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Accepted: 24 December 2025 of other ships to take effective collision avoidance actions. However, conventional
Published: 29 December 2025  models often fail to accurately capture the interactions between ships in converging
waters, resulting in poor trajectory prediction. This paper proposes a new model,
STETC, which combines a Transformer and a convolutional neural network (CNN)
into a two-layer encoder—decoder structure. The motion path encoder employs a
self-attention mechanism to extract motion features from historical trajectories. The
encounter interaction encoder integrates a CNN and self-attention mechanisms to
extract interaction features from an artificial potential field generated by ship
dynamic parameters. The two decoders then use cross-attention to progressively
establish the spatiotemporal relationships between motion and interaction features.
Through training, the model learns the interaction patterns between ships and the
dynamic development of encounter situations. Real ship trajectory data is used to
validate the effectiveness of STETC. Comparison experiments with observation
times of 5, 10, and 15 min demonstrate that the STETC model outperformed other
models. The case study validates that the STETC model can precisely perceive the
motion states of surrounding ships and, leveraging encounter scenarios, generates
predicted trajectories that reflect the interactive behaviors of the ships more accurately.
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1. Introduction

The rapid expansion of the shipping industry in recent years has resulted in the progressive congestion of
maritime trade routes [1]. This escalation in traffic has introduced additional challenges to the safety of maritime
transport. Notably, ship collisions account for the majority of maritime accidents, with the most of them attributed
to human error [2]. The primary causes include inadequate vigilance, erroneous risk assessments of potential
collisions, and insufficient coordination in collision avoidance. In this context, trajectory prediction is critical as it
offers foresight into future traffic scenarios. This enables maritime personnel to anticipate potential hazards and
undertake preemptive measures for averting collisions, thereby mitigating the risk of conflicts.

Trajectory prediction tasks for vehicles and pedestrians have been studied extensively. Gao [3] used a graph
neural network called VectorNet to fuse the relationships between high-precision map information and vehicle
trajectories and achieved good prediction accuracy. Amir [4] extracted features from the physical environment
using attention mechanisms and adversarial training, and Hao [5] proposed a hierarchical long short-term memory
(LSTM) network incorporating social neighborhoods and scene layouts to predict pedestrian trajectories for foot
traffic. Kosaraju [6] introduced Social-BiGAT, a recurrent generative adversarial network that uses graph attention
network principles to predict multimodal trajectories realistically, thereby capturing pedestrian social interactions
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within a scene. However, the motion characteristics and constraints of objects vary in different environments. For
example, vehicles generally travel along lane lines and act according to signaling changes, whereas human
trajectories must consider diverse influences such as individual and social interactions. Notably, vehicles and
pedestrians can change their motion states within a short time interval. In contrast, ships cannot execute steering
and deceleration operations quickly owing to large inertia, a certain safety distance needs to be maintained between
ships in maritime navigation, and their motion patterns differ from those of vehicles and pedestrians. Therefore,
trajectory prediction techniques developed for vehicles and pedestrians may not be directly applicable to predicting
ship trajectories at sea. Moreover, ships navigate in more open spaces and are subject to fewer environmental
restrictions. Accordingly, considering the distinct motion patterns of ships and their social interaction dynamics is
essential. Although the International Regulations for Collision Avoidance at Sea (COLREGs) provide collision
avoidance rules for various encounters, in practice, crew members often deviate from these rules according to the
specific circumstances of an encounter, which increases the uncertainty of future trajectories. Therefore, historical
trajectory data hold significant value, as they provide critical insights into ship behavior patterns under complex
spatiotemporal conditions and reveal underlying interaction rules and navigation practices among ships. Fully utilizing
and exploring historical data are crucial for improving the accuracy of trajectory prediction in encounter scenarios.

In order to address these challenges, we propose a trajectory prediction model that accounts for
spatiotemporal interactions between ships. This model integrates a Transformer and a convolutional neural
network (CNN) components, forming a complex two-layer encoder-decoder structure. This structure approach
enables the model to capture both historical motion features and social interaction features across all timestamps,
and generate socially aware future trajectories. Our main innovations and contributions are detailed as follows:

1.  We present the novel STETC ship trajectory prediction model, which uses two encoders to capture ship
motions and social features across different levels, from low-level behavior patterns to high-level
contextual associations. The two decoders sequentially establish the spatiotemporal correlation between
these features and future trajectories, thereby enabling the predicted trajectories to account for both basic
motion details and comprehensive encounter interactions.

2. To capture the spatiotemporal interactions during ship encounters, an artificial potential field derived from
the ship’s dynamic parameters is employed to represent the interaction constraints between ships. In the
encounter interaction encoder, a spatiotemporal attention comprising CNNs and self-attention mechanisms
processes the continuous artificial potential field, effectively capturing spatial interaction features across
different temporal scales during ship encounters. By integrating the long-term navigational behavior
features previously extracted from the motion path encoder using the temporal self-attention module, the
model is endowed with the ability to reason about the development of encounter scenarios.

3. Utilizing Automatic Identification System (AIS) data from the Zhoushan sea area, the proposed method
was benchmarked against Transformer, Seq2Seq, and Social GAN models. Error analysis indicators, such
as average displacement error (ADE) and final displacement error (FDE), indicate that the proposed
method surpasses the other models in prediction accuracy. Furthermore, attention visualization and ablation
studies substantiate the rationality of the model design.

2. Related Work

2.1. Machine Learning Models

Guo [7] proposed a ship trajectory prediction algorithm based on K-order multivariate Markov chains, which
utilizes multiple navigation-related parameters to construct a state transfer matrix for trajectory prediction. This
model addresses the uncertainty in ship trajectory prediction. Zhao [8] sought to enhance the prediction accuracy
within constrained waterways. They utilized real-time estimation of system noise within the Kalman filter
algorithm to predict ship trajectories in scenarios with limited ship AIS information. Liu [9] proposed a ship
trajectory prediction model using support vector regression. They employed the adaptive chaos differential
evolution algorithm to optimize the internal parameters, thereby enhancing convergence speed and prediction
accuracy. Zhang [10] developed a maneuvering model for trajectory prediction based on aerodynamic parameters.
They utilized Markov chain Monte Carlo simulations and Bayesian decision theory for development. This method
can provide improved prediction accuracy compared to traditional extrapolation theory. However, it requires more
comprehensive maneuvering patterns to be acquired, and this is often challenging in practical applications.
Virjonen [11] employed the K-nearest neighbors (KNN) search method to predict ships’ sailing times and
positional coordinates. The KNN method involves comparing differences in sailing paths and speeds between new
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and historical ships, identifying historical ships with behaviors similar to those of new ships, and utilizing the
sailing times and positional coordinates of the most similar historical ships to predict the trajectories of new ships.

2.2. Deep Learning Models

With the widespread adoption of AIS and advancements in artificial intelligence technology [12,13], AIS
data have become indispensable tools for water traffic control and regulation [14]. The AIS provides information
such as the ship’s unique identification number, name, latitude and longitude, speed, ground heading, and course
information, along with extensive historical spatiotemporal data on ships, thus aiding researchers in exploring ship
motion characteristics.

In recent years, several studies have utilized LSTM networks and corresponding deformers for ship trajectory
prediction. Ding [15] predicted trajectory sequence characteristics, including longitude, latitude, speed, and
heading of a ship for the next 5 to 20 min using a variational LSTM. Liu [16] addressed issues related to sequence
coding distortion and spatiotemporal data discontinuity, proposing an optimized method for navigation dynamic
prediction using an attention-enhanced LSTM network. Simulation analysis confirmed the accuracy and
robustness of their model, which achieved high-accuracy predictions for ship latitude, longitude, heading, and
speed. Chen [17] proposed a novel ship trajectory prediction framework using a bidirectional LSTM model,
capable of feeding predicted trajectories back into the model to optimize trajectories when a ship’s motion state
changes significantly. Wang [18] introduced a ship trajectory prediction model, CNN-LSTM-SE, which integrates
a CNN module, an LSTM module, and a squeeze-and-excitation (SE) module. The CNN module extracts relational
data among variables such as longitude, latitude, speed, and ground course. The LSTM module captures temporal
correlations, while the SE module adaptively adjusts the importance of channel features, prioritizing those
significantly impacting future trajectories. This model accounts for potential correlations between variables and
temporal features to achieve more accurate predictions. Bao [19] combined a multi-attention mechanism with
gated recurrent units to develop a ship trajectory prediction model analogous to an LSTM network. Although
LSTM networks have achieved satisfactory results in long-term trajectory prediction, they typically struggle to
model complex temporal dependencies [20].

The Transformer, a deep learning model based on attention mechanisms, can capture long-distance data
dependencies and inter-data interactions, tapping into internal data connections crucial for multimodal trajectory
prediction tasks. Jiang [21] merged the LSTM structure with the Transformer algorithm, employing an LSTM
module to capture temporal features of spatiotemporal data and integrating a self-attention mechanism from the
Transformer to address LSTM limitations in capturing long-range sequence information. This method fully utilizes
the long-range dependencies of spatiotemporal features and leverages the complementary advantages of a fused
model. Zou [22] utilized a Transformer to fuse a dynamic scene composed of sensory LIDAR, camera, and
combined inertial navigation system data for predicting the future trajectory of a target vehicle. Experimental
results demonstrated that their Transformer model effectively fuses multimodal sensor information. Yang [23]
introduced the long and short-term spatiotemporal aggregation (LSSTA) network, incorporating a Transformer
network to handle long-term temporal dependencies and temporal convolutional networks to aggregate spatial and
temporal features, successfully enabling multimodal prediction of pedestrian trajectories. To the best of our
knowledge, a Transformer has not been used to fuse information from different types to extract the spatiotemporal
relationships of ships in the ship trajectory prediction field. We propose a method combining a Transformer and
CNN to process historical trajectory sequences and APF matrices, accurately predicting ship trajectories in
encounter scenarios. The proposed method is expected to aid in route planning and ship collision avoidance.

3. Encounter Trajectory Prediction Model

In this study, AIS data were meticulously preprocessed before being input into the STETC trajectory
prediction model to generate accurate predicted trajectories. As illustrated in Figure 1, anomalous data were
removed from the raw AIS dataset to enhance model performance. In accordance with the COLREGs, pairs of
ships involved in encounters were identified, and their trajectory data were extracted. Subsequently, the data were
normalized to enhance the training efficacy and accelerate convergence. The proposed STETC model integrates
Transformer and CNN features, efficiently extracting advanced motion features from historical data. It improves
prediction accuracy by considering the influence of the sailing states of other ships in encounter scenarios.
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Figure 1. Overview of STETC.
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The STETC model comprises two layers of encoder—decoder structures. It extracts trajectory information
from the AIS data of encountering ships. This information is input into the motion trajectory encoder to extract the
historical motion features of the two ships. The encounter potential field of the two ships is calculated using AIS
data and subsequently input into the encounter interaction encoder to extract spatiotemporal relationship features.
The features extracted by the two encoders are progressively fused through the two decoders. Each pass through
a decoder updates the future trajectory vector. Ultimately, the future trajectories of the ships in the encounter
scenario are inferred.

3.1. Problem Formulation

Assuming two ships in an encounter, the historical trajectories of the two ships near where the encounter
occurred X = {X 15 X 2} are considered as inputs and the future trajectories of the two ships Y= {YA] R )?2} are
predicted. The historical trajectories of ships during the observation period are denoted as
X, = {Latf,Lonf, Sogit, Cog; } , where I € {1,2} and f € {1, t } , and the ground-truth trajectories for
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a future period are denoted as ¥, = {Lal‘f, Lonf} , where ¢ € {1, Y d} . The predicted trajectory of a ship is

~

defined as Y = {Lati‘,Lonf } , where t € {1, t } . Here, Lat is the latitude, Lon is the longitude,

© o Y pred
Sog is the ship-to-ground speed, and Cog is the ship-to-ground heading. Our goal is to predict the future

trajectories of an approaching ship pair accurately.

3.2. Trajectory Processing for Encounters

Latitude, longitude, speed, and heading data were extracted from the AIS data to meet our research
requirements. However, owing to multiple factors, including equipment malfunctions and the intricacies of
maritime operational environments, AIS data often exhibit contamination by anomalies and instances of missing
values during the acquisition, packaging, transmission, reception, and decoding stages. Given the challenges of
using such data directly for model training and analysis, AIS data must be detected and repaired to meet the
subsequent operational requirements. An extracted raw AIS dataset is defined as follows:

Traj, = {Lat,,Lon,, Sog,, Cog,} 0

where Traj denotes the single-trajectory dataset, m is the index of the trajectory dataset, Lat isthe latitude, Lon
is the longitude, Sog is the ship-to-ground speed, Cog is the ship-to-ground heading, and ¢ is the time step.

To clean the anomalous trajectories in AIS data, trajectory data that are too weak or non-navigational, AIS
trajectories generated by anchorages, and drift data caused by the failure of onboard AIS equipment or poor signal
transmission must be eliminated. Therefore, we designed a three-step data cleaning process. First, we performed
offset detection by focusing on sudden changes in the positions of trajectory points. We compared the offsets
between the current trajectory point and other trajectory points during a fixed time period, and if an offset exceeded
a predefined threshold, the trajectory point was removed. Next, we performed velocity detection and eliminated
trajectory data with velocities that were below a certain threshold. Finally, start-to-finish distance detection was
performed to identify ships that exhibited a certain level of speed but were in an anchored gyration state. This type
of trajectory exhibits a circular shape, resulting in an excessively small distance between the start and end points of
the trajectory, and should be eliminated. The specific process used to implement these filtering steps is shown below
(Algorithm 1).

Algorithm 1. Trajectory Cleaning

1. Input: Original set of traces M = {T r'aji}

2. Output: Set of cleaned traces M ' = {T raj, '}

3. For m in M

4. For £ in m

5. If t >4

6. Calculate the average interval between the points 7, ; and m, d_ e
7. Calculate the interval between the points #2,_; and m, dl.
8. If d; > 6Xd, ..

9. Delete track points ¢

10. If Sog, <2kn

11. Delete track points ¢

12. Calculate the distance between the points Mg, and m,,, d_,

13. If d, <2NM

14. Delete Tracks m

15.  Return the set of cleaned trajectories M '

The transmission frequency of a shipboard AIS ranges from 2 s to 3 min for ships with different sailing
speeds. Varying transmission frequencies and missing data lead to difficulty in unifying time intervals when
analyzing AIS data. Therefore, AIS trajectory data must be interpolated such that the AIS information on ships
with different sailing statuses has the same frequency. Commonly used interpolation methods include linear,
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segmented linear, Bessel curve, and polynomial interpolation. In this study, we employed the cubic spline
interpolation method based on its established interpolation accuracy, as validated by Zhang [24].

Ships that satisfied the spatial and temporal constraints of an encounter scenario in the cleaned AIS dataset
needed to be screened to obtain ship AIS trajectory data representing encounter scenarios. Specifically, we identified
pairs of ships that overlapped in the time dimension and were close to one another in the space dimension.

To improve the computational efficiency, we used the sliding-window technique to split the entire pairwise
trajectory set into multiple windows. The encounter trajectories were represented by several windows

(Traj ,,Traj,) =[P', P,...P'], where P' =[(Lat',,Lon',,Sog",,Cog",, Lat,, Lon},Sog,,Cog})",]
and [ denotes the number of encounter windows.

Attributes such as the latitude, longitude, heading, course, and speed of each ship were normalized to improve
the training effectiveness and convergence speed. Owing to the significant dimensional differences among these

attributes, attributes with larger dimensions dominate computations. By Normalizing, these attributes are adjusted
to a uniform scale, with their values scaled to the range of [0, 1].

3.3. STETC

This paper presents a trajectory prediction model, namely STETC, designed for dual-ship encounter
scenarios. This model achieves high-precision predictions by explicitly considering the spatiotemporal interactions
between ships and integrating Transformer and CNN architectures. The model employs a two-layer encoder-
decoder framework. The encoding modules consist of a Motion Trajectory Encoder and an Encounter Interaction
Encoder, which are responsible for encoding temporal and spatial interactions, respectively.

The motion trajectory encoder employs a temporal self-attention mechanism to reveal hidden low-level
motion patterns from comprehensive historical trajectory data. Multiple attention heads are used to concurrently
learn relationships between different dimensions in the trajectory data, resulting in enriched motion trajectory
features that establish the unperturbed baseline prediction. The encounter interaction encoder integrates CNN and
self-attention mechanisms for generating spatiotemporal attention. It models ship interactions in encounter
scenarios as an Artificial Potential Field (APF). The CNN layers process the APF at each timestamp, acting as
feature detectors to efficiently extract the instantaneous spatial structure and localized conflict geometry. Given
the temporal continuity of ship encounter interactions, the subsequent self-attention mechanism then establishes
remote time dependencies and quantifies the dynamic, non-linear progression of the conflict, resulting in
temporally continuous and comprehensive encounter interaction features. Each encoding module is followed by a
corresponding decoding module. These decoders are connected in series, progressively fusing the hidden features
extracted by the encoders. This fusion derives the spatiotemporal correlations between historical trajectories and
interaction behaviors, thereby inferring the future trajectories of ships in encounter scenarios. The query in the
decoding module is defined as the initial future trajectory vector, and each pass through the decoder updates this
vector. As noted by Carion [25], this serial decoding structure can independently receive information from different
encoders, hierarchically integrate various types of contextual information, and adapt to multi-input environments.

3.3.1. Ship History Movement Information

The motion trajectory encoder is used to encode the latitude, longitude, speed, and course of two ships for all
observation times in the encountered scenario. In the motion trajectory encoder, the encounter trajectory pair P!
obtained following sliding-window processing is first embedded into the fixed-length vector e’ to obtain a high-
dimensional spatial representation of the trajectory within the time window, as shown in Equation (2). Next, sine
and cosine functions are used to encode embedding vector e’ to ensure that the data associated with each time
step had a unique absolute position in the feature sequence.

e = emb(P") )

where emb is a fully connected layer, e' isthe embedding vector.

Next, multi-head self-attention is employed to encode e, capturing the temporal dependencies of the motion
trajectories. The model processes input trajectory sequences from multiple perspectives and subspaces through the
parallel computations of multiple attention heads. Subsequently, the processed historical ship motion data is
forwarded to the feedforward neural network, enabling the model to extract deeper features.

After the motion encoder encodes the historical trajectory data, the encoded information and the randomly
initialized future trajectory vector are input into the motion decoder. In the decoder’s self-attention layer [26], the
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query(Q ), key( K ), and value( V") are obtained from linear transformations of the initialized future trajectory

vector, it is used to learn the internal temporal relationships within the predicted trajectory sequence. In the cross-
attention layer, the model maps general behavior patterns from the historical ship trajectories to the future
trajectories. Finally, the feedforward neural network outputs the future trajectory vector.

3.3.2. Ship Encounter Information

During encounters, ships frequently interact based on the states of other ships. The interaction information
embedded in historical trajectories is not adequately depicted in the motion trajectory encoder, and relying solely
on the multi-attention module is insufficient to capture the interactions between ships in shared spaces. This paper
proposes the use of the APF matrix to represent the interaction dynamics of ships during encounters. By utilizing
the operational status information of ships, this method quantifies the influence on surrounding ships, thus
providing a more accurate simulation of ship behavior in complex navigational environments and enhancing the
model’s performance. The APF, an essential tool for navigation and obstacle avoidance in maritime contexts, is
based on the concept of potential energy in physics. The APF models a ship’s motion in water as navigation within
a virtual potential field. In the APF, the target point (typically the destination of a route) is considered a source of
attraction, whereas obstacles (e.g., other ships, islands, and buoys) are treated as sources of repulsion. The
surrounding space is represented as a numerical matrix of attractive and repulsive forces. The ship is attracted to
the target point while simultaneously subjected to repulsive forces to avoid collisions.

An APF was designed that considers the repulsive forces between ships and accounts for the dynamic
parameters of ships, including ship-to-ground speed, relative bearing angle, and relative distance. The APF matrix
is obtained by gridding the area around a ship, as shown in Figure 2, and calculating the repulsive forces exerted
on other ships at each grid coordinate. The areas with higher potential field values can be considered to exert
greater repulsive forces on other ships. The potential field equation is defined as follows:

U(p) =vxcos(a)/(1+d) 3)

where p is any point around the ship, ¢, is the angle between the ship heading and the line connecting the

ship to the point, v, is the ship speed, and d » is the distance between the ship and the point.

S
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Figure 2. APF gridding.

In high-dynamic ship encounter scenarios, the primary ambiguity lies in predicting the mutually influencing
maneuvers of the involved ships. The APF model effectively translates geometric proximity and relative motion
states into a quantifiable field of potential conflict through kinematic-based repulsive force calculations. This
transformation constitutes a non-linear geometric mapping, which is analogous to applying a high-pass filter to
the raw data. This process effectively attenuates long-term navigational noise and isolates the immediate, localized
conflict geometry into an image-like representation. Crucially, the potential field value at any grid location (as
defined in Equation (3)) is more than a simple metric of distance; it serves as a quantitative indicator of the
immediate risk and response urgency perceived by the navigating ships. Higher potential field values inherently
signal an elevated requirement for collision avoidance maneuvers, a critical reactive signal decoupled from the
ship’s inertial motion characteristics.

Convolution operations in CNNs emulate the sensory field mechanisms of biological visual systems,
facilitating the efficient capture of localized features within images. The convolutional kernels function as feature
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detectors, identifying information such as edges, textures, and shapes within images. This localization assists a
CNN in capturing the spatial structure of the APF matrix and accurately modeling the positional distribution and
conflict geometry of two ships during an encounter. The convolutional kernels function as feature detectors,
enabling the network to learn increasingly abstract representations of the APF structure through stacked layers. In
the proposed method, the input to the CNN is the APF matrix generated by Equation (3). The matrix array
undergoes convolution, activation, and pooling before being input into the fully connected layer to derive the
encounter encoding vector. The CNN processing flow for the APF matrix is illustrated in Figure 3.

. . . Encounter
Encounter situation Encounter DAPF matrix . R
information
> = 0 | 0 | 0 | 0 |
' — 0 [ 0| 320 | ~
[ | 0 - ~
A Holo| 7|8 2o
= | — = E:&___ - oo -
T T === _ . X
— 0| 25|68 S—==_
IoF 1
— 0 0 1 3
[
DAPF convolutional Pooling Fully connected

Figure 3. CNN processing of APF.

As shown in Figure 4, the input length of the encounter interaction encoder is consistent with that of the
motion trajectory encoder processing the APF matrices sequentially across time steps. While the initial
Convolutional Neural Network (CNN) layer excels at capturing the instantaneous, localized spatial geometry of
the conflict, it inherently lacks the capacity to model the necessary global temporal dependencies. Therefore, a
Self-Attention mechanism is employed immediately following the CNN to address the significant temporal
correlations that exist between the spatial distribution features across different timestamps. The integration of these
two components is designed to leverage their complementary strengths. The CNN first filters and extracts the
immediate conflict features, and the subsequent Self-Attention mechanism then establishes remote time
dependencies and quantifies the dynamic, non-linear progression of the encounter over the entire observation
window. By weighting features across all time steps, the mechanism effectively learns to identify the critical
moments where risk escalates or intent changes, thereby capturing advanced, time-dependent interaction dynamics
essential for accurate trajectory prediction. The specific formulas are shown in Equations (4)—(6).

xl :f(wl ®xl*1+b1) (4)

. OK™
Attention (Q, K, V) = Softmax( \/d_ 14 5)
k
head, = Attention(Q,, K, V)
MultiHead(Q, K, V') = Concat(head, ..., head, )W ° ©)

For the convolution operation, x' represents the output and w' denotes the weight matrix of the [ -th layer,
with A’ as the bias and f as the RULE activation function. Within the attention mechanism, the 0 , K, and

V' are obtained through linear transformations of x from the final convolutional layer. Here, /i signifies the
number of self-attention heads, with i €[1,/4] as the head index. The dimension of the query and key is defined

O _ phdixdpp - . .
byd, =d, .,/ h,and W "= € R" s the output weight matrix.
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Figure 4. Relationships between the encounter information in the first time step and in the other time steps in the
self-attention.

The final decoder receives outputs from the preceding decoder and the encounter interaction encoder,
utilizing a cross-attention mechanism to integrate motion and interaction features. As illustrated in Figure 1, the
output from the first decoder serves as the Query vector in the second decoder’s Cross-Attention mechanism, while
the interaction features are utilized as the Key and Value. Crucially, these interaction features are conceptualized
as dynamic correction signals applied to the motion baseline trajectory, rather than as primary driving factors. This
strategic design ensures that the trajectory is influenced by the interaction features only to the degree requisite for
achieving effective collision avoidance. By computing precise correction weights between the unperturbed
trajectory (Query) and the available interaction signals (Key/Value), the model performs fine-grained, temporally
sensitive adjustments to the predicted trajectory coordinates. This targeted refinement process is instrumental in
significantly enhancing prediction accuracy, particularly in high-dynamics encounter scenarios. Finally, a multi-
layer perceptron, comprising three fully connected layers, reduces the dimensionality of the future trajectory vector
to predict the trajectory coordinates:

Y, = mip(S)) ™)

In summary, the model encodes historical trajectory information via the motion trajectory encoder, extracts
dynamic encounter information using the encounter interaction encoder, and fuses ship trajectory and encounter
scenario information through two decoders for sensing. The model establishes a spatiotemporal connection
between historical trajectory information and encounter dynamic information through these two layers, enabling
future trajectory vectors to update the future trajectories by gradually integrating different contextual information.

The fundamental rationale behind the proposed dual-encoder architecture is to achieve decoupled mapping
in the feature space, thereby separating two orthogonal types of navigational information: historical trajectory
information and encounter scenario information. The Motion Trajectory Encoder directly processes the raw
sequential data, forcing the model to learn the inherent temporal dependencies and long-term inertial patterns of
individual ships. Its output represents an unperturbed baseline predicted trajectory derived from historical
momentum. In contrast, the Encounter Interaction Encoder first transforms the same raw data into an APF matrix.
By feeding the APF matrix into a CNN and a self-attention module, the model is guided to capture only the
short-term, spatially localized features required for collision avoidance. This strategy prevents the highly volatile,
reactive signals from the APF from corrupting the smooth, predictable inertial features.

In summary, the model leverages this two-layer encoding structure to establish a robust spatiotemporal
connection between historical trajectory and encounter dynamic information. This encoding separation
subsequently enables the cascaded decoders to perform hierarchical feature fusion: first establishing the motion
baseline, then applying necessary dynamic corrections based on the dedicated interaction features. This
differentiated mapping mechanism, coupled with the hierarchical fusion process, constitutes the deep logic that
allows the model to achieve superior prediction accuracy by gradually updating the future trajectory vectors with
integrated contextual information.
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3.4. Model Evaluation Indices

Two metrics, namely the ADE and FDE, were used to evaluate the predictive validity of the proposed model.
The ADE and FDE are standardized metrics for assessing trajectory prediction models and are frequently
employed as evaluation criteria in trajectory prediction studies [27]. The ADE represents the average Euclidean
distance between the predicted and true trajectories, which can visually reflect the prediction accuracy of a model.
The FDE represents the final Euclidean distance between the endpoints of the predicted and true trajectories, which
is used to assess the model accuracy in terms of predicting the end position of a trajectory. These metrics are
defined as follows:

1 Lpred .
ADE =—— ) [(¥; -1, ®)
pred 1=l
FDE = ||(Ytpred - ?tpred )”2 (9)

where Y and Y denote the latitude and longitude coordinates of the real and predicted trajectories, respectively,

and ¢ denotes the number of time steps in the window.

pred

4. Experiments and Results

4.1. Experimental Settings

The experimental data were AIS data collected from sea areas with high traffic flows. The data were collected
in September 2018, and the longitude coverage was from 122.03° E to 122.22° E, whereas the latitude coverage
was from 29.78° N to 29.94° N. Preprocessing the AIS data and extracting ship trajectory pairs in encounter
scenarios yielded a total of 2169 multi-ship sailing trajectory segments. The data visualization is presented in
Figure 5. These track segments were classified into three types according to the COLREGs: 734 AIS track pairs
representing pursuit scenarios, 956 AIS track pairs representing cross-encounter scenarios, and 479 AIS track pairs
representing encounter scenarios. The sliding-window method was used to divide the dataset for the encounter
scenarios, and 179,824 windows were obtained. The dataset was partitioned into training, validation, and test sets
at a ratio of 6:2:2. The training set was employed to fine-tune the model parameters, including the weights and
biases. The validation set was used to conduct an initial evaluation of the model's performance and fine-tune its
hyperparameters. Following training, the test set was used to evaluate the generalization ability of the final model.

The STETC model utilizes a two-layer encoder—decoder structure. The two distinct encoders are the Motion
Trajectory Encoder and the Encounter Interaction Encoder. They feed into their respective decoders, which are
connected in a cascaded manner to facilitate hierarchical feature fusion. The input size for the Motion Trajectory
Encoder is [64, 2, 10, 4], where 64 is the batch size, 2 is the number of ships, 10 represents the observation time
length, and 4 denotes the feature dimension (e.g., latitude, longitude, speed, heading). The input size for the
Encounter Interaction Encoder is [64, 2, 32, 32], where 64 is the batch size, 2 represents the number of APF
(Artificial Potential Field) matrices, and 32 * 32 is the resolution of the APF matrix, each grid cell represents about
200 m. The detailed parameters of the model components are presented in Table 1.

Table 1. STETC network structure and parameters.

Parameter Value Parameter Value
Model Dimension 64 Batch size 64
Number of Layers 2 Learning rate 0.0001
Number of Heads 8 Dropout Rate 0.4

Kernel Size 3 Optimizer Adam
CNN Output Size 128 epoch 1000
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Figure 5. Study area. (a) Research dataset visualization. (b) Electronic chart of Zhoushan Luotou waterway.
4.2. Analysis of Experimental Results

4.2.1. Comparative Analysis of Experimental Results

The model subjected to experimental comparison in this study encompass the STETCT , TCN-Attention-
GRU [28], Optuna-BILSTM [29], Transformer [26], Social GAN [27], and Seq2seq [30]. The observed time was
set to 5 min and the predicted durations were configured as 5, 10, and 15 min to verify the predictive performance
of STETC and comparative model across various prediction lengths. The time interval following AIS data
preprocessing was set to 30 s. The proposed model was compared with the models described below over the
different prediction lengths, with the ADE and FDE metrics employed to assess the efficacy.

The models described above were trained and tested on our collected dataset to predict trajectories from 5 to
15 min in the future using the historical trajectories at the observation times as inputs. Furthermore, when the
prediction horizon was set to 5 min, the average inference time per trajectory for all models was calculated. Table
2 presents the performance contrasts between the proposed STETC model and the baseline models across various
prediction lengths. The ADE and FDE values are provided, with bold font denoting the optimal ship trajectory
prediction outcomes. The prediction errors of all the models increased as the prediction time increased. However,
the performance of the STETC model consistently surpassed that of the other models across all prediction
durations. Optuna-BILSTM, Seq2seq, and Social GAN are disadvantageous for long-distance prediction because
the LSTM model may forget previous information for excessively long historical trajectory sequences, resulting
in these models being unable to capture long-distance dependencies in the time series effectively. At a prediction
duration of 5 min, the ADE of the STETC model was reduced by 8.9%, 11.0, 22.9 %, 16.0 %, and 12.8 % and the
FDE was reduced by 15.5%, 10.6%, 19.6%, 20.7%, and 12.7% compared with those of the TCN-Attention-GRU,
Optuna-BILSTM, Transformer, Social GAN, and Seq2seq models, respectively. This indicates that STETC
effectively captures the encounter dynamics between ships based on their historical motion characteristics.
However, for the FDE with prediction durations of 10 and 15 min, the values of STETC were only 0.4% and 7.1%
smaller than those of the Transformer model, respectively. This is because ships in more distant positions may
have already made it past the current intersecting waters, encounter interaction information in the APF that does
not affect trajectories that are farther away, and the true endpoints of long-distance predictions are more affected
by other environmental factors (e.g., meeting with other ships or turning in a channel). Overall, STETC is superior
at predicting ship trajectories in encounter scenarios compared with the other models and can provide more
effective reference information for maritime traffic safety warnings in intersecting waters.The comparison of the
inference times reveals that STETC exhibits a relatively long processing time; however, the single-step inference
time remains below 0.01 s, which is within an acceptable range for practical applications.
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Table 2. Performance evaluation of STETC and baseline models.

Model Metric (m) 5 min 10 min 15 min Inference Time(s)
Transtorme FDE uats  oelo  sise 000l
Social GAN FDE 6.7 51867 142,83 0.0010
Seq2seq ?gg 17692.9286 31;2;;2 gg?:(l)g 0.0003
TTCN-Atiention-GRU ~ +0F o7 e o 0.0042
OpuniBILS™M  Fpp  isa  spxn  som 0007
e M gn wp e o

4.2.2. Case Analysis

We selected pairs of ships of various encounter types from the test set, set both the observation and prediction
times to 5 min, compared the predicted trajectories generated by STETC with those generated by the other models,
and visualized the predicted trajectories and APF of the final observation time step to authenticate the trajectory
prediction capability of the proposed model in authentic encounter scenarios further.

As shown in Figure 6, the two ships navigated into the intersecting water from the west and southeast
directions, forming a cross-encounter scenario. In terms of the predicted trajectories, although the Social GAN,
Transformer, TTCN-Attention-GRU, and Optuna-BILSTM accurately forecasted the direction of ship 2, it
overlooked the impact of ship interactions, resulting in a notable deviation between the predicted trajectory of ship
1 and the actual trajectory. The predicted trajectories of STETC matched the real trajectories most closely,
including the steering intention of ship 2, indicating that the proposed model can make reasonable predictions
based on the perceived encounter scenarios. According to COLREG Article 15, a ship with another ship on its
starboard side should give way to the other ship, meaning that ship 1 should give way in the example scenario.
However, in reality, ship 2 took the initiative to avoid the other ship, leaving a sufficient safety distance. This
demonstrates that STETC can flexibly capture information in encounter scenarios and learn the behaviors of ships
outside the scope of the COLREGs, thus assisting ship operators in making effective safety decisions.

29.97 4 T T
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29.94 4
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ToeEON |

29.91 A \
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29.89 1

12212 12214 12216 12218
Lon
Figure 6. Schematic of the cross-encounter scenario. The solid black line represents the observed track and the
dashed black line represents the true track.

As shown in Figure 7, two ships from the north and south entered a head-to-head encounter scenario.
According to COLREG Article 14, when two motorized ships meet on opposite or nearly opposite courses to the
extent that danger of collision exists, each ship should turn to the right to pass on the port side of the other ship.
The future true trajectory shows that ship 1 and ship 2 both had a clear intention for a starboard turn. The
predictions made by STETC were more closely matched with the real future trajectories compared with the other
models. This indicates that the STETC model can learn ship motion laws from observed trajectories as well as
capture the interactive relationships between ships from the APF through the encounter interaction encoder. This
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information can be used to optimize future trajectories such that they match real trajectories in an encounter
scenario more closely.
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Figure 7. Schematic of the head-to-head encounter scenario. The solid black line represents the observed track and
the dashed black line represents the true track.

Figure 8 presents an encounter scenario during an overrun chase, when the speed of ship 1 is greater than that
of ship 2 and the two ships maintain a certain distance. For ship 1, the Social GAN and Seq2seq models were
inferior to the other models in terms of capturing the global information of long sequences, and the predicted
trajectory deviation was apparent. STETC had higher prediction accuracy than the other models. The enhanced
efficacy of the STETC model can be ascribed to its adeptness in capturing the multilevel representations and
intricate relationships inherent within the input sequence data. By utilizing the motion trajectory and spatial
interaction encoders, STETC can encode the spatiotemporal and encounter features of ship trajectories efficiently
and can achieve a clear perception of the ship in the overrun chase scenario, thus improving the prediction accuracy
and reliability.
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Figure 8. Schematic of the overrun chase encounter scenario. The solid black line represents the observed track
and the dashed black line represents the true track.

Figure 9 presents a scenario in which two ships resume their respective routes after one ship gives way. In
this scenario, the two ships did not enter an encounter scenario, and the influence of the APF on the future trajectories
is small. However, our model could still make more accurate predictions compared with the other models.

However, the predictions made by STETC are not always optimal and may sometimes over-value collision
avoidance behaviors in an encounter scenario. As shown in Figure 10, STETC predicted a trajectory for ship 2 that
was not consistent with the true trajectory, exhibiting a large deviation compared with the predictions of the two
models. It can be observed in the APF that STETC predicted a trajectory for ship 1 that deviated to the right to avoid
the area with high repulsion in front of ship 2 and to leave a sufficiently wide space such that the two ships could
safely pass through the intersecting water. COLREGs Article 8 stipulates that any change in course and/or speed to
avoid collision shall, if circumstances at the time permit, be sufficiently large to be readily detectable by the other
ship when observed visually or by radar. In practice, crews typically avoid other ships based on their own experience
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or judgment, as is the case for the change of course of ship 1 in the diagram, which does not strictly comply with this
rule. In this particular case, STETC placed heavy emphasis on the APF, resulting in an inaccurate prediction.
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Figure 9. Schematic of the two ships restoring their course. The solid black line represents the observed track and

the dashed black line represents the true track.
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Figure 10. Schematic of the ship avoidance maneuvers. The solid black line represents the observed track and the

dashed black line represents the true track.

4.2.3. Model Analysis

To explore the intrinsic behaviors of STETC when predicting trajectories, we visualized the attention weights
of the second layer of the attention module in both decoders to understand the model's behavior. The state of the
attention module for the encounter scenario in Figure 11, is visualized in Figures 12 and 13.

29.92

29.90

29.86

29.84

122.12 122.14 122.16 122.18 12220 12222

Lon(°)

Figure 11. Schematic of the ship avoidance maneuvers. The solid black line represents the observed track and the

dashed black line represents the true track.
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Figure 12 presents a diagram of the attention mechanism within the first decoder, where the horizontal axis
denotes the time steps of the observed trajectories. Steps 0 to 10 represent the observed trajectory of ship 1, and
steps 10 to 20 represent the observed trajectory of ship 2. The vertical axis represents the time steps of the predicted
trajectories, with the same order as that for the observed trajectories. It is evident that the predicted trajectories for
ships 1 and 2 primarily reflected their own observed trajectories, with minimal influence from the observed
trajectories of the other ship, indicating that the proposed model only considers each ship’s own motion pattern in
the first layer of the encoder—decoder structure, without accounting for the social interactions between ships. The
model also emphasized the second half of the observed trajectory, indicating that the model perceives dynamic
changes in trajectories and learns the spatiotemporal connections between observed trajectories.

0

Predicted trajectory
T

20 y
0 10 20

Observed trajectory

Figure 12. Visualization heatmap of the attention mechanism in the first decoder.

Figure 13 depicts the attention mechanism within the second decoder, with the horizontal axis denoting the
time steps of the APF. Steps 0 to 10 represent the APF of ship 2 and steps 10 to 20 represent the observed trajectory
of ship 1. The vertical axis indicates the forecasted trajectories, with the interval from 0 to 1 corresponding to the
projected trajectory of ship 1 and the range from 1 to 2 indicating the anticipated trajectory of ship 2. Again, the
proposed model emphasized the APF in the latter time steps. Note that ship 1 devoted significant attention to the
APF of ship 2 in the final time step. Considering the results in Figures 4-6, this is likely because the spatial position
of ship 2 interfered with the route of ship 1, and ship 1 had to take collision avoidance actions according to the
encounter scenario, which was also verified by the real trajectory of ship 1. Therefore, it can be concluded that the
encounter interaction encoder establishes a connection between the APFs of different time steps in the time
dimension. In addition, the model can understand the connection between the APF and future trajectories using the
second decoder, which provides accurate predictions based on the interactions between ships in an encounter scenario.

0-

Predicted trajectory
f

2 T 1
0 10 20

Encounter DAPF

Figure 13. Visualization heatmap of the attention mechanism in the second decoder.

4.2.4. Ablation Experiments

In this section, we analyze the influence of each constituent element of the STETC model on the overall
model efficacy. In Section 3, it was demonstrated that the proposed method improves the basic Transformer model.
The STETC model consists of a two-layer of encoder—decoder structure. The first layer of the encoder—decoder
structure is a primitive Transformer, which generates a preliminary trajectory by capturing the trajectory motion
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features in a sequence of historical trajectories. The second layer processes the APF using a CNN and Transformer
encoder, where the interactions between ships in an encounter scenario are modeled as an APF. The CNN is
employed to analyze the APF matrix, extracting ship features in the spatial dimension within an encounter scenario,
and the spatial features of the encounter are input into the transformer encoder to extract features in the time
dimension. The encoder obtains continuous encounter interaction features in the time dimension and uses them to
optimize future trajectories and improve the model prediction accuracy.

In our ablation experiments, we investigated the impact of the APF and CNN components on the overall
STETC model. We individually incorporated the APF and CNN into the second layer of the encoder—decoder
structure and assessed their effects on the ship trajectory prediction performance using the ADE and FDE metrics.

The results of the ablation experiments are presented in Table 3. After adding a Transformer encoder—decoder
layer on top of the base Transformer to process the APF matrix, the ADE and FDE metrics for the ship trajectory
prediction exhibited reductions of 14.6% and 9.8%, respectively. Subsequently, the integration of the CNN to
analyze the APF facilitated the extraction of supplementary insights pertaining to the encounter scenario, thereby
enhancing the overall performance. Incorporating the CNN led to a reduction of 11.8% in the ADE and 10.9% in
the FDE for the ship trajectory prediction.

Table 3. Results of the ablation experiments.

Model ADE (m) FDE (m)
Transformer 92.64 176.16
Transformer + APF 79.07 158.89
STETC 69.73 141.65

5. Conclusions

We have proposed a novel model, STETC, which utilizes a two-layer encoder—decoder structure to accurately
predict ship trajectories in complex encounter scenarios by integrating a Transformer and a Convolutional Neural
Network.

The proposed STETC architecture implements a Dual-Encoder design to achieve decoupled feature space
mapping. The Motion Trajectory Encoder constitutes the first layer, generating the unperturbed baseline trajectory
by learning the ship’s inertial motion features from historical sequences. The second layer, the Encounter
Interaction Encoder, models the Artificial Potential Field to extract dynamic interaction features. These two sets
of features are then fused hierarchically via cascaded decoders. The final decoder utilizes a Cross-Attention
mechanism to apply the interaction features as dynamic correction signals to the baseline trajectory, thereby
optimizing the future trajectory while maintaining temporal continuity.

A comprehensive comparison with other state-of-the-art deep learning models under various encounter
scenarios highlighted the superior performance and robustness of STETC. The experimental findings validate the
efficacy of STETC’s approach in integrating ship inertial motion and leveraging the localized spatial interaction
correlations within encounter scenarios. This method significantly enriches situational awareness, which is crucial
for collision avoidance, optimized route planning, and improving overall maritime traffic efficiency. In practical
navigation, the accurate predicted information provided by STETC can enable crews to navigate safely and
efficiently in high-interference waters.

However, due to the integration of multiple complex structures, including Transformer blocks and a CNN,
the training and inference processes of STETC require substantial computational resources. This limitation may
present a challenge in resource-constrained applications or systems demanding high real-time performance. Future
work will focus on the streamlining and optimization of the STETC architecture to reduce computational overhead
and enhance operational efficiency for practical deployment. Furthermore, recognizing the complexity of real-world
waterways, a critical avenue for future research is the explicit investigation and modeling of multi-ship encounter
prediction, aiming to capture the interwoven dynamic interaction relationships among three or more vessels.
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