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Abstract: The Boiling Water Reactor (BWR) problem is a highly nonlinear 
physical system, and one must understand the dynamics in order to effectively 
control it. In this research, bifurcation analysis and multiobjective nonlinear model 
predictive control are performed on a boiling water reactor model. Bifurcation 
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics 
of any process. Several factors must be considered, and multiple objectives must be 
met simultaneously. The MATLAB program MATCONT was used to perform the 
bifurcation analysis. The MNLMPC calculations were performed using the 
optimization language PYOMO in conjunction with the state-of-the-art global 
optimization solvers IPOPT and BARON. The bifurcation analysis revealed the 
existence of Hopf bifurcations. The Hopf bifurcations, which cause unwanted limit 
cycles, are eliminated with the use of the tanh functions. The MNLMPC calculations 
converge to the best possible solution, which is referred to as the Utopia point. 

 Keywords: bifurcation analysis; dynamic optimization; nuclear; neutron 

1. Introduction 

A Boiling Water Reactor, abbreviated as BWR, is a type of Light Water Nuclear Reactor that uses ordinary 
water as both a coolant and moderator, which converts nuclear energy released from atoms into electricity in a 
steam-powered turbine. BWRs are similar in design to Graphite Gas Cooled Reactors but without a separate 
cooling plant. BWRs are also similar in design to Pressurized Water Reactors. In BWRs, freshwater is pumped 
from the bottom of the reactor vessel and rises through a core where it absorbs heat from nuclear fission that takes 
place in nuclear fuel assemblies consisting of enriched uranium. As a result, heated water turns into a steam-water 
mixture near the top of the vessel. The steam, in a BWR, passes through a series of moisture separators and dryers 
located above the reactor core to ensure that dry steam reaches the turbine. Because steam in a BWR is produced 
in the reactor vessel, there would be slightly radioactive steam in a turbine-generator set, which would require 
additional shielding and plant operation strategies. A characteristic of a BWR, in relation to other reactor designs, 
is that it has a relatively easy design. Unlike a Pressurized Water Reactor, BWRs are also devoid of massive 
pressurizers and steam generators because steam booms in BWRs when operating under normal reactor pressure. 
This design reduces the total number of major components, reduces reactor pressure compared to that in a 
Pressurized Water Reactor, and also increases in-built reactor safety in certain conditions. In a BWR, control rods 
are moved from below a reactor core. This allows for control over nuclear fission rates, hence reactor powers. 
Moreover, in a BWR, a mechanism in which “more steam voids make a reactor less reactive” acts as a natural 
control mechanism in a reactor, known as a void coefficient of reactivity, which provides for a higher rate of 
boiling that decreases reactivity. 

BWR designs have gone through several generations, with the latest variants boasting advanced safety 
systems, better fuel economy, and passive cooling. They are in service all over the world and have a reputation for 
being reliable, efficient sources of baseload power. In nuclear technology, they are unique due to their method of 
direct-cycle steam generation, which is at the heart of most large-scale power plants. BWRs are quite popular in 
nuclear energy production owing to their efficiency, reliability, and simplicity of design. Unlike other types of 
Pressurized Water Reactors, BWRs facilitate direct boiling of water in a reactor vessel, which then expands as 
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steam to activate the turbine. Needless to say, this design of a direct cycle reduces the complexity of components 
in a system. BWRs also pose a decreased risk of accidents. 

One of the major advantages of BWRs is their natural stability in operation. Since steam generation takes 
place in the core, any variation in reactor power output gets naturally compensated by the formation of steam 
bubbles, which in turn slow down the rate of reaction. This property, known as a negative void coefficient, 
suppresses any surge in reactor power, which has improved their enhanced safety features as well as their potential 
for rapid load variation. 

BWRs also provide a good fuel economy. This is due to their design, which allows for a high efficiency rate, 
enabling a substantial amount of nuclear fission energy to be converted into electricity. Furthermore, present-day 
fuel assemblies for BWRs use advanced fuel geometries that enhance fuel cycles and fuel management, hence 
promoting a sustainable nuclear program. 

Boiling Water Reactor technology has almost sixty years of experience, which ensures a proven track record 
of performance and development of supply chains. On a whole, Boiling Water Reactors are a very useful and 
reliable technology for generating large-scale, low-carbon electricity that would cater to the increasing needs of 
the world. 

Boiling water reactors, although valuable contributors to nuclear energy production, have a number of 
associated hazards that need careful management for safe operation. First among these concerns is the direct cycle 
design where water actually boils inside the reactor vessel. The steam produced in the core, which then goes 
directly to the turbine, can take radioactive contaminants with it. While filtration and shielding systems reduce this 
risk, it still means parts of the turbine hall have to be subject to more stringent radiation controls than those of 
other reactor types. 

Another risk involves accidents of the loss-of-coolant type. Because water in a boiling-water reactor serves 
both as coolant and moderator, any major loss of water inventory can reduce heat removal from the fuel. While 
contemporary safety systems would work to damp such incidents, failure of cooling can lead to overheating of 
fuel rods and, in extreme cases, partial meltdowns. 

BWRs also face risks associated with pressure vessel aging and material degradation. Over decades of 
operation, components are exposed to intense neutron radiation at high temperatures, with corrosion. These factors 
can weaken structural materials and increase the chance of leaks or equipment malfunction. 

The BWR operates on the principle of maintaining balance among water levels, steam production, and 
reactivity; and any one factor would lead to unsafe conditions. The development of automation does make the 
operation more reliable. However, this automation must be programmed to avoid Hopf bifurcation causing limit 
cycles. These Hopf bifurcations are caused because of the nonlinearity of the BWR process. The source of 
nonlinearity in a boiling water reactor (BWR) plant process can be traced back to the complex interactions between 
neutron kinetics, thermohydraulics, and two-phase flow phenomena. With a rise in reactor power, additional steam 
bubbles are produced in the core, which, in turn, decreases the moderator density of a BWR with a nonlinear effect 
on neutron moderation. This void reactivity feedback mechanism is known to be neither proportional nor direct, 
resulting in quite complex dynamic effects. There are also couplings between fuel, steam, and coolant convective 
heat transfers, which are a function of certain properties that are temperature-dependent, giving rise to additional 
nonlinearities. The main purpose of this paper is to demonstrate effective strategies to avoid the Hopf bifurcations 
and limit cycles from occurring. The incorporation of the tanh function in the manipulated variables will definitely 
help in avoiding the Hopf bifurcations and limit cycles and that is the central message of this paper. 

2. Literature Review 

March-Leuba et al. [1,2] investigated the nonlinear dynamics and instability of boiling water reactors. 
Munoz-Cobo et al. [3] discussed the use of Hopf bifurcation theory and calculus of variations to the study of the 
formation of limit cycles in boiling water reactors. Wang et al. [4] provided an analysis on the mathematical 
structure of the nonlinear BWR model. Tsuji et al. [5] discussed the stability analysis of BWRs using bifurcation 
theory. Rizwan-uddin et al. [6] demonstrated the existence of limit points and subcritical and supercritical 
bifurcation points in a simple BWR model. Lange et al. [7] developed an advanced model for BWR reducing the 
order and conducting stability analysis. Wahi et al. [8] performed Lyapunov stability studies of nuclear reactors 
reducing the order of the equations. Bindra et al. [9], and Pandey et al. [10] studied the effects of modelling 
assumptions on the stability domains of BWRs and provided a detailed bifurcation analysis with a modified model 
for the advanced heavy water reactor system. Pandey et al. [11] performed nonlinear analysis of boiling water 
reactors in a substantial domain of parametric spaces. 
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All the work so far involving BWR focused on bifurcation analysis or optimal control performed disjointly. 
In this work, bifurcation studies and multiobjective nonlinear model predictive control are performed on a boiling 
water nuclear reactor model [11]. The paper is presented as in this manner. The model equations that represent this 
model are first presented. This is followed by a discussion of the computational procedures regarding bifurcation 
analysis and multiobjective nonlinear model predictive control (MNLMPC). The results, discussion and 
conclusions are then presented. 

The novelty of this work lies in the integration of bifurcation analysis and optimal control of the BWR model. 
Normally, both bifurcation analysis and optimal control are performed individually. This work represents the first 
attempt to combine these two computational tasks and apply them to boiling water reactors. 

3. Model Equations 

The variables involved are (nv(t); cv(t); tv(t); 𝜌𝜌𝜌𝜌(𝑡𝑡); 𝜌𝜌𝜌𝜌(𝑡𝑡)) and they represent the excess neutron population, 
excess population of delayed neutron precursors, excess fuel temperature, excess void reactivity feedback, and the 
derivative of the excess void reactivity feedback with time, respectively. All the parameters have been obtained 
from the nuclear properties and the reactor’s geometry. The model equations are 
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The base parameters are 

𝑎𝑎1 = 25.04; 𝑎𝑎2 = 0.23; 𝑎𝑎3 = 2.25; 𝑎𝑎4 =  6.82;  𝑘𝑘 = −3.7 ×  10−3;  
𝑑𝑑 = −2.52 × 10−5;  𝛽𝛽 = 0.0056; 𝜆𝜆𝑐𝑐 = 4.0 × 10−5; 𝜆𝜆𝑠𝑠 = 0.08.  

Details can be found in Pandey and Singh ([10,11]). 

4. Bifurcation Analysis 

Bifurcation calculations are performed using the MATLAB software MATCONT. Bifurcation analysis 
explains the main causes for multiple steady-states and limit cycles. Branch points and limit points cause multiple 
steady-state solutions while limit cycles and oscillatory behavior are caused by Hopf bifurcation points. The 
MATLAB program that effectively locates limit points, branch points, and Hopf bifurcation points is MATCONT. 
This program was developed and improved by several researchers ([12,13]). This program is very effective in 
identifying Limit points (LP), branch points (BP), and Hopf bifurcation points (H) for a system of ordinary 
differential equations 

( , )dx f x
dt

α=  (2) 

nx R∈  where the bifurcation parameter is 𝛼𝛼. The gradient vector is orthogonal to the tangent and hence the 
tangent plane at any point 𝑤𝑤 = [𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4, . . ., 𝑤𝑤𝑛𝑛+1] must satisfy 

0Aw =  (3) 

The matrix A is defined by 

[ / | / ]A f x f α= ∂ ∂ ∂ ∂  (4) 

The sub-matrix 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 is the Jacobian matrix. For both limit and branch points, the Jacobian matrix 𝐽𝐽 =
(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕) must have a determinant of 0. 
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At a limit point, there must exist only one tangent at the point of singularity. At this singular point, there is a 
one and only one non-zero vector, y, where Jy = 0. This vector is of dimension n. Since there is only one tangent, 
the vector 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4, . . ., 𝑦𝑦𝑛𝑛) must have the same direction with 𝑤𝑤� = (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4, . . ., 𝑤𝑤𝑛𝑛). Since 

ˆ 0Jw Aw= =  (5) 

the n + 1th component of the tangent vector 𝑤𝑤𝑛𝑛+1 = 0. This is the necessary condition for the existence of a a limit 
point (LP). 

For a branch point, two tangents must exist at the point of singularity. Let the two tangents be z and w. This 
implies that 

0
0

Az
Aw

=
=

 (6) 

Imagine a vector v that is orthogonal to one of the tangent w. v can be expressed as a linear combination of 
z and w (𝑣𝑣 = 𝛾𝛾𝛾𝛾 + 𝛿𝛿𝛿𝛿). Since 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 = 0; 𝐴𝐴𝐴𝐴 = 0 and since w and v are orthogonal, 𝑤𝑤𝑇𝑇𝑣𝑣 = 0. Hence 𝐵𝐵𝐵𝐵 =
�𝐴𝐴𝑤𝑤𝑇𝑇� 𝑣𝑣 = 0 which implies that B is singular. This implies that the necessary condition for the existence of a branch 

point is that the matrix 𝐵𝐵 = �𝐴𝐴𝑤𝑤𝑇𝑇� must be singular and have a determinant of 0. 

At a Hopf bifurcation point, 

det( 2𝑓𝑓𝑥𝑥(𝑥𝑥,𝛼𝛼)@𝐼𝐼𝑛𝑛) = 0 (7) 

@ indicates the bialternate product while 𝐼𝐼𝑛𝑛 is the n-square identity matrix. Hopf bifurcations cause limit cycles 
and should be eliminated because limit cycles make optimization and control tasks very difficult. More details can 
be found in Kuznetsov [14–16] respectively. 

Hopf bifurcations cause limit cycles. Limit cycles cause equipment damage and make control tasks etc. 
difficult. Additionally, they result in less beneficial products. The tanh activation function (where a control value 
u is replaced by (𝑢𝑢 tanh𝑢𝑢 /𝜀𝜀)) is used to eliminate spikes in the optimal control profiles. Several workers 
demonstrated this. Refs. [17–21] explained with several examples how the same activation factor that involves the 
the tanh function also successfully eliminates the limit-cycle causing Hopf bifurcation points. This was because 
the tanh function increases the oscillation time period in the limit cycle. 

5. Multiobjective Nonlinear Model Predictive Control (MNLMPC) 

Flores Tlacuahuaz et al. [22] originally developed a rigorous multiobjective nonlinear model predictive 
control (MNLMPC) strategy. This procedure is used for performing the MNLMPC calculations. used. In a problem 
for which the variables ∑ 𝑞𝑞𝑗𝑗(𝑡𝑡𝑖𝑖)

𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

; 𝑗𝑗 = 1,2, . . ., 𝑛𝑛  have to be optimized simultaneously, and the dynamic 
model is given by 

( , )dx F x u
dt

=  (8) 

𝑡𝑡𝑓𝑓 being the final time value, and n the total number of objective variables and u the control parameter. The single 
objective optimal control problem is solved independently for each of the variables ∑ 𝑞𝑞𝑗𝑗(𝑡𝑡𝑖𝑖)

𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

 and produces 
the values 𝑞𝑞𝑗𝑗∗. Then, the multiobjective optimal control (MOOC) problem that will be solved is 

min(�(�𝑞𝑞𝑗𝑗(𝑡𝑡𝑖𝑖)

𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖=0

− 𝑞𝑞𝑗𝑗∗))2
𝑛𝑛

𝑗𝑗=1

 

subject to  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥,𝑢𝑢); 

(9) 

This will provide the values of u at various times. The first obtained control value of u is implemented and 
the rest are discarded. This procedure is repeated until the implemented and the first obtained control values are 
the same or if the Utopia point where (∑ 𝑞𝑞𝑗𝑗(𝑡𝑡𝑖𝑖)

𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

= 𝑞𝑞𝑗𝑗∗;  𝑗𝑗 = 1,2, . . ., 𝑛𝑛) is obtained. 
The Utopia point is one where all the objectives are met, even if they are conflicting. 
Pyomo.dae [23] is used for these calculations. Here, the differential equations are converted to a Nonlinear 

Program (NLP) using the orthogonal collocation method. 
The NLP is solved using IPOPT [24] and confirmed as a global solution with BARON [25]. 



Sridhar  Therm. Sci. Appl. 2025, 1(1), 21–32 

  25  

6. Integration of Bifurcation Analysis and Optimal Control 

The main contribution of this paper lies in the integration of bifurcation analysis and optimal control. From 
a mathematical standpoint, this integration is relatively new and has never been done for boiling water reactor 
systems (BWR). Why is such an integration important? The BWR is a very nonlinear process and to be able to 
operate it effectively, avoiding wastage of resources, one must be able to control it effectively. Otherwise, the 
process may blow up, causing damage to life and property and result is colossal wastage of money and equipment, 
not to mention any of the resulting environmental disasters. 

The intuitive reason for linking bifurcation analysis and optimal control is as follows. Bifurcation analysis 
involves singularities, which are classified as branch points, limit points and Hopf bifurcation points. Optimal 
control involves the location of maxima and minima, which are also singularities. It therefore stands to reason that 
these two very important fields in applied mathematics must be related. 

The singularities occur because of the nonlinear nature of the boiling water reaction process. One of the main 
symptoms of this nonlinearity is the existence of spikes in the control profile. There are a few ways of eliminating 
the spikes, which are also referred to as noise. The use of filters like the Savitzky-Golay filter is a common method. 
However, the use of the filters requires that we first have all the data before the filter can be applied. Filters cannot 
prevent spikes (noise) as they occur. The tanh activation factor successfully stifles the spikes as they occur. Spikes 
are just nonsmoothed oscillations. If the tanh function eliminates spikes it stands to reason that they should be 
effective in eliminating oscillations also. This work clearly demonstrates that the activation factor involving the 
tanh function effectively eliminates the oscillatory behavior and the limit cycles which are caused by the Hopf 
bifurcations. The product of the tanh function and the manipulated variable can be implemented in control tasks 
and effectively prevent limit cycles which are wasteful and hazardous. 

All nuclear reactors exhibit limit cycles which are unwanted and dangerous. It is essential to avoid them. This 
can only be achieved by the elimination of the Hopf bifurcations that cause them. The results clearly indicate that 
the tanh function is very effective in eliminating the Hopf bifurcations. The tanh function can be used in control 
tasks for other types of nuclear reactors, such as heavy water nuclear reactors as well. 

7. Results and Discussion 

Bifurcation analysis is performed with several bifurcation parameters. In each of the cases, the use of an 
activation factor involving the tanh function removes the unwanted limit cycle causing Hopf bifurcations 
validating the hypothesis of Sridhar (2024) [21]. 
(1) When a1 is the bifurcation parameter, 2 Hopf bifurcation points are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌,  𝑎𝑎1) 

values of (0.0005, 1750.294863, 0.000831, 0, 0, 0.382198) and (0.0005, 1750.318326, 0.000897, 0, 0, 
0.412605) (curve AB in Figure 1a). When a1 is changed to a1tanh(a1)/10 the Hopf bifurcations disappear 
(curve CD in Figure 1a). The limit cycles for these two Hopf bifurcation points are shown in Figure 1b,c. 

  
(a) (b) 
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(c) 

Figure 1. (a) bifurcation diagram with a1 as bifurcation parameter; (b) limit cycle for the first Hopf bifurcation 
with a1 as bifurcation parameter; (c) limit cycle for the second Hopf bifurcation with a1 as bifurcation parameter. 

(2) When a2 is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌,  𝑎𝑎2) 
values of (0.0005, 1750.039114, 0.000110, 0, 0, 113.579623) (curve AB in Figure 2a). When a2 is changed 
to 𝑎𝑎2tanh(𝑎𝑎2)/10 the Hopf bifurcation disappears (curve CD in Figure 2a). The limit cycle for this Hopf 
bifurcation points are shown in Figure 2b 

  
(a) (b) 

Figure 2. (a) bifurcation diagram with a2 as bifurcation parameter; (b) limit cycle for the first Hopf bifurcation 
with a2 as bifurcation parameter. 

(3) When a3 is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌, 𝑎𝑎3) 
values of (0.000506, 1769.530449, 0.055042, 0.000030, 0, −0.221188) (Figure 3a). When a3 is changed to 
𝑎𝑎3tanh(𝑎𝑎3)/10 the Hopf bifurcation disappears (Figure 3b). The limit cycle for this Hopf bifurcation points 
are shown in Figure 3c (2-dimensional) and 3d (3-dimensional). 

  
(a) (b) 
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(c) (d) 

Figure 3. (a) Hopf bifurcation with a3 as bifurcation parameter; (b) Hopf bifurcation disappears when a3 is changed 
to a3tanh(a3)/10; (c) limit cycle for the first Hopf bifurcation with a3 as bifurcation parameter 2-dimensional; (d) 
limit cycle for the first Hopf bifurcation with a3 as bifurcation parameter 3-dimensional. 

(4) When a4 is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌,𝑎𝑎4) values 
of (0.0005, 1751.395615, 0.054478, −0.000001, 0, 234.346715) (curve AB in Figure 4a). When a4 is changed 
to 𝑎𝑎4tanh(𝑎𝑎4)/10 the Hopf bifurcation disappears (curve CD in Figure 4a). The limit cycle for this Hopf 
bifurcation point is shown in Figure 4b. 

  
(a) (b) 

Figure 4. (a) bifurcation diagram with a4 as bifurcation parameter; (b) limit cycle with a4 as bifurcation parameter. 

(5) When k is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌, 𝑘𝑘) values 
of (0.0005, 1751.007448, 0.054466, 0, 0, −0.000030) (curve AB in Figure 5a). When k is changed to 
ktanh(k)/10 the Hopf bifurcation disappears (curve CD in Figure 5a). The limit cycle for this Hopf bifurcation 
point is shown in Figure 5b. 

  
(a) (b) 

Figure 5. (a) bifurcation diagram with k as the bifurcation parameter; (b) limit cycle with k as the bifurcation parameter. 
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(6) When d is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌, 𝑑𝑑) values 
of (0.0005, 1750.296964, 0.054444, −0.000030, 0, 0.000534) (curve AB in Figure 6a). When d is changed 
to dtanh(d)/0.001 the Hopf bifurcation disappears (curve CD in Figure 5a). The limit cycle for this Hopf 
bifurcation point is shown in Figure 6b. 

 
 

(a) (b) 

Figure 6. (a) bifurcation diagram with d as the bifurcation parameter; (b) limit cycle with d as the bifurcation parameter. 

(7) When 𝜆𝜆𝜆𝜆 is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌,  𝜆𝜆𝑠𝑠) 
values of (−0.000004, −12.651797, −0.000394, 0.000000, 0.000000, −11.064739) (Figure 7a).When 𝜆𝜆𝑠𝑠 is 
changed to 𝜆𝜆𝑠𝑠 tanh( 𝜆𝜆𝑠𝑠)/10 the Hopf bifurcation disappears (Figure 7b). The limit cycle for this Hopf 
bifurcation point is shown in Figure 7c. 

  
(a) (b) 

 
(c) 

Figure 7. (a) bifurcation diagram with 𝜆𝜆𝑠𝑠  as the bifurcation parameter; (b) When 𝜆𝜆𝑠𝑠  is changed to 
𝜆𝜆𝑠𝑠 tanh( 𝜆𝜆𝑠𝑠)/10 the Hopf bifurcation disappears; (c) limit cycle when 𝜆𝜆𝑠𝑠 is the bifurcation parameter. 
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(8) When 𝜆𝜆𝑐𝑐  is the bifurcation parameter, a Hopf bifurcation point are found at (𝑛𝑛𝑛𝑛, 𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝜌𝜌𝜌𝜌, 𝜌𝜌𝜌𝜌,  𝜆𝜆𝑐𝑐) 
valuesof ( −0.049444, −0.147982, −5.382997, 0.002920, 0, 0.043256) (curve AB in Figure 8a). When 𝜆𝜆𝑐𝑐 is 
changed to 𝜆𝜆𝑐𝑐 tanh( 𝜆𝜆𝑐𝑐)/10 the Hopf bifurcation disappears (curve CD in Figure 8a). The limit cycle for 
this Hopf bifurcation point is shown in Figure 8b. 

 
 

(a) (b) 

Figure 8. (a) bifurcation diagram with 𝜆𝜆𝑐𝑐  as the bifurcation parameter; (b) limit cycle with 𝜆𝜆𝑐𝑐  as the 
bifurcation parameter. 

For the MNLMPC calculations, 𝜆𝜆𝑠𝑠 is the control parameter, and ∑ 𝑛𝑛𝑛𝑛(𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

, ∑ 𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

, ∑ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

 
were minimized individually, and each of them led to a value of 0, 140.845, and 0. The overall optimal control problem 
will involve the minimization of (∑ 𝑛𝑛𝑛𝑛(𝑡𝑡𝑖𝑖) − 0𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖=0
)2 + (∑ 𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖)

𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

− 140.845)2 + (∑ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖) − 0𝑡𝑡𝑖𝑖=𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖=0

)2 
subject to the equations governing the model. This led to a value of 0. The MNLMPC values of the control variable, 𝜆𝜆𝑠𝑠 
is 1.9765. The MNLMPC profiles are shown in Figure 9a–f. 

 
 

(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 9. (a) MNLMPC nv vs. t; (b) MNLMPC cv vs. t; (c) MNLMPC tv vs. t; (d) MNLMPC 𝜌𝜌𝜌𝜌 vs. t; (e) MNLMPC 
𝜌𝜌𝜌𝜌 vs. t; (f) MNLMPC 𝜆𝜆𝜆𝜆 vs. t. 

So far, all research have reported the existence of the unwanted Hopf bifurcations in BWR problems. This 
work is the first in open literature where strategies to eliminate them are presented. One of the primary objectives 
of this research is to demonstrate the effectiveness of the tanh function in eliminating Hopf bifurcations that lead 
to limit cycles. Limit cycles cause self-sustained oscillations in variables like neutron flux, core power, steam 
generation, and two-phase coolant flow. These repeat with a non-significant amplitude and period instead of 
decaying exponentially. The existence of limit cycles demonstrates that destabilizing feedbacks are overriding the 
stabilizing ones. Boiling water reactors operate with two-phase flow. This causes certain regions of the core to 
experience stronger void responses or weaker cooling during parts of the cycle. This can push local conditions 
close to or beyond thermal limits, endangering safety and causing severe equipment damage. In BWRs, where 
power production is directly tied to boiling behavior and strong coupling exists between neutron kinetics and two-
phase flow, limit cycles create conditions that threaten fuel integrity, operational stability, and overall plant safety. 
One of the most serious consequences of limit cycles in BWRs is the increased risk of localized fuel damage. 
Oscillatory power leads to oscillatory heat flux and temperature at the fuel-cladding interface. This accelerates 
cladding corrosion, pellet–cladding mechanical interaction, and thermal fatigue. The tanh function is normally 
used to eliminate spikes in control profiles. Spikes are very similar to periodic oscillations. However, spikes exist 
in the manipulated variables. The periodic oscillations exist in the output variables and are damaging. This result 
has many practical implications. If the control engineer incorporates the tanh function in the manipulated variable, 
the Hopf bifurcations and the limit cycles won’t occur, resulting in safety and preventing equipment damage. This, 
along with the multi-objective nonlinear model predictive control, will provide strategies to achieve the most 
beneficial result, prioritizing safety, reducing resource wastage, and minimizing expenses. The rising cost of 
energy requires that all wastage be reduced to a minimum. 

8. Conclusions 

Bifurcation analysis and multiobjective nonlinear control (MNLMPC) studies on a boiling water nuclear 
reactor model. The bifurcation analysis revealed the existence of a Hopf bifurcation point The Hopf bifurcation 
point, which causes an unwanted limit cycle, is eliminated using an activation factor involving the tanh function. 
The MNLMPC calculations resulted in the Utopia (the best possible) solution A combination of bifurcation 
analysis and Multiobjective Nonlinear Model Predictive Control (MNLMPC) for a boiling water nuclear reactor 
model is the main contribution of this paper. 
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