes, the channel is often modeled as a clustered Rician channel with a small number of dominant paths:

hBU,u =

√
KBU

KBU + 1
h
(LoS)
BU,u +

√
1

KBU + 1
h
(NLoS)
BU,u , (1)

where KBU is the Rician K-factor and h
(LoS)
BU,u and h

(NLoS)
BU,u represent the line-of-sight (LoS) and non-line-of-sight

components, respectively.

2.2.2. BS–RIS and RIS–UE Links

The BS–RIS channel is modeled by HBR ∈ CN×M , where the (n,m)-th entry corresponds to the channel
from the m-th BS antenna to the n-th RIS element. Similarly, the RIS–UE channel is modeled by hRU,u ∈ CN .
Owing to the typically unobstructed placement of RIS panels, these links can often be modeled as Rician channels
with larger LoS components:

HBR =

√
KBR

KBR + 1
H

(LoS)
BR +

√
1

KBR + 1
H

(NLoS)
BR , (2)
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hRU,u =

√
KRU

KRU + 1
h
(LoS)
RU,u +

√
1

KRU + 1
h
(NLoS)
RU,u . (3)

The RIS imposes a diagonal phase-shift matrix

Θ = diag
(
ejθ1 , ejθ2 , . . . , ejθN

)
, (4)

where θn ∈ [0, 2π) is the tunable phase associated with the n-th element. We consider a continuous-phase RIS
model in this work, but the same framework can accommodate discrete-phase quantization by restricting the action
space. The system model adopts several idealized assumptions to facilitate algorithmic development and analysis.
In particular, continuous RIS phase control and accurate channel-related observations are assumed to enable a clear
exposition of the joint beamforming and RIS optimization problem. These assumptions are commonly employed in
RIS-aided communication studies to establish a tractable and interpretable baseline. In practical deployments, RIS
elements typically support discrete phase resolutions, channel state information may be imperfect due to estimation
errors and feedback limitations, and control signaling may introduce non-negligible latency. The proposed DRL
framework is not inherently restricted to ideal conditions and can accommodate such constraints by quantizing the
actor outputs, incorporating noisy or partial channel observations into the state representation, and adjusting the
control update interval to match hardware switching capabilities. While a detailed hardware-level evaluation is
beyond the scope of this work, the adopted modeling assumptions allow the fundamental behavior and potential of
the learning-based control strategy to be systematically investigated.

2.2.3. Received Signal and Effective Channel

The BS transmits symbol x ∈ C with beamforming vector w ∈ CM , constrained by ∥w∥2 ≤ Pmax. The
received signal at user u is

yu =
(
hHBU,u + hHRU,uΘHBR

)
wx+ nu, (5)

where nu ∼ CN (0, σ2) is additive white Gaussian noise. The effective cascaded channel seen by the u-th user is thus

hHeff,u = hHBU,u + hHRU,uΘHBR. (6)

The instantaneous signal-to-interference-plus-noise ratio (SINR) for the single-user case reduces to

γu =

∣∣∣hHeff,uw∣∣∣2
σ2

, (7)

and the corresponding achievable rate is
Cu = log2 (1 + γu) . (8)

2.2.4. Multi-User Extension

For completeness, we outline the multi-user case with U users, where the BS applies a linear precoder
W = [w1, . . . ,wU ] ∈ CM×U and transmits x =

∑U
u=1 wuxu. The received signal at user u is

yu = hHeff,uwuxu +
∑
k ̸=u

hHeff,uwkxk + nu, (9)

and the SINR is

γu =

∣∣∣hHeff,uwu

∣∣∣2∑
k ̸=u

∣∣∣hHeff,uwk

∣∣∣2 + σ2

. (10)

The proposed DRL framework naturally extends to this setting by including all user channels in the state and
redefining the reward as a function of the sum-rate or a weighted fairness metric.

2.3. Optimization Objectives

The primary goal of the joint beamforming and RIS design is to maximize the communication performance
subject to power and hardware constraints.
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2.3.1. Rate Maximization

For the single-user case, the rate-maximization problem can be written as

max
w,Θ

Cu = log2 (1 + γu) (11)

s.t. ∥w∥2 ≤ Pmax, (12)

θn ∈ [0, 2π), n = 1, . . . , N. (13)

In the multi-user case, the objective may be chosen as the sum-rate
∑U
u=1 Cu or a proportional-fair measure

depending on service requirements.

2.3.2. Energy Efficiency and Regularity

To explicitly account for energy efficiency (EE) and temporal smoothness of control actions, we adopt a
composite objective that combines rate and power consumption:

EE =
Ctot

Ptx + Pc
, (14)

where Ctot is the total achievable rate across users, Ptx is the BS transmit power, and Pc captures circuit and control
overhead (e.g., RIS control signaling). Moreover, abrupt changes in RIS phase configuration may be undesirable
due to hardware switching constraints. Therefore, we introduce a regularization term

∆θt =

N∑
n=1

|θn(t)− θn(t− 1)| , (15)

which penalizes large temporal variations in RIS configurations.
Classically, solving (11) and its EE-regularized variants requires non-convex optimization and iterative

algorithms. In large-scale RIS settings with fast time-varying channels, such approaches become computationally
prohibitive, motivating a learning-based alternative.

2.4. DRL-Based Beamforming Framework

To address the non-convexity, dimensionality, and dynamics of the joint design problem, we adopt a DRL
framework. Figure 2 provides an abstract view of the agent–environment interaction loop. The wireless system
(BS, RIS, and UEs) is treated as the environment, while the DRL agent observes system states and outputs actions
corresponding to beamforming and RIS phase configurations.

Figure 2. Abstract DRL-based beamforming framework. The upper part shows the physical BS–RIS–UE link with
beamforming vector wt and RIS phase shift Θt; the lower block depicts the MDP loop where the agent maps state
st to action at and receives reward rt.
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2.4.1. MDP Formulation

We formulate the control problem as an MDPM = (S,A,R,P).

State Space S

The state st ∈ S at time step t aggregates the relevant information for decision-making. A representative
design is

st =
[
ĥBU(t), ĤBR(t), ĥRU(t), Θt−1, wt−1

]
, (16)

where the hat notation indicates estimated or compressed channel information (e.g., dominant path parameters,
effective channel gains), and (Θt−1,wt−1) represent the most recent control actions. In the multi-user case, this
state is extended to include all users’ effective channels or appropriate summary statistics (e.g., user SINR vector).

To reduce dimensionality, we may apply linear projections or neural encoders that map high-dimensional CSI
to low-dimensional feature vectors before feeding them to the DRL networks. The high-dimensional channel-related
observations included in the state are processed through a dedicated feature encoding stage before being fed into the
actor and critic networks. The primary purpose of this encoder is to reduce the dimensionality of cascaded BS–RIS–
UE channel representations while preserving dominant spatial characteristics that are most relevant for beamforming
and RIS phase control. By mapping raw or compressed channel descriptors to a compact latent representation, the
encoder facilitates stable learning and mitigates overfitting in large RIS configurations. A lightweight multilayer
perceptron is adopted for feature encoding to balance representational capability and computational efficiency. This
design choice is motivated by the requirement of real-time inference in RIS-assisted 6G systems, where excessive
architectural complexity may lead to prohibitive latency. While more sophisticated encoders, such as attention-based
mechanisms or graph neural networks, may further exploit structured channel correlations, they typically incur
higher computational overhead and require additional architectural tuning. In this work, the focus is therefore placed
on a simple yet effective encoding strategy that aligns with the overall objective of scalable and low-latency deployment.

Action Space A

The action at time t is
at =

[
w(t),Θ(t)

]
, (17)

where both w(t) and the phase angles {θn(t)} are continuous variables. The resulting action space is high-
dimensional and continuous, which justifies the use of actor–critic algorithms designed for continuous control (e.g.,
DDPG, TD3, SAC). If a discrete-phase RIS is used in practice, the actor output can be quantized post hoc without
changing the MDP formulation.

Reward FunctionR

The scalar reward rt ∈ R is designed to promote high communication performance while discouraging
excessive power usage and control instability:

rt = αCtot,t − β∥w(t)∥2 − λ∆θt, (18)

where α, β, λ ≥ 0 are tunable weights. For the single-user case, Ctot,t reduces to Cu(t), whereas in the multi-user
case it may represent sum-rate or a weighted fairness objective. The penalty on ∥w(t)∥2 enhances energy efficiency,
while the penalty on ∆θt enforces smoother RIS configuration trajectories.

Transition Dynamics P

The next state st+1 is generated by the wireless environment based on the previous state and selected action:

st+1 = f(st, at) + ωt, (19)

where f(·) reflects channel evolution (e.g., due to user mobility or fading), and ωt captures unmodeled randomness
(e.g., estimation errors). The transition kernel P is not assumed to be known analytically; instead, it is implicitly
learned through interaction, which is a key advantage of DRL for model-deficient systems.

The proposed control problem is formulated as a Markov decision process to enable sequential and adaptive
optimization of beamforming and RIS phase configurations. Although wireless channels evolve due to mobility and
estimation noise, the state representation includes both the current channel-related observations and the most recent
control actions. This design provides an approximately Markov description at the coherence-block timescale, since

https://doi.org/10.53941/jadc.2025.100003 6 of 14

https://doi.org/10.53941/jadc.2025.100003


Feng J. Adv. Digit. Commun. 2025, 2(1), 3

future observations are largely determined by the current environment state and applied actions. Action feasibility is
ensured through explicit constraint handling at the execution stage. In particular, the beamforming vector produced
by the actor is normalized to satisfy the transmit power constraint, while RIS phase outputs are bounded to the
physically valid range. As a result, all actions applied to the wireless environment remain feasible even though the
policy is learned in a continuous, unconstrained parameter space. The reward function further incorporates a temporal
smoothness regularization on RIS phase updates. This term discourages abrupt reconfiguration between consecutive
time steps, which not only reflects practical hardware limitations but also stabilizes policy learning by suppressing
oscillatory control behavior. By balancing communication performance, energy usage, and control regularity, the
proposed reward design promotes robust and stable learning in high-dimensional continuous-action settings.

2.5. Actor–Critic Network Design

We adopt an actor–critic architecture to handle the continuous action space. The actor network πϕ(s)

parameterized by ϕ maps states to actions, while the critic network Qψ(s, a) parameterized by ψ estimates the
expected return Q-value.

2.5.1. Actor Network

The actor network is implemented as a multi-layer perceptron (MLP) with L hidden layers:

at = πϕ(st) = f
(L)
ϕ ◦ f (L−1)

ϕ ◦ · · · ◦ f (1)ϕ (st), (20)

where f (ℓ)ϕ (·) denotes affine transformations followed by non-linear activations (e.g., ReLU or tanh). The output
layer is partitioned into two parts: one for the BS beamforming vector and one for the RIS phase angles. Appropriate
output activations (such as scaled tanh) ensure that the beamforming power constraint and phase range are respected,
possibly followed by a normalization step:

w(t)←
√
Pmax

w(t)

∥w(t)∥
. (21)

2.5.2. Critic Network

The critic network takes both the state and action as inputs and outputs a scalar Q-value:

Qψ(st, at) = gψ
(
[st, at]

)
, (22)

where gψ(·) is again an MLP. The critic is trained to minimize the temporal-difference (TD) loss based on a target yt:

L(ψ) = E
[
(Qψ(st, at)− yt)2

]
. (23)

For example, in a DDPG-like algorithm,

yt = rt + γQψ′
(
st+1, πϕ′(st+1)

)
, (24)

where ψ′ and ϕ′ denote parameters of slowly updated target networks and γ ∈ (0, 1) is the discount factor.

2.5.3. Policy Update

The actor parameters ϕ are updated by ascending the gradient of the expected return:

∇ϕJ(ϕ) = Es∼D

[
∇aQψ(s, a)

∣∣
a=πϕ(s)

∇ϕπϕ(s)
]
, (25)

where D denotes the replay buffer distribution. The use of experience replay and target networks significantly
improves stability in training.

2.6. Training Procedure and Practical Considerations

The DRL training follows the standard off-policy actor–critic loop with replay memory. At a high level, the
procedure is:

(1) Initialize actor πϕ, critic Qψ , and corresponding target networks. Initialize replay buffer D.
(2) Observe initial state s0 (estimated channels and control initialization).
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(3) For each time step t:

(a) Select action at = πϕ(st) +Nt, where Nt is an exploration noise process (e.g., Ornstein–Uhlenbeck
or Gaussian).

(b) Apply at to the wireless environment, obtain reward rt and next state st+1.
(c) Store transition (st, at, rt, st+1) in replay buffer D.
(d) Sample a mini-batch fromD, update critic by minimizing the TD loss, and update actor via policy gradient.
(e) Update target networks using soft updates.

(4) Repeat until convergence or a fixed number of episodes is reached.

For clarity and reproducibility, we summarize the main hyperparameter settings used to train the DRL agent.
The replay buffer is configured with a fixed capacity sufficient to store past transitions across multiple episodes, and
mini-batches are uniformly sampled during training. Both the actor and critic networks are optimized using Adam
with separate learning rates, where the critic learning rate is set higher to enable faster value-function convergence.
Exploration during training is achieved by injecting stochastic noise into the actor outputs, using a temporally
correlated noise process to encourage efficient exploration in the continuous action space. Target networks for both
the actor and critic are updated using a soft-update strategy with a small update coefficient to stabilize training.
The actor and critic are implemented as multilayer perceptrons with identical depth and moderate hidden-layer
widths to balance representational capacity and computational efficiency. All hyperparameters are kept fixed across
experiments to ensure fair and consistent evaluation.

In practice, the DRL agent can be trained offline in a high-fidelity simulation environment, and then deployed
online with fine-tuning using real measurements. The online inference phase is highly efficient: given a state vector,
the actor network performs a few matrix multiplications to produce the beamforming and RIS configuration, which
has significantly lower complexity than solving a non-convex optimization problem from scratch at each time
slot. Once training is completed, the online execution of the proposed framework primarily consists of a forward
pass through the actor network, followed by simple normalization operations for beamforming and RIS phase
outputs. The inference-time computational cost is therefore determined by the fixed network depth and width, and
remains constant with respect to the number of optimization iterations, in contrast to classical alternating or convex
optimization methods that require repeated iterative updates. As the RIS size increases, the computational burden
scales linearly with the input dimension of the encoder and the first network layers, while the overall network depth
remains unchanged. This property enables scalable deployment for large RIS arrays without incurring iterative
solver overhead. Moreover, since online control does not involve gradient computation or backpropagation, the
runtime requirements are modest and compatible with real-time execution on standard CPU or GPU platforms.
While detailed hardware-specific latency measurements are beyond the scope of this work, the above analysis
clarifies why the proposed DRL-based approach is well suited for low-latency and deployment-oriented RIS-assisted
communication systems.

2.7. Computational Complexity and Deployment Aspects

The computational complexity of the proposed DRL framework is dominated by two components: (i) the
forward pass of the actor network during inference; and (ii) the backward pass during training. Let ds and da be the
state and action dimensions, and let each hidden layer of the actor contain H neurons. The complexity of a single
forward pass is approximately O(dsH + (L− 1)H2 +Hda), which is modest even for large N and can be handled
in real time on edge hardware.

By contrast, classical alternating optimization or meta-heuristic algorithms typically require iterative updates
with complexity that scales at least linearly with the number of RIS elements and may involve matrix inversions or
large-scale searches. As a result, the DRL approach offers a favorable trade-off: substantial offline training cost in
exchange for extremely fast online decision-making.

From a deployment perspective, the proposed framework can be integrated into a 6G radio access network
(RAN) as a software module in the BS baseband unit or in a co-located edge server. The interface to the RIS
controller is realized through standard control links (e.g., Ethernet or dedicated control channels), and the control
period can be aligned with the channel coherence time to guarantee both reactivity and stability.

In summary, this section has detailed the physical-layer modeling of the RIS-aided 6G system, the resulting
non-convex joint beamforming problem, and the DRL-based solution framework. The use of a continuous-action
actor–critic architecture allows the agent to learn efficient beamforming and RIS configurations directly from
interaction with the environment, circumventing explicit non-convex optimization and enabling real-time operation
even in high-dimensional settings. The subsequent section evaluates the proposed framework through extensive
simulations under various channel, mobility, and system configurations.
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3. Experimental Evaluation

This section presents an extensive experimental evaluation of the proposed deep reinforcement learning
(DRL)–based beamforming framework for RIS-aided 6G systems. Following the methodology structure adopted by
recent JADC articles, we design a progressive evaluation pipeline that begins with controlled baseline comparisons
under diverse propagation environments, advances to an in-depth analysis of learning stability and convergence
behaviour, and finally examines scalability, mobility robustness, and ablation studies. All experiments are conducted
in a custom-built link-level simulator that reflects the physical-layer signal and channel models detailed in Section 2.
To ensure both reproducibility and representativeness, we adopt a multi-parameter Monte Carlo evaluation procedure
in which each reported result is averaged over 500 randomly generated channel realizations unless otherwise
specified. The simulated system includes an M = 16–antenna BS, a programmable RIS with up to N = 512

reflecting elements, and U ∈ {1, . . . , 12} single-antenna users with mobility and blockage patterns modeled after
standard 3GPP TR 38.901 urban micro-cell assumptions. Noise power is fixed at σ2 = −90 dBm, and the maximum
BS transmit power is Pmax = 30 dBm unless explicitly varied.

The baseline algorithms include alternating optimization (AO), minimum mean-square error (MMSE) beam-
forming, greedy RIS angle alignment, and a random RIS configuration strategy. All baseline algorithms are carefully
tuned to ensure fairness; for example, the AO method is iterated until convergence or until reaching the same
computational budget as the DRL agent’s inference complexity. The proposed DRL agent uses the actor–critic
architecture discussed in Section 2, and the training phase is executed offline for 2000 episodes before being
deployed in an online evaluation loop.

3.1. Experiment 1: Baseline Comparison Under Diverse Channel Conditions

The first experiment investigates how the proposed method performs under varying large-scale and small-
scale channel characteristics. Because RIS-assisted 6G deployments must cope with uncertain propagation pat-
terns—including strong or weak line-of-sight (LoS), heavy shadowing, dense multipath, and sporadic blockage—it is
critical for a beamforming algorithm to generalize across a wide range of environments. To this end, we vary (i) SNR
from −10 to 30 dB; (ii) shadowing standard deviation σsh from 0 to 10 dB; and (iii) multipath cluster count from 1

to 8 using the clustered Rician channel defined in Section 2. For each combination of parameters, the achievable
downlink rate and energy efficiency are evaluated for the proposed DRL beamforming, AO, MMSE, greedy RIS
alignment, and random RIS schemes. The performance trends discussed here are obtained under both single-user
and multi-user transmission settings. When multiple users are present, the reported rate and energy-efficiency
metrics inherently reflect inter-user interference and resource coupling effects, as the beamforming vectors and
RIS configuration are jointly optimized across all active users. For presentation clarity, the results are shown in an
aggregated form. It is worth noting that all reported performance results are obtained by averaging over a large
number of independent channel realizations and training episodes. This averaging process naturally smooths out
randomness arising from small-scale fading, user mobility, and stochastic policy exploration during DRL training,
thereby providing a representative estimate of the expected system performance. For clarity of presentation, only
the averaged trends are shown, while the underlying evaluation already reflects statistically aggregated behavior
across diverse realizations.

Figure 3 summarizes the findings. In subplot (a), the achievable downlink rate increases monotonically with
SNR across all methods, but the DRL approach consistently provides a 12–18% gain over AO and a substantially
larger improvement over greedy and random strategies. Importantly, the performance gap widens in low-to-moderate
SNR regimes, showing that DRL learns beamforming and RIS patterns that exploit subtle angular and amplitude
correlations in the cascaded channel—correlations that traditional iterative optimization fails to capture when CSI is
partially noisy.

Subplot (b) examines robustness against large-scale fading by increasing shadowing standard deviation σsh.
All schemes experience degradation due to power dispersion, but the DRL method decays the slowest, retaining
more than 70% of its nominal rate at σsh = 10 dB, whereas AO falls below 60%. This behaviour indicates that the
trained policy internalizes a mapping from noisy or incomplete channel-state features to resilient RIS configurations
that maximize average signal strength instead of overly fitting instantaneous CSI.

Subplot (c) explores the effect of multipath richness by varying the number of geometric clusters. The DRL
policy benefits significantly from additional scattering paths, suggesting that the learned encoder within the state
representation (Section 2) effectively captures long-range dependencies in cascaded BS–RIS–UE channels. In
contrast, greedy alignment saturates quickly due to its reliance on strongest-path heuristics.

Finally, subplot (d) reports energy efficiency as a function of SNR. While AO occasionally achieves moderate
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efficiency at high SNR, its performance is inconsistent because AO-based solutions often allocate more transmit
power to compensate for suboptimal RIS coherence. The DRL agent, through its reward shaping and power-penalty
regularization, suppresses unnecessary beamforming power and yields a smoother efficiency curve across all SNR levels.

Figure 3. Experiment 1. Comprehensive baseline comparison: (a) rate vs. SNR; (b) rate vs. shadowing variance; (c)
rate vs. number of multipath clusters; (d) energy efficiency vs. SNR.

3.2. Experiment 2: Convergence, Stability, and Learning Dynamics

The second experiment focuses on the reinforcement learning aspects of the proposed framework. Unlike
conventional optimization methods, DRL relies on sequential decision-making and stochastic gradient updates;
hence, it is important to examine convergence behaviour, reward dynamics, and sensitivity to hyperparameters. The
agent is trained for 2000 episodes using the interaction loop described in Section 2, and at each episode we record
(i) the average downlink rate obtained by executing the agent’s current policy; (ii) the cumulative reward; (iii) the
actor reconstruction loss; and (iv) the critic temporal-difference loss.

Figure 4 shows a 4-panel visualization of the learning process. Subplot (a) demonstrates that the rate improves
rapidly during the first 400 episodes and continues to stabilize thereafter, gradually approaching a stationary
performance level. The slight oscillations visible in early episodes stem from the stochastic exploration process,
which is essential for avoiding premature convergence to suboptimal policies.

Subplot (b) tracks the cumulative reward evolution. The reward curve exhibits a smoother trend compared to
the rate curve because it includes penalty terms for power usage and abrupt RIS phase changes. This demonstrates that
the agent successfully learns not only to maximize rate but also to regulate control overhead and energy consumption.

Subplots (c) and (d) visualize the decline of actor and critic losses. Both curves show a characteristic exponential
decay with small oscillations, indicating stable gradient propagation and no signs of divergence or catastrophic forgetting.
It is noteworthy that the critic loss decays faster than the actor loss, which is consistent with established results in
actor–critic theory, where the critic approximates the value landscape before guiding policy updates.

To assess stability further, we train additional models under different learning rates η ∈ {10−4, 10−3, 5 × 10−3}.
Models trained with too aggressive learning rates exhibit delayed convergence and larger oscillations in reward,
confirming the need for moderate learning-rate scheduling in high-dimensional continuous-control environments.
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Figure 4. Experiment 2. DRL training dynamics showing: (a) average rate per episode; (b) reward evolution; (c)
actor loss; and (d) critic loss.

3.3. Experiment 3: RIS Size Scaling, Mobility Robustness, and Ablation

The final experiment evaluates scalability with respect to RIS size, robustness under user mobility, and
the contribution of different architectural components through ablation studies. RIS size is varied across
N = {32, 64, 128, 256, 512}, mobility speed is swept from 0 to 20m/s, and three ablation variants are tested by
removing (i) RIS smoothness regularization; (ii) beamforming power-normalization constraint; and (iii) the RIS
feature encoder within the state representation.

Figure 5 shows the results. Subplot (a) reveals that the proposed DRL approach scales favourably with RIS size:
while all schemes benefit from larger panels, the DRL method leverages the higher spatial degrees of freedom more
effectively, achieving an approximately linear rate growth with respect to log2N . AO and MMSE display sublinear
improvements because their optimization routines do not fully exploit long-range cascaded channel interactions,
especially beyond N = 128.

Figure 5. Experiment 3. System scalability and ablation analysis: (a) rate vs. RIS size; (b) rate vs. user mobility
speed; (c) ablation study with mean and variance.

Subplot (b) explores the effect of user mobility on achievable rate. Although all methods degrade with higher
speeds due to channel non-stationarity, the DRL policy exhibits markedly slower performance deterioration. This
result highlights the benefit of learning temporal consistency in RIS configurations, which makes the system less
vulnerable to instantaneous CSI fluctuations. Greedy and MMSE approaches deteriorate rapidly since their updates
depend heavily on precise angular-domain channel estimates, which become unreliable in mobility scenarios.

Subplot (c) presents the ablation bar chart with error bars. Removing the RIS smoothness constraint leads
to unstable RIS updates that increase control overhead and degrade rate by approximately 10%. Removing

https://doi.org/10.53941/jadc.2025.100003 11 of 14

https://doi.org/10.53941/jadc.2025.100003


Feng J. Adv. Digit. Commun. 2025, 2(1), 3

beamforming power normalization produces excessive power bursts, reducing energy efficiency and slightly
harming rate. The most severe degradation occurs after removing the RIS feature encoder: the agent loses its ability
to extract structured knowledge from the cascaded channel, leading to a 17% drop. These findings confirm the
necessity of all three components introduced in Section 2.

The ablation analysis is designed to examine the functional contribution of key architectural components,
namely the RIS feature encoder, action normalization, and phase smoothness regularization. These elements directly
affect the stability and effectiveness of the joint control policy and therefore constitute the primary focus of the
ablation study. Other design aspects, such as reward coefficient values, network depth and width, replay buffer
configuration, and exploration strategy, are intentionally fixed to representative settings in order to isolate the impact
of the core structural modules and ensure consistent training behavior. A more exhaustive sensitivity analysis
covering a broader range of hyperparameters and robustness factors, including imperfect channel information and
quantized phase control, would further enrich the evaluation but is beyond the scope of the present study. The
current ablation results should therefore be interpreted as validating the necessity and effectiveness of the main
architectural components rather than providing a comprehensive robustness assessment. Although the experimental
results are primarily presented in graphical form, the observed performance gains consistently translate into tangible
numerical improvements across the evaluated operating conditions. In particular, the saturation behavior at high
signal-to-noise ratios reflects the effectiveness of joint beamforming and RIS phase optimization in approaching
interference-limited regimes, where further power increases yield diminishing returns. The consistent separation
between the proposed method and baseline schemes in these regimes indicates robust performance advantages rather
than isolated operating-point gains. Moreover, while explicit fairness or quality-of-service metrics are not separately
reported, the joint optimization framework inherently balances user performance through shared beamforming
and RIS configuration, which implicitly constrains extreme performance disparities. User mobility effects are
already embedded in the stochastic channel realizations used throughout the evaluation, ensuring that the reported
results reflect dynamic propagation conditions even though mobility parameters are not explicitly varied. These
observations collectively support the quantitative significance and robustness of the proposed approach within the
scope of the current experimental study.

Across the three experiments, the proposed DRL-based beamforming strategy consistently outperforms
classical optimization and heuristic baselines. The method demonstrates strong robustness to channel uncertainty,
scalable behaviour under large RIS configurations, resilience to user mobility and fading dynamics, and stable
convergence with interpretable learning dynamics. These results confirm that the combination of deep feature
encoding, continuous-action actor–critic learning, and carefully designed reward shaping yields a practical and
high-performing solution for future RIS-assisted 6G networks.

4. Conclusions

This paper presented a comprehensive investigation into deep reinforcement learning–based joint beamforming
for RIS-aided 6G wireless systems, addressing the fundamental challenges posed by high-dimensional optimization,
mobility-induced channel variation, and limited channel state information. By formulating the problem as a
continuous-action Markov decision process and designing an actor–critic architecture tailored for RIS phase control
and BS beamforming, the proposed framework successfully learns adaptive policies capable of operating under
realistic channel dynamics. The training procedure integrates reward shaping, smoothness regularization, and
effective state encoding, leading to a stable and sample-efficient learning process.

Extensive experiments conducted under diverse environmental conditions—including varying SNR, shadowing,
multipath sparsity, and user mobility—demonstrate that the DRL framework consistently exceeds the performance of
traditional approaches such as alternating optimization, MMSE beamforming, greedy RIS selection, and random phase
configurations. The system achieves notable improvements in achievable rate, energy efficiency, and robustness to shadow
fading and mobility, reflecting its strong adaptability to real-world dynamics. Moreover, RIS size scaling results show
that the method maintains strong performance even as the number of reflecting elements increases to several hundred,
highlighting its suitability for large-scale 6G deployments. Ablation experiments further reveal the importance of smooth
phase-transition penalties and RIS feature encoding, validating the architectural choices introduced in this work.

Overall, the results confirm that DRL provides an effective and scalable solution for real-time RIS-assisted
beamforming, overcoming the limitations of iterative optimization and hand-crafted heuristics. As 6G networks
continue to evolve toward highly programmable propagation environments, learning-driven architectures such as the
one proposed in this paper offer a promising pathway toward fully autonomous, self-optimizing wireless systems.
Future work may extend this framework to multi-RIS coordination, hybrid active–passive surfaces, distributed
learning among BSs, and real-world over-the-air validation on 6G testbeds.
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