Thermal Science and Applications

Scilight

https://www.sciltp.com/journals/tsa

Article

Analysis and Control of a Boiling Water Reactor Model

Lakshmi N. Sridhar
Chemical Engineering Department, University of Puerto Rico, Mayaguez, PR 00681, USA; lakshmin.sridhar@upr.edu

How To Cite: Sridhar, L.N. Analysis and Control of a Boiling Water Reactor Model. Thermal Science and Applications 2025, 1(1), 21-32.

Received: 25 September 2026 ~ Abstract: The Boiling Water Reactor (BWR) problem is a highly nonlinear
Revised: 19 December 2026 physical system, and one must understand the dynamics in order to effectively
Accepted: 22 December 2026 control it. In this research, bifurcation analysis and multiobjective nonlinear model
Published: 30 December 2026 predictive control are performed on a boiling water reactor model. Bifurcation
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics
of any process. Several factors must be considered, and multiple objectives must be
met simultaneously. The MATLAB program MATCONT was used to perform the
bifurcation analysis. The MNLMPC calculations were performed using the
optimization language PYOMO in conjunction with the state-of-the-art global
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1. Introduction

A Boiling Water Reactor, abbreviated as BWR, is a type of Light Water Nuclear Reactor that uses ordinary
water as both a coolant and moderator, which converts nuclear energy released from atoms into electricity in a
steam-powered turbine. BWRs are similar in design to Graphite Gas Cooled Reactors but without a separate
cooling plant. BWRs are also similar in design to Pressurized Water Reactors. In BWRs, freshwater is pumped
from the bottom of the reactor vessel and rises through a core where it absorbs heat from nuclear fission that takes
place in nuclear fuel assemblies consisting of enriched uranium. As a result, heated water turns into a steam-water
mixture near the top of the vessel. The steam, in a BWR, passes through a series of moisture separators and dryers
located above the reactor core to ensure that dry steam reaches the turbine. Because steam in a BWR is produced
in the reactor vessel, there would be slightly radioactive steam in a turbine-generator set, which would require
additional shielding and plant operation strategies. A characteristic of a BWR, in relation to other reactor designs,
is that it has a relatively easy design. Unlike a Pressurized Water Reactor, BWRs are also devoid of massive
pressurizers and steam generators because steam booms in BWRs when operating under normal reactor pressure.
This design reduces the total number of major components, reduces reactor pressure compared to that in a
Pressurized Water Reactor, and also increases in-built reactor safety in certain conditions. In a BWR, control rods
are moved from below a reactor core. This allows for control over nuclear fission rates, hence reactor powers.
Moreover, in a BWR, a mechanism in which “more steam voids make a reactor less reactive” acts as a natural
control mechanism in a reactor, known as a void coefficient of reactivity, which provides for a higher rate of
boiling that decreases reactivity.

BWR designs have gone through several generations, with the latest variants boasting advanced safety
systems, better fuel economy, and passive cooling. They are in service all over the world and have a reputation for
being reliable, efficient sources of baseload power. In nuclear technology, they are unique due to their method of
direct-cycle steam generation, which is at the heart of most large-scale power plants. BWRs are quite popular in
nuclear energy production owing to their efficiency, reliability, and simplicity of design. Unlike other types of
Pressurized Water Reactors, BWRs facilitate direct boiling of water in a reactor vessel, which then expands as
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steam to activate the turbine. Needless to say, this design of a direct cycle reduces the complexity of components
in a system. BWRs also pose a decreased risk of accidents.

One of the major advantages of BWRs is their natural stability in operation. Since steam generation takes
place in the core, any variation in reactor power output gets naturally compensated by the formation of steam
bubbles, which in turn slow down the rate of reaction. This property, known as a negative void coefficient,
suppresses any surge in reactor power, which has improved their enhanced safety features as well as their potential
for rapid load variation.

BWRs also provide a good fuel economy. This is due to their design, which allows for a high efficiency rate,
enabling a substantial amount of nuclear fission energy to be converted into electricity. Furthermore, present-day
fuel assemblies for BWRs use advanced fuel geometries that enhance fuel cycles and fuel management, hence
promoting a sustainable nuclear program.

Boiling Water Reactor technology has almost sixty years of experience, which ensures a proven track record
of performance and development of supply chains. On a whole, Boiling Water Reactors are a very useful and
reliable technology for generating large-scale, low-carbon electricity that would cater to the increasing needs of
the world.

Boiling water reactors, although valuable contributors to nuclear energy production, have a number of
associated hazards that need careful management for safe operation. First among these concerns is the direct cycle
design where water actually boils inside the reactor vessel. The steam produced in the core, which then goes
directly to the turbine, can take radioactive contaminants with it. While filtration and shielding systems reduce this
risk, it still means parts of the turbine hall have to be subject to more stringent radiation controls than those of
other reactor types.

Another risk involves accidents of the loss-of-coolant type. Because water in a boiling-water reactor serves
both as coolant and moderator, any major loss of water inventory can reduce heat removal from the fuel. While
contemporary safety systems would work to damp such incidents, failure of cooling can lead to overheating of
fuel rods and, in extreme cases, partial meltdowns.

BWRs also face risks associated with pressure vessel aging and material degradation. Over decades of
operation, components are exposed to intense neutron radiation at high temperatures, with corrosion. These factors
can weaken structural materials and increase the chance of leaks or equipment malfunction.

The BWR operates on the principle of maintaining balance among water levels, steam production, and
reactivity; and any one factor would lead to unsafe conditions. The development of automation does make the
operation more reliable. However, this automation must be programmed to avoid Hopf bifurcation causing limit
cycles. These Hopf bifurcations are caused because of the nonlinearity of the BWR process. The source of
nonlinearity in a boiling water reactor (BWR) plant process can be traced back to the complex interactions between
neutron kinetics, thermohydraulics, and two-phase flow phenomena. With a rise in reactor power, additional steam
bubbles are produced in the core, which, in turn, decreases the moderator density of a BWR with a nonlinear effect
on neutron moderation. This void reactivity feedback mechanism is known to be neither proportional nor direct,
resulting in quite complex dynamic effects. There are also couplings between fuel, steam, and coolant convective
heat transfers, which are a function of certain properties that are temperature-dependent, giving rise to additional
nonlinearities. The main purpose of this paper is to demonstrate effective strategies to avoid the Hopf bifurcations
and limit cycles from occurring. The incorporation of the tanh function in the manipulated variables will definitely
help in avoiding the Hopf bifurcations and limit cycles and that is the central message of this paper.

2. Literature Review

March-Leuba et al. [1,2] investigated the nonlinear dynamics and instability of boiling water reactors.
Munoz-Cobo et al. [3] discussed the use of Hopf bifurcation theory and calculus of variations to the study of the
formation of limit cycles in boiling water reactors. Wang et al. [4] provided an analysis on the mathematical
structure of the nonlinear BWR model. Tsuji et al. [5] discussed the stability analysis of BWRs using bifurcation
theory. Rizwan-uddin et al. [6] demonstrated the existence of limit points and subcritical and supercritical
bifurcation points in a simple BWR model. Lange et al. [7] developed an advanced model for BWR reducing the
order and conducting stability analysis. Wahi et al. [8] performed Lyapunov stability studies of nuclear reactors
reducing the order of the equations. Bindra et al. [9], and Pandey et al. [10] studied the effects of modelling
assumptions on the stability domains of BWRs and provided a detailed bifurcation analysis with a modified model
for the advanced heavy water reactor system. Pandey et al. [11] performed nonlinear analysis of boiling water
reactors in a substantial domain of parametric spaces.
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All the work so far involving BWR focused on bifurcation analysis or optimal control performed disjointly.
In this work, bifurcation studies and multiobjective nonlinear model predictive control are performed on a boiling
water nuclear reactor model [11]. The paper is presented as in this manner. The model equations that represent this
model are first presented. This is followed by a discussion of the computational procedures regarding bifurcation
analysis and multiobjective nonlinear model predictive control (MNLMPC). The results, discussion and
conclusions are then presented.

The novelty of this work lies in the integration of bifurcation analysis and optimal control of the BWR model.
Normally, both bifurcation analysis and optimal control are performed individually. This work represents the first
attempt to combine these two computational tasks and apply them to boiling water reactors.

3. Model Equations

The variables involved are (nv(¢); cv(¢); tv(f); pa(t); pt(t)) and they represent the excess neutron population,
excess population of delayed neutron precursors, excess fuel temperature, excess void reactivity feedback, and the
derivative of the excess void reactivity feedback with time, respectively. All the parameters have been obtained
from the nuclear properties and the reactor’s geometry. The model equations are

d(nv) _ 2ﬁ+2d(t_v)_£+is (cv)
dt A A A

d(cV) :ﬁnv—ﬂc(cv)
dt A,

d(pa) _
a7

dalet) (d/z” )_ k(tv)—a,(pt)—a,(pa)

The base parameters are

a, = 25.04; a, = 0.23; a; = 2.25; a, = 6.82; k = —3.7 X 1073;
d =—252%1075; f = 0.0056; 1, = 4.0 x 1075; A, = 0.08.

Details can be found in Pandey and Singh ([10,11]).

4. Bifurcation Analysis

Bifurcation calculations are performed using the MATLAB software MATCONT. Bifurcation analysis
explains the main causes for multiple steady-states and limit cycles. Branch points and limit points cause multiple
steady-state solutions while limit cycles and oscillatory behavior are caused by Hopf bifurcation points. The
MATLAB program that effectively locates limit points, branch points, and Hopf bifurcation points is MATCONT.
This program was developed and improved by several researchers ([12,13]). This program is very effective in
identifying Limit points (LP), branch points (BP), and Hopf bifurcation points (H) for a system of ordinary
differential equations

dx
= (X > 0[) 2
= @
x € R" where the bifurcation parameter is a. The gradient vector is orthogonal to the tangent and hence the
tangent plane at any point w = [wy, Wy, W3, Wy, ..., Wy,q] must satisfy
Aw=0 (3)

The matrix A4 is defined by
A=[of /ox |Of /0c] 4)

The sub-matrix df /0x is the Jacobian matrix. For both limit and branch points, the Jacobian matrix | =
(0f /0x) must have a determinant of 0.
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At a limit point, there must exist only one tangent at the point of singularity. At this singular point, there is a
one and only one non-zero vector, y, where Jy = 0. This vector is of dimension n. Since there is only one tangent,
the vector y = (¥1,¥2, V3, Y4 --» Yn) must have the same direction with w = (wy, w,, w3, w,, ..., wy,). Since

Jv=Aw=0 (5)

the n + 1™ component of the tangent vector w,,; = 0. This is the necessary condition for the existence of a a limit
point (LP).

For a branch point, two tangents must exist at the point of singularity. Let the two tangents be z and w. This
implies that

Az=0

6
Aw=0 ©

Imagine a vector v that is orthogonal to one of the tangent w. v can be expressed as a linear combination of
zandw (v = yz + w). Since Az = Aw = 0; Av = 0 and since w and v are orthogonal, w'v = 0. Hence Bv =

[fvT] v = 0 which implies that B is singular. This implies that the necessary condition for the existence of a branch

point is that the matrix B = [fvT] must be singular and have a determinant of 0.

At a Hopf bifurcation point,
det(2f(x, @)@I,) = 0 (7

@ indicates the bialternate product while I, is the n-square identity matrix. Hopf bifurcations cause limit cycles
and should be eliminated because limit cycles make optimization and control tasks very difficult. More details can
be found in Kuznetsov [14—-16] respectively.

Hopf bifurcations cause limit cycles. Limit cycles cause equipment damage and make control tasks etc.
difficult. Additionally, they result in less beneficial products. The tanh activation function (where a control value
u is replaced by (utanhu /¢)) is used to eliminate spikes in the optimal control profiles. Several workers
demonstrated this. Refs. [17-21] explained with several examples how the same activation factor that involves the
the tanh function also successfully eliminates the limit-cycle causing Hopf bifurcation points. This was because
the tanh function increases the oscillation time period in the limit cycle.

5. Multiobjective Nonlinear Model Predictive Control (MNLMPC)

Flores Tlacuahuaz et al. [22] originally developed a rigorous multiobjective nonlinear model predictive
control (MNLMPC) strategy. This procedure is used for performing the MNLMPC calculations. used. In a problem

for which the variables Ziisf q;j(t;);j =12, ..., n have to be optimized simultaneously, and the dynamic

model is given by

% = F(x,u) (8)

t; being the final time value, and n the total number of objective variables and u the control parameter. The single

objective optimal control problem is solved independently for each of the variables Zii::;f q;(t;) and produces
the values q;. Then, the multiobjective optimal control (MOOC) problem that will be solved is

n
min ) () q(t) - 4)))’
FET ©
biect to X = F(x,w);
subject to — = (x,u);

This will provide the values of u at various times. The first obtained control value of u is implemented and
the rest are discarded. This procedure is repeated until the implemented and the first obtained control values are
. N t , . .
the same or if the Utopia point where (Zt{_o q;(t) =qj; j =12, .., n)is obtained.
The Utopia point is one where all the objectives are met, even if they are conflicting.
Pyomo.dae [23] is used for these calculations. Here, the differential equations are converted to a Nonlinear

Program (NLP) using the orthogonal collocation method.
The NLP is solved using IPOPT [24] and confirmed as a global solution with BARON [25].
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6. Integration of Bifurcation Analysis and Optimal Control

The main contribution of this paper lies in the integration of bifurcation analysis and optimal control. From
a mathematical standpoint, this integration is relatively new and has never been done for boiling water reactor
systems (BWR). Why is such an integration important? The BWR 1is a very nonlinear process and to be able to
operate it effectively, avoiding wastage of resources, one must be able to control it effectively. Otherwise, the
process may blow up, causing damage to life and property and result is colossal wastage of money and equipment,
not to mention any of the resulting environmental disasters.

The intuitive reason for linking bifurcation analysis and optimal control is as follows. Bifurcation analysis
involves singularities, which are classified as branch points, limit points and Hopf bifurcation points. Optimal
control involves the location of maxima and minima, which are also singularities. It therefore stands to reason that
these two very important fields in applied mathematics must be related.

The singularities occur because of the nonlinear nature of the boiling water reaction process. One of the main
symptoms of this nonlinearity is the existence of spikes in the control profile. There are a few ways of eliminating
the spikes, which are also referred to as noise. The use of filters like the Savitzky-Golay filter is a common method.
However, the use of the filters requires that we first have all the data before the filter can be applied. Filters cannot
prevent spikes (noise) as they occur. The tanh activation factor successfully stifles the spikes as they occur. Spikes
are just nonsmoothed oscillations. If the tanh function eliminates spikes it stands to reason that they should be
effective in eliminating oscillations also. This work clearly demonstrates that the activation factor involving the
tanh function effectively eliminates the oscillatory behavior and the limit cycles which are caused by the Hopf
bifurcations. The product of the tanh function and the manipulated variable can be implemented in control tasks
and effectively prevent limit cycles which are wasteful and hazardous.

All nuclear reactors exhibit limit cycles which are unwanted and dangerous. It is essential to avoid them. This
can only be achieved by the elimination of the Hopf bifurcations that cause them. The results clearly indicate that
the tanh function is very effective in eliminating the Hopf bifurcations. The tanh function can be used in control
tasks for other types of nuclear reactors, such as heavy water nuclear reactors as well.

7. Results and Discussion

Bifurcation analysis is performed with several bifurcation parameters. In each of the cases, the use of an
activation factor involving the tanh function removes the unwanted limit cycle causing Hopf bifurcations
validating the hypothesis of Sridhar (2024) [21].

(1) When a, is the bifurcation parameter, 2 Hopf bifurcation points are found at (nv, cv, tv, pa, pt, a;)
values of (0.0005, 1750.294863, 0.000831, 0, 0, 0.382198) and (0.0005, 1750.318326, 0.000897, 0, 0,
0.412605) (curve AB in Figure 1a). When a; is changed to ajtanh(a;)/10 the Hopf bifurcations disappear
(curve CD in Figure 1a). The limit cycles for these two Hopf bifurcation points are shown in Figure 1b,c.

limit cycle for first Hopf (a1)

a1 is bifurcation parameter

x10°3 B

5.001

%107

v 1746

(a) (b)
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limit cycle for second Hopf (a1)

0.01

0.0056

(©)

Figure 1. (a) bifurcation diagram with a; as bifurcation parameter; (b) limit cycle for the first Hopf bifurcation
with ai as bifurcation parameter; (c) limit cycle for the second Hopf bifurcation with ai as bifurcation parameter.

(2) When a; is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, a,)
values of (0.0005, 1750.039114, 0.000110, 0, 0, 113.579623) (curve AB in Figure 2a). When a; is changed
to aytanh(a,)/10 the Hopf bifurcation disappears (curve CD in Figure 2a). The limit cycle for this Hopf
bifurcation points are shown in Figure 2b

a2 is bifurcation parameter limit cycle for Hopf(a2)

D

(b)

Figure 2. (a) bifurcation diagram with a» as bifurcation parameter; (b) limit cycle for the first Hopf bifurcation

with a as bifurcation parameter.

(3) When as is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, as)
values of (0.000506, 1769.530449, 0.055042, 0.000030, 0, —0.221188) (Figure 3a). When a3 is changed to
astanh(a;)/10 the Hopf bifurcation disappears (Figure 3b). The limit cycle for this Hopf bifurcation points
are shown in Figure 3¢ (2-dimensional) and 3d (3-dimensional).

Hopf bifurcation (a3)
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Hopf bifurcation disappears when a3 is change to a3tanh(a3)10
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limit cycle(a3)

limt cycle (3d a3 is bifurcation parameter)

0058 |

0.057 |

0.056 |

= 0055 |

0.053
1768 55
1768.54
1769.53 B
1769.52 S =10
ov 1769.51 5

(c) (d)

Figure 3. (a) Hopf bifurcation with a3 as bifurcation parameter; (b) Hopf bifurcation disappears when a3 is changed

0.052

to astanh(as)/10; (c) limit cycle for the first Hopf bifurcation with a3 as bifurcation parameter 2-dimensional; (d)
limit cycle for the first Hopf bifurcation with a3 as bifurcation parameter 3-dimensional.

(4) When a4 is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt,a,) values
0f (0.0005, 1751.395615, 0.054478,—0.000001, 0, 234.346715) (curve AB in Figure 4a). When a4 is changed
to astanh(a,)/10 the Hopf bifurcation disappears (curve CD in Figure 4a). The limit cycle for this Hopf
bifurcation point is shown in Figure 4b.

1074 bifurcation(ad) limit cycle(ad)
c

56
55

5.4

nv

537

5271

0 50 100 150 200 250 300 350 400 450
ad

(a) (b)

Figure 4. (a) bifurcation diagram with a4 as bifurcation parameter; (b) limit cycle with a4 as bifurcation parameter.

(5) When £ is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, k) values
of (0.0005, 1751.007448, 0.054466, 0, 0, —0.000030) (curve AB in Figure 5a). When k is changed to
ktanh(k)/10 the Hopf bifurcation disappears (curve CD in Figure 5a). The limit cycle for this Hopf bifurcation
point is shown in Figure 5b.

bifurcation analysis (k) limit cycle (k is bifurcation parameter)

0.05447
0.054465
0.05446
0.054455

0.05445

0.054445
5.003

0.03
%10

nv 5.001 0 k

(a) (b)

Figure 5. (a) bifurcation diagram with k as the bifurcation parameter; (b) limit cycle with k as the bifurcation parameter.
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(6)

(7

When d is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, d) values
of (0.0005, 1750.296964, 0.054444, —0.000030, 0, 0.000534) (curve AB in Figure 6a). When d is changed
to dtanh(d)/0.001 the Hopf bifurcation disappears (curve CD in Figure 5a). The limit cycle for this Hopf
bifurcation point is shown in Figure 6b.

bifurcation diagram (d})

limit cycle (d is bifurcation parameter)

(b)

Figure 6. (a) bifurcation diagram with d as the bifurcation parameter; (b) limit cycle with d as the bifurcation parameter.

When As is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, A)
values of (—0.000004, —12.651797, —0.000394, 0.000000, 0.000000, —11.064739) (Figure 7a).When A is
changed to A tanh(4,)/10 the Hopf bifurcation disappears (Figure 7b). The limit cycle for this Hopf
bifurcation point is shown in Figure 7c.

when lamdas is to lamda s 10) Hopf di

bifurcation (lamdas) Dt

22 20 18 16 14 12 -10 -10 -9.9 -9.8 -9.7 -9.6 -9.5 -9.4 -9.3 -9.2 -9.1 -9
lamdas
lamdas

(a) (b)

limit cycle {lamdas)

(©)

Figure 7. (a) bifurcation diagram with A; as the bifurcation parameter; (b) When A is changed to
Ag tanh( A4)/10 the Hopf bifurcation disappears; (¢) limit cycle when A is the bifurcation parameter.
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(8) When A, is the bifurcation parameter, a Hopf bifurcation point are found at (nv, cv, tv, pa, pt, 1.)
valuesof ( —0.049444, —0.147982, —5.382997, 0.002920, 0, 0.043256) (curve AB in Figure 8a). When A, is
changed to A, tanh(4.)/10 the Hopf bifurcation disappears (curve CD in Figure 8a). The limit cycle for
this Hopf bifurcation point is shown in Figure 8b.

Blfurcation (lamdac)

600 c \ limit cycle when lamdac iis bifurcation parameter
400 [ .

200

D
H
8 0
B
-200 [
400 [
A
600 , . . . . . . . . ,
0 001 002 003 004 005 006 007 008 009 01
lamdac
() (b)

Figure 8. (a) bifurcation diagram with A, as the bifurcation parameter; (b) limit cycle with A, as the

bifurcation parameter.

For the MNLMPC calculations, A is the control parameter, and Z;::f nv(t;), ZZ:f cv(t;), Zi::f tv(t;)
were minimized individually, and each of them led to a value of 0, 140.845, and 0. The overall optimal control problem
will involve the minimization of (%, nv(t}) — 0)? + (5, cv(t;) — 140.845)2 + (%, tw(t;) — 0)?
subject to the equations governing the model. This led to a value of 0. The MNLMPC values of the control variable, A
is 1.9765. The MNLMPC profiles are shown in Figure 9a—f.
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t
(e ®

Figure 9. (a) MNLMPC nv vs. ¢; (b) MNLMPC cv vs. £; (¢) MNLMPC v vs. £; (d) MNLMPC pa vs. t; (e) MNLMPC
pe vs. t; (f) MNLMPC As vs. t.

So far, all research have reported the existence of the unwanted Hopf bifurcations in BWR problems. This
work is the first in open literature where strategies to eliminate them are presented. One of the primary objectives
of this research is to demonstrate the effectiveness of the tanh function in eliminating Hopf bifurcations that lead
to limit cycles. Limit cycles cause self-sustained oscillations in variables like neutron flux, core power, steam
generation, and two-phase coolant flow. These repeat with a non-significant amplitude and period instead of
decaying exponentially. The existence of limit cycles demonstrates that destabilizing feedbacks are overriding the
stabilizing ones. Boiling water reactors operate with two-phase flow. This causes certain regions of the core to
experience stronger void responses or weaker cooling during parts of the cycle. This can push local conditions
close to or beyond thermal limits, endangering safety and causing severe equipment damage. In BWRs, where
power production is directly tied to boiling behavior and strong coupling exists between neutron kinetics and two-
phase flow, limit cycles create conditions that threaten fuel integrity, operational stability, and overall plant safety.
One of the most serious consequences of limit cycles in BWRs is the increased risk of localized fuel damage.
Oscillatory power leads to oscillatory heat flux and temperature at the fuel-cladding interface. This accelerates
cladding corrosion, pellet—cladding mechanical interaction, and thermal fatigue. The tanh function is normally
used to eliminate spikes in control profiles. Spikes are very similar to periodic oscillations. However, spikes exist
in the manipulated variables. The periodic oscillations exist in the output variables and are damaging. This result
has many practical implications. If the control engineer incorporates the tanh function in the manipulated variable,
the Hopf bifurcations and the limit cycles won’t occur, resulting in safety and preventing equipment damage. This,
along with the multi-objective nonlinear model predictive control, will provide strategies to achieve the most
beneficial result, prioritizing safety, reducing resource wastage, and minimizing expenses. The rising cost of
energy requires that all wastage be reduced to a minimum.

8. Conclusions

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies on a boiling water nuclear
reactor model. The bifurcation analysis revealed the existence of a Hopf bifurcation point The Hopf bifurcation
point, which causes an unwanted limit cycle, is eliminated using an activation factor involving the tanh function.
The MNLMPC calculations resulted in the Utopia (the best possible) solution A combination of bifurcation
analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC) for a boiling water nuclear reactor
model is the main contribution of this paper.
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